
I

TO:
FROM:
DATE:
SUBJ:

MSPM Distribution
K. J. Martin
11/17/67
BY.4.02

Four chang~shave taken place in BY.4.02.

1) The procedures read_in and write_out may be called
with either varying or non-varying strings.

2) An entry has been added to write_out which tacks a
new line character on the character string to be
written out.

3) The interim versions for 6~36 are no longer qiscussed
in this document. The 6.36 user should refer to
Multics Checkout Bulletin MCB-27.

4) A discussion of asynchronous 1/0 has been added
referring the user to BY.4.04.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY .4.02 PAGE 1

Published: 11/17/67
(Supersedes: BY.4.02, 03/31/67)

!dent ification

User l/0 Procedures to Read and Write
read_in, write_out
K. J. Martin

Purpose

Two procedures, read_in and write...;.out, are provided to
read from theMultics stand(;lrd input stream, user_input,
qnd·write into the Multics standard output stream;, user_output.
They are provided to simplify calls for the user and to
interpret 1/0 status returns using the Multics standard
error handling mechanism described in BY.11.00- BY.11.D4.

Usage

where

call read_in (workspace, n, nin);

ca 11 wri te_out (workspace, n);

call write_out~nl (workspace, n);

workspace is a character string (either varying or non-varying)
at least n characters in length.

n is a fixed decima 1 integer indicatl ng
characters are to be read or written.
is zero or negative, n is taken to be
of workspace.

how marw
If n ·

the length

nin is the number of characters actually read.

In read_in, input (up to .0. characters) is read ·from the
stream user-input into the character string, workspace .. ·
Input is read up to and including the first break character
found in the stream, user _input. That is, read_in reads
the smaller of 1) n characters, or 2) the number of characters
up to and including the break character; then returns
in nin, the number of characters read. In normal command
usage, the only break character is the new line, <NL>.
However, the user may define his break characters using
the 1/0 call, breaks, described in BF .1.12.

Write_out writes from the character string, workspace,
into the stream, user_output. Write out writes n characters.
The ~nl entry adds a new line character to the character
string contained in workspace before v.;ri ting.

MULTICS SYSTEM-PROGRt\f.!MERS ~ MANUAL SECTION BY .4.02 PAGE 2

Implementation

The procedures read in and write_out are much alike except
for their call to the 1/0 system and the value returned
by read_in. Hence they will be considered together.

The procedures examine n to determine whether it is
negative. If so, n = length (workspace); ·

where length is a PL/1 built-in function. If write_out$n1 was
called, n is incremented by 1 and a new line character is
placed in workswce. Then one of the following calls
(described in BF. 1 .12) is made:

ca 11 read ("user _i nput11 , o, addr (workspace), n, n in,
status); ·

call write ("user_output", 0, addr (workspace), n, status);

where addr is a PL/1 built-in function which returns a
pointer to the character string, worksPace. Declarations
are: ·

del workspace char (*),

(n,nin) fixed binary (17),

status bit (144);

The bit string, status, is returned by the I/O system
containing status ·information about the transaction.
BF.1.21 contains a complete description of status information.
When control returns, read_in and write_out call check;...io_status
(see BY.4.03) and if an error is indicated, call seterr
(see BY.11.01) with the error information. They then
signal read_in_err or write_out_err respectively.

A~ynchr9nous 1/0

The streams user input and user output are asynchronous
by default. This means that at-any time, more information
may have been read by the device than the user has yet
requested in read calls. Subsequent read cal Ts collect
that information. On writing, some of the information
which the user thinks he. has.written may not act.ually
have appeared yet on the dev1ce. Normally the user 1s
not affected by these asynchronous characteristics.

Occassionally, however, the user may want to start all
I/0 over fresh. He can wipe out read-ahead or write-behind
data by calling the procedures reset_user _in and reset_user _out
described in BY.4.04.

