
MULTICS SYSTEM-PRdGRAMMERS 1 MANUAL SECTION BY.6.06 PAGE 

Published: 9/28/66 

Identification 

Event-Watchers for I~teractive Debugging Aids 
D. B. \r./agner 

Purpose 

The command breaker 1 described in BX. 10.03, accepts requests 
to interrupt program execution upon the occurrence of 
certain events. These events are such things as a certain 
amount of real time elapsed or a certain kind of access 
(execute~ read 1 or write) to a s~gment or set of locations 
in a segment. Each of the routines described here handles 
all of the arrangements for a particular kind of event, 
and is the only part of the debugger which "knows" how 
that event is handled. Naturally some of these routines 
will have uses outside of debugging. 

Usage 

Every event-watcher is called using the form: 

call routine (id 1 callback, specific arguments relevant 
to event); 

The first two arguments are declared 

del id fixed, 

callback entry (fixed, •.• ) bit(1); 

where the ellipsis indicates declarations peculiar to 
the routine. The particular watcher stores up, in a personal 
data base, id, callbac~~ and.any other information that 
may be necessary. It makes arrangements with the system 
for a trap upon occurrence of the event, and then returns. 
When this trap occurs the routine regains control of the 
process and executes a call to callback with the identification 
number id as the first argument (this is the only use 
ever made of id) and perhaps other arguments giving precise 
details of the event. 

11Watch ing 11 for events of this kind as soc ia ted with this 
id is suspended unti 1 the return from callback. Callback 
should return 11 1"b if such watching is to be resumed, 
and 11 011 b if it is to be abandoned. 



l 

MULTICS SYSTEivi-PROGRAt-1l'-1ERS 1 tltANUAL SECTION BY.6.06 PAGE 2 

Particular Watchers 

Two watchers are available in the initial implementation: 
the core-cycle \JIJatcher and a very primitive form of 11 execution
access11 watcher (similar to the ''break" mechanism in FAPDBG). 

To watch core-cycles the call is: 

call cycle_watch (id 1 callback~ cycles) 

with declarations 

del id fixed, 

callback entry (fixed) bit (1), 

cycles fixed binary (63); 

Cycle-watch watches for the event "cycles more core cycles 
used by this process". 

To watch for control passing to a particular location 
in a program segment, the call is 

call location_watch (id 1 callback~ seg 1 loc); 

with declarations 

de 1 id f ixed 1 

callback entry (fixed) bit (1), 

(seg 1 loc) bit (18); 

If necessary location_watch notifies the file-system that 
the segment is not to be considered pure any more, then 
plants a special instruction (probably an illegal instruction 
\IIJhich IJIJi 11 be trapped by the System) into location joe 
in segment number .§.g_g (seg is normally obtained through 
a call to Segment Management). When this instruction 
is executed and the trap occurs~ the original instruction 
is reinstated and the call to callback is made. If callback 
returns 11 011 b then control merely passes to the (now-reinstated) 
instruction at the location where the trap occurred. 
If ca 11 back returns '' 111 b then the ins true t ion at that 
location is executed interpretively~ the special instruction 
is put back into loc, and control passes to the next instruction. 
(At this poirit it does not matter if the next instruction 
is being trapped too.) 



\ 

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BY.6.06 PAGE 3 

Depending upon how System fault-handling is arranged 1 

it may not be necessary to execute the replaced instruction 
interpretively: a clever use of the RCU instruction should 
do the trick. 

Naturally location_watch should not be used on any location 
which the user's program modifies or reads as data 1 but 
this is not likely to be a problem in Multics 1 since pure 
procedures should be the normal case. 


