
r

To: MSPM Distribution

From: Art Evans

Subject: MSPM BZ.3.01

Date: February 20, 1968

Attached is MSPM section BZ.3.01 describing the language

features of MAD as it will be implemented on Multics. Coming soon will be

BZ.3.00, an overview, which will emphasize that

MAD will be Multics compatible, creating pure procedure

and obeying the usual call-save-return conventions.

(Thus, MAD-compiled procedures may call those compiled by

EPL, and vice versa.) The compiler will honor the usual

options, etc.

Inter-segment referencing will be provided, by changes to the

MAD language.

MULTICS SYSTEM-PROGRAMMERS' fv'ANUAL SECTION BZ.3.01 PAGE 1

Published: 02/20/68

Identification

The Multics fv'AD Language
E. I. Ancona

Purpose

The purpose of this document is to describe those features
of the fv'AD language which the Multics translator wi 11
eventually compile. those features which will be implemented
in the initial version and the changes which will be incorporatec'
into the language.

It should generally be safe to assume that the translator
will eventually compile the language described in the
August 1966 version of the MAD manual except only where
differences are indicated in this document. Nonetheless.
it should be realized that this is a preliminary document.
and that changes may have to be made. Several statements
mentioned here are not on CTSS MAD. They are referred
to here for the sake of completeness. It is assumed the
reader is familiar with EPL.

I. Deletions from the Language:

Following are the statement types which will not be
incorporated in the Multics fv'AD compiler. Section
references are to the August 1966 edition of the MAD
manua 1.

(a)
(b)
(c)
(d)
(e)
(f)

(g)
(h)

(l)

(j)

Pause statement
transmit statement
symbol table statements
listing on and off declarations
references on and off declarations
features described in appendix B.

(section
(section
(section
(section
(section

2.7)
3.10.4)
3., 1)
3.12)
3., 3)

c. D. should not be used.
erasable declaration
list manipulation statements.

are not necessary since all
MAD external functions will
recursive.

(section 3.5)
These

Multics
be

(section 2.13)
the program common declaration wi 11

be replaced by the common declara
tion--see part Ill of this document

there will be no defined operators.
(section 3.6)

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BZ.3.01 PAGE 2

II. Changes in the Language:

The following changes will be implemented in Multics MAD.
Numbers in brackets refer to sections in the MAD manual
most pertinent to the change:

A. Alphabetic constants:

An alphabetic constant is written as from one to four
characters preceeded and followed by the character 11

(double quote). Admissible characters are all of the
characters in the ascii code. Special conventions will
be developed to allow the use of 11 (double quote) as
well as non-printing characters. [1.1.3]

B. Names:

Names of variables or labels consist of from one to 31
characters, the first being a letter. The admissible
characters are the upper and lower case alphabet, the
digits and the character _ (underscore). Note that A
and g are different names. Furthermore, a name may
contain exactly one dollar sign. In that case, the
part before the ~ is the segment name and the part
after the ~ is the entry name. Thus NAMEUNAME2. is ""'·
entry NAME2~ in segment NAME1. Note that the name
of a variable or an identifier may not be chosen to
be that of a keyword. [1.2, 1.3]

c. Keywords:

A keyword, e.g •• dimension or whenever, consists of
lower case letters only. The abbreviations described
in Appendix A may be used except, of course, that
they shot.~ld be lower case.

D. Intersegment referencing:

a. Defining a function:

Both external and internal functions in Multics
MAD will be defined as specified in sections
3.10-3.10.3 of the Manual. However, for external
functions only, the restriction that within one
one function definition, all functions and
procedures defined must use the same set of
dummy variables, is relaxed if one obeys the
following conventions:

r

r

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.3.01 PAGE 3

(i) Each entry point defined, including the primary
entry point must have a list of dummy variables
associated with it. For example, if cos. has
(X, Y) as dummy arguments, sin. has \tJ and tan.
has (Z, Y), then the definition might be

external function
entry to cos • l'X'":" Y)

.
entry 1Q sin.(W)

.
function return alpha + 4
entry to tan.(Z,Y)

0

function return Beta = 9
end of function.

(ii) If several entry points wish to use the same
dummy argument then it must appear in the same
position in the argument list for every entry
point.

b. Calling a function:

If a function name does not contain a$, e.g.,
NAME1. (argument list), the following procedure
is used to locate it and generate the proper calling
sequence:

(i) Determine whether it is an i nterna 1 function

(ii) If not, check whether there is an entry point
called NAME1. within this segment.

(iii) If not, then the name of the segment being
referenced is assumed to be NAME1 and its
entry point also NAME1., i.e., it is equivalent
to NAME1~NAME1.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.3.01 PAGE 4

c. External data references a.

Reference to data in other segments is achieved in
the following way:

NAME1~NAME2 (subscripts)

where NAME1 is the name of the segment

NAME2 is the name of the data in NAME1

(subscripts) is the list of subscripts if
NAME1~NAME2 is an array.

E. field specification:

In order to allow a free field format,

a. statement labels must be followed by a colon.

b. a comment must be enclosed by two slashes //and
the new line symbol.

c. Statements which do not fit on one line must contain
a% as the first character of the next line, indicating
that it is a continuation of the previous line. The
compiler will in all cases just delete the% and the
new line symbol.

d. However, a new statement must always begin on a new
line.

Ill. Additions to the Language:

A. Storage classes:

Three storage classes will be defined:

(1) Common
(2) Automatic
(3) Static

Default storage class for all variables will be
automatic. If another default class is desired,
it may be effected by a statement such as

normal storage 1! <class>

where <class> may be common, automatic or static.

r

r

,.. ,

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.3.01 PAGE 5

B.

Variables whose class should be other than that
normally assigned may be so declared by statements
of the form

<class> variable1, variable2, variable3

where <class> is the storage class.

a. Common storggg:

Common storage is similar to the old program
common declaration. Storage for a variable
declared common is allocated before execution
of the program and is never released during
execution. The storage will be in the
<common_> segment.

Variables declared common may be referenced by
several procedures.

b.

c.

Static storage:

Stetic storage is also allocated before execution
and never released during execution. However,
variables declared static are local to the
procedure declaring them. They will be stored
in the linkage segment.

Automatic storgge:

'utomatic storage is allocated when the procedure
s called. When the procedure returns, the

storage is released. Variables declared
gutomatic will be stored in the stack.

Notes: (1) Automatic =automatic in PL/I

Static

Common

=internal static in PL/I

=.external static in PL/I

(2) Default storage class in the old
MAD was internal static.

(3) Putting a $ into a name makes it
an external symbol.

Pointer dgta:

An additional mode will be available: pointer.
A variable is assigned pointer mode by a declaration
of the type

pointer variable1, variable2, variable3

MULTICS SYSTEM-PROGRAMMERS' MANUAL SEC T I ON 8 Z • 3 • 0 1 PAGE 6

a. If X is declared of pointer mode, then statements
such as X= .addr. Varl will cause X to point
to the location of Var1. The .addr. function
will be a built-in function.

b. Two operations are permitted with pointers:
.E. and .NE.

Thus if X andY are pointers, then X.E.Y will
check whether X andY point to the same location.

c. Note that pointers may be passed as arguments.

d. There will be nQ based storage, in the sense
of PL/1.

e. Pointers will not be implemented in the
original version.

IV. Input-Output:

All input-output statements will be compiled into calls
to appropriate subroutines. In the initial implementation,
the following statements will be allowed:

~ datsa
read S!l9. .l2.r.!.n1 gm
p r ~ n t res u ~1 t s
pr nt comment "<string>11 [2. 16 J

The corresponding subroutines will be specified but not
implemented at this time.

V. Following is a 11 st of a 11 keywords in the MAD manua 1
except 1/0. Their status for the Multics MAD compiler
will be described according to

(a) they will be implemented in the initial version

(b) they might be implemented "later••

(c) they have been deleted from the language.

MULTICS SYSTEM-PROGRAMMERS' Ml\NUAL SECTION BZ.3.01

transfer to <label>
whenever B, Q
whenever B
or whenever B
end of conditional
otherwise
continue
through <label>(for values of V=E(1),

E(2), ••• ,E(mJ
through <label>, for V=E(1),E(2),B
pause no.n
execute
error return
end of program
function return E
entry to <function_name>
set list to :1-L, E
save data <1 ist>
save return
restore data <list>
restore return
(l=E(1),E(2),B,S(1), ••• ,S(n)) iterated
remark (a 1 tered)
<mode> <1 ist>
mode number n <list>
dimension -
normal mode is <mode>
equivalence
erasable
program common (replaced by common)
vector values A(n)=C(O),C(1), ••• ,C(n)
vector values A(m) ••• A(n)=k
parameter
internal function
external function
end of function
transmit
symbol table vector v
full symbol table vector
listing on
listing off
references on
references off

Now Later

X
X
X
X
X
X
X

X

X

X
X
X

X
X

X
X

X
X

X
X
X

X

X

X

X

X

X
X

PAGE 7

Never

X

X
X
X
X
X

X

X
X
X
X
X
X
X

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.3.01 PAGE 8

VI. Operations:

All operations described in the Manual (both arithmetic
Boolean) will be available{ with the possible exception
.P. which will (ultimately) compile into a math library
subroutine.

VII. Data representation:

(i) Integers are stored as GE 645 single-word
integer quantities. Their values must be
<(2(35)- 1) in magnitude. Precision~
10 decimal digits. [1.1.1]

and
of

(ii) Floating point numbers are stored as GE 645
single-word floatin~-point numbers. Precision
~ 8 significant dec1mal digits. [1 .1.2]

(iii) Alphabetic characters are coded in 7 bits,
right justified in 9-bit bytes with leading
zeros. An alphabetic value will be four
characters in length. If a constant written
by the prograrrrner is less than four characters
long, it will be extended to four characters
by adding blanks on the right. [1.1.3]

(iv) Boolean values are stored as GE 645
slngle-word fixed-point numbers.

0 35
DB = loo ol [1.1.4]

a 15
18 = j11 ••••• 1.1

I
(v) Octal quantities are stored as GE 645

,Slngle-word integer quantities. Each octal
~umber consists of 12 digits. [1.1.5]

(vi) Pointers are stored as its pairs.

VIII. Additional restrictions and comments:

The following are restrictions which should be remembered
when reading the manual.

[1.1.6] Modes 5, 6, 7 may neither be used nor defined.

[1.12] Block notation wi 11 not be available in the initial
implementation.

[2.17] Iterated expressions and symbols may not be used.

[3.3.1] Setdim. will not be available in the initial
implementation.

