
MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Specific POPS
B. P. Goldberg~ I. B. Goldberg

A. WORK STACK POPS

Pops

Chapter 2

POPS

SECTION BZ.7.02 PAGE 1

Published: 08/16/68

POP: CLOAD Load into current work

FORMAT: cload(Y)

FUNCTION: Set C(WO) = C(Y)

EXAMPLE: See CEAW

POP: CEAW Effective address to current work

FORMAT: ceaw(Y)

FUNCTION: Set C(WO) 0-17 = y

Set C(WO) 18-35 = 0

EXAMPLE:

Assume C(VARSIZ) = I ooooo7 I oooooo I
0 18 35

The following two pops are equivalent: cload(var·siz)
and ceaw(7)

WO - W5 Before

W5
W4
W3
W2
W1
wo

0

000105
000104
000103
000102
000101
000100

000000
000000
000000
000000
000000
000000

18 35

W5
W4
W3
W2
W1
wo

WO - W5 After

000105 000000
000104 000000
000103 000000
000102 000000
000101 000000

-000007 000000
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZo7.02 PAGE 2

POP: L~D Load

F ORW\ T: 1 oad (Y)

FUNCTION: 1. Add 1 to work counter

2. Set C(WO)·= C(Y)

EXAMPLE: See EAW

POP: EAW Effective address to work

FOR~ T: eaw(Y)

FUNCTION: 1. Add 1 to work counter

EXAMPLE:

2. Set C(WO) 0-17 = Y

Set C(WO) 18-35 • 0

Assume C(VARSIZ) • I 000007 I 000000 I
0 18 35

The following two pops are equivalent: load(varsiz)
and eaw(7)

WO - W5 Before

POP: STOR Store

F ORW\ T: s tor (Y)

FUNCTION: Set C(Y) = C(WO)

POP: STORP Store and prune

FORMAT: storp(Y)

FUNCTION: 1. Set C(Y) = C(WO)

2. Prune WO

W5
W4
W3
W2
W1
wo

WO - W5 After

000104 000000
000103 000000
0_0_0102 000000
000101 000000
000100 000000
000007 000000

0 18 35

•

': __ MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ. 7. 02 PAGE 3

POP: STU Store upper

FORMAT: stu (Y)

FUNCTION: Set C(Y) 0-17 = C(WO) 0-17

Do not change C(Y) 18-35

POP: STUP Store upper, and prune

FORMAT: stup(Y)

FUNCTION: 1. Set C(Y) 0-17 = C(WO) 0-17
Do not change C(Y) 18-35

2. Prune WO

POP: PRW Prune work

FOR~ T: prw(Y)

FUNCTION: Subtract C(Y) 0-17 from work counter; i.e.,
prune work stack by C(Y) 0-17 words

EXAMPLE: See PWCT

POP: PWCT Pnme work to count

FORMAT: pwct(Y)

FUNCTION: Prune work to size C(Y) 0-17

EXAMPLE:

Assume C (c2) = I QOQQ02 I oooooo I
0 18 35

C(c3) = I ooooo3 I oooooo I
0 18 35

The following pops are equivalent: prw(c2) and
pwct (c3)

W5
W4
W3
W2
W1
wo

Work Stack Before

0 0
100 0
200 0
300 0
400 0 I

I

500 0 __]
0 18 35

W3
W2
W1
wo

Work Stack After

0 0
1QQ 0
200 0

t ~QO I Q
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: PRWX Prune work for exit

FORMAT: prwx()

SECTION BZ.7.02 PAGE 4

FUNCTION: Prune work to its size prior to the last
executed JSB pop

COMMENT: The function of this pop is to prune work, not
to extend it

MULTICS SYSTEM-PROGRAMMERS' MANUAL

B. MISCELLANEOUS POPS

Pops

POP: POPNOP No operation

FORMAT: popnop()

FUNCTION: Go to the next pop

POP: ORKEY Or symbol key

FORMAT: orkey(Y)

SECTION BZ.7.02 PAGE 5

FUNCTION: Set C(SYMKEY) 18-35 = C(SYMKEY) 18-35 .or. C(Y) 18-35

SYMKEY is a one-word register in the data segment.
(The interpreter ignores C(SYMKEY) 0-17)

POP: MRK Set MRKER

FORMAT: mrk(Y)

FUNCTION: Set C(MRKER) 0-17 = Y

MRKER is a one-word register in the data segment.
(The interpreter ignores C(MRKER) 18-35)

POP: FACT Fact

FORMA. T: fact (Y)

Y may be an even or odd location

FUNCTION: 1. Bump bottom of roll 3 (fact roll) by two words

2. Set C(word 1) = C(Y)

3. Set C(word 2) = C(Y+1)

COMMENT: fact(Y) is equivalent to load(Y)
pob(3)
cload(Y+1)
pobp(3)

MULTICS SYSTEM-PROGRAMMERS' MANUAL

C. ARITHMETIC AND LOGICAL POPS

Most of the arithmetic and logical pops are in one of

eight categories# as shown in Figure 1. The pops that are

not in one of these categories are NGT and NOT.

1o Arithmetic Pops

Arithmetic pops perform the following types of operations:

addition, subtraction# multiplication# division# and negation.

These pops work on full words. However# they are frequently

used to perform simple operations in which only the upper half

of each word is of interest to the user. In these cases# the

user should make sure that the lower halves of the words are

cleared before the pops are executed. Otherwise# the results

might be incorrect.

EXAMPLE:

The pop add(Y) sets C(WO) a C(WO) + C(Y)

Before After

y I ooooo3 1 777777 I y [.Q00003 I 777777 I
0 18 35 0 18 35

wo I oooooz I 777777 I wo I OOQ006 I 77Z7Z6. I
0 18 35 0 18 35

The upper half of the result is 6# not 5# becuase of carry

from the lower half.

~

POP: ADD Add

FORMAT: add(Y)

FUNCTION: Set C(WO) • C(WO) + C(Y)

Category

1 •
2.
3.

4.
5.

6.

7.
8

.., ··~

lnter~reter Action O~eration apd Corresponding Po~s
+ * I or. • ext. • eor and

' . -- . -

Set C WO) = C(WO) opera± ion C(Y) ADD SUB MLT DVD AND OR EXT EOR
Set C Y) = C(Y) operation C(WO) ADS SBS MLTS ANS URS t.K~

Set C1 Y) - C(Y) operation C(WO) ADSP SBSP MLTSP ANSP OR Sf-' t.K~I-'

and prune WO
Set C RP(WO)) - C(RP{WO))operation C(Y) ADD I AND I EXfl
Set C(RP(WO)) - C(RP(WO))operat ion C(Y) ADDIP lAND II-' lt.X I II-'

and ~rune WO .
Set C(B) - C(B) operation· C(Y) t.KI:l

B is a location on roll N
(See ERB for further explanation)

Set C W1)- C(W1) operation C Y)
Set C W2) - C(W2) operation C Y)

---·- --

Notes: a. The operations are described in the text

b. For representative examples of the categories, see EXT(categories 1,7, and 8),
ORS (categories 2 and 3), ADDI (categories 4 and 5), and ERB (category 6).

Figure 1. Categories of Arithmetic and Logical Pops

lOS .
INS

INS I
11\1!:) II-'

INS!:3

INS1
INS2

,-,

3 c
r
--i -n
Vl

Vl
-<
Vl
--i ,...,
3:
I

""0 ;a

8
~
3
3 ,...,
;a
Vl

'
~
::z
l5 . r

Vl ,...,
(')

--i
0 ::z
OJ
N
0

"'-1
•
D
N

~
G'> ,..,
"'-1

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: ADS Add to storage

FORMAT: ads (Y)

FUNCTION: Set C(Y) = C(Y) + C(WO)

POP: ADSP Add to storage, and prune

FORMAT: adsp(Y)

SECTION BZ.7.02 PAGE 8

FUNCTION: 1. Set C(Y) • C(Y) + C(WO)

2. Prune WO

POP: ADDI Add indirect

FORML\ T: addi (Y)

FUNCTION: Set C(RP(WO)) = C(RP(WO)) + C(Y)

EXAMPLE:

addi (alpha)

ALP~ I 000002 I 000000 J
0 18 35

wo ~-,.I --::!5~____.1.,....:o~l =--=36y]
0 18 30 5

100005 before I ooooo4
0

100005 after I ooooo6
0

POP: ADDIP Add indirect, and prune

F ORML\ T: add i p (Y)

C(TOP+6) 0-17 = 100000

RP(WO) -= 100005

I oooooo I
18 35

18 3

FUNCTION: 1. Set C(RP(WO)) = C(RP(WO)) + C(Y)

2. Prune WO

POP: SUB Subtract

FORMAT: sub (Y)

FUNCTION: Set C(WO) • C(WO) - C(Y)

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: SBS Subtract from storage

FORMAT: sbs (Y)

FUNCTION: Set C(Y) a C(Y) - C(WO)

EXAMPLE:

sbs(alpha)

ALPH4 before 1 ooooas· I oooooo I
0 18 35

wo I 000002 1 oooooo I
0 18 35

ALPHi\ after I 000003 1 oooooOl
0 18 35

SECTION BZ.7.02 PAGE 9

POP: SBSP Subtract from storage, and prune

FORMAT: sbsp(Y)

FUNCTION: 1. Set C(Y) = C(Y)- C(WO)

2. Prune WO

POP: MLT Multiply

F ORMA T : m 1 t (Y)

FUNCTION: Set C(WO) 0-17 = C(WO) 0-17* C(Y) 0-17~ assuming
that C(WO) 18-35 = 0 and C(Y) 18-35 a 0

COMMENT: The operands and the product are 18-bit upper
half integers. If necessary, the product is
truncated on the left to 18 bits.

POP: MLTS Multiply to storage

FORMAT : m 1 t s (Y)

FUNCTION: Set C(Y) 0-17 = C(Y) 0-17* C(WO) 0-17~ assuming
that C(Y) 18-35 = 0 and C(WO) 18-35 = 0

MULTICS SYSTEM-PROGRAMMERS' MANUAL

EXAMPLE t

SECTION BZ.7.02 PAGE 10

mlts(alpha)

wo

ALP~ before

ALP~ after

I ooooo3 I oooooo I
0 18 35

!_goooo2 ___ [oooooo I
0 18 35

I oooQOq I ooooQQJ
0 18 35

COMMENT: The operands and the product are 18-bit upper-half
integers. If necessary, the product is truncated
on the left to 18 bits.

POP: MLTSP Multiply to storage, and prune

FORMAT : m 1 t s p (Y)

FUNCTION: 1. Set C(Y) 0-17 = C(Y) 0-17* C(WO) 0-17 assuming
that C(Y) 18-35 = 0 and C(WO) 18-35 = 0

2. Prune WO

COMMENT: The operands and the product are 18-bit upper-half
integers. If necessary, the product is truncated
on the left to 18 bits.

POP: DVD Divide

FORMAT: dvd (Y)

FUNCTION: Set C(WO) 0-17 = C(WO) 0-17/C(Y) 0-17, assuming that
C(WO) 18-35 ... 0, C(Y) 18-35 • 0, and C(Y) 0-17 rf. 0

EXAMPLE:

dvd(alpha)

WO before I ooooo7 I oooooo I
0 18 35

ALP~ I ooooo3 I OOOQQQ I
0 18 35

wo I ooooo2 I oooooo 1
0 18 35

COMMENT: The operands and the quotient are 18-bit upper-half
integers. The remainder is ignored.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: NGT Negate (two's complement)

FORMAT: ngt()

FUNCTION: Set C(WO) = -C(WO)

SECTION BZ.7.02 PAGE 11

COMMENT: 1 • Two negates wi 11 always return the orig ina 1 state
of a number

2. Negation means taking the two's complement of a
number. It does not mean changing bit 0 (the
sign bit). The following code changes C(ALPHA) 0:

eaw(octa1(400000))
ersp(a lpha)

This code does not negate ALPHA, unless
C(ALPHA) = 200000000000 or 600000000000.

POP: NGTS Negate storage (two's complement)

FORMAT: ngts (Y)

FUNCTION: Set C(Y) = -C(Y)

EXAMPLES:

In each of the following examples, the pop is ngts(alpha)

ALP~ before l_QQ_QOQJ_LQ_QQQQQ] + 1 ALPHA after I_ZZZZ?_l__I_QQOOQ_Q] -1
0 18 35 0 18 35

ALPHA before 10 oooooo 1 1 ~oooo~ 51 o ALPHA after j0 oooooo 1 1 goooo~~

2. Logical Pops

a. Simple Operations

(There is no
such thing
as -0)

The following truth table summarizes the simple logical
ope rat ions:

xk yk

.and.
0 0 0
0 1 0
1 0 0 , 1 1

zk

.ext. .or.
0 0
0 , , 1
0 1

.ear.
0
1
1
0

.and. = and

.ext. = extract

.or. = or

.ear. =exclusive or

0

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 12

The general fonnat of pops performing these operations is:

Set zk = xk .logical. yk (fork= 0~1~···~ and 35)

where .logical. represents the operation, and x~y,and z are

36-bit quantities whose k'th bits are xk~ yk, and zk,

respectively. The pops work on all bits of x,y~ and z in

para lle 1.

Pops

POP: AND And

FORMATs and (Y)

FUNCTION: Set C(WO) = C(WO) .and. C(Y)

POP: ANS And to storage

FORMAT: ans (Y)

FUNCTION: Set C(Y) "" C(Y) .and. C(WO)

EXAMPLE:

ans(alpha)

wo I ooooos I oooooo I
0 18 35

ALPHA before .~....1 ..wo_oo_o o 3'---'-l o o oo..........,oa l
0 18 35

ALPHA after,.1 .xOO~OIQ:I0~02:~:--.......,I ~OOlii£.:0=-=0~0~o,....l
0 18 35

POP: ANSP And to storage, and prune

FORMAT: ansp(Y)

FUNCTION: 1. Set C(Y) • C(Y) .and. C(WO)

2. Prune WO

/

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

POP: ANDI And indirect

FORMAT: andi (Y)

SECTION BZ.7.02 PAGE 13

FUNCTION: Set C(RP(WO)) = C(RP(WO)) .and. C(Y)

POP: ANDIP And indirect, and prune

FORMAT : and i p (Y)

FUNCTION: 1. Set C(RP(WO)) = C(RP(WO)) .and. C(Y)

2. Prune WO

POP: OR Or

FORMAT: or (Y)

FUNCTION: Set C(WO) = C(WO) .or. C(Y)

~ POP: ORS Or to storage

FORMAT: ors (Y)

FUNCTION: Set C(Y) = C(Y) .or. C(WO)

EXAMPLE:

ors (alpha)

wo I ooooo6 I oooooo I
0 18 35

ALPH!\ before 1 ooooo3 I oooooo i
0 18 35

ALP~ after 1 ooooo? I oooooo I
0 18 35

POP: ORSP Or to storage, and prune

FORMAT: orsp(Y)

FUNCTION: 1. Set C(Y) = C(Y) .or. C(WO)

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

POP: EXT Extract

FORMAT: ext (Y)

FUNCTION: Set C(WO) = C(WO) .ext. C(Y)

EXAMPLE: ext(alpha)

SECTION BZ.7.02 PAGE 14

WO before 1 ooooo6 I oooooo I
0 18 35

ALPHA I ooooo3 I oooooo I
0 18 35

WO after I ooooo4 I oooooo I
0 18 35

POP: EXTI Extract indirect

FORMAT: exti (Y)

FUNCTION: Set C(RP(WO)) = C(RP(WO)) .ext. C(Y)

POP: EXTIP Extract indirect, and prune

FORMAT: extip(Y)

FUNCTION: 1. Set C(RP(WO)) = C(RP(WO)) .ext. C(Y)

2. Prune WO

POP: EOR Exclusive or

FORMAT: eor(Y)

FUNCTION: Set C(WO) = C(WO) .eor. C(Y)

POP: ERS Exclusive or to storage

FORMAT: ers (Y)

FUNCTION: Set C(Y) = C(Y) .eor. C(WO)

POP: ERSP Exclusive or to storage, and prune

FORMAT: ersp(Y)

FUNCTION: 1. Set C(Y) = C(Y) .eor. C(WO)

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 15

POP: ERB Exclusive or to bottom

FORMAT: e rb (Y)

FUNCTION: Set C(B) = C(B) .eor. C(Y)

EXAMPLE:

B is a location on roll N, where N = C(MRKER) 0-17

For fixed-size groups, B = C(BOTTOM+N) 0-·17
- C(GRPSIZ+N) 0-17

For variable-size groups, B = C(BOTTOM+N) 0-17
- C(VARSIZ) 0-17

erb (alpha)

ALP~ I 000001 I 000000 I C(BOTTOM+6) 0-17 = 100100
0 18 35 B = 100100 - 100 = 100000

MRKER I 000006 I 000000 I C(GRPSIZ+6) 0-17 = 100
0 18 35

100000 before I 000007 I 000000 I
0 18 35

100000 after I 000006 I 000000 I
0 18 35

COMMENT: If N consists of fixed-size groups, B is the first

word of the last group before the bottom. However,

the user may set VARSIZ to any number; thus, if N

consists of variable-size groups, B may be any word

in (or even above) the last group.

b. Insert Opeqation

The following truth table summarizes the insert operation:
xk efore z after

0
0
0
1
1
1
1

0
1
1
0
0
1
1

1
0
1
0
1
0
1

0
0
1
1
1
0
1

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 16

Pops in this category insert xk into zk when yk = 0. These pops

work on all bits of x, y, and z in parallel. The operand Y is

always an even location, with C(Y) = x and C(Y+1) = y. The

location of z is different for each insert pop.

Pops

POP: INS Insert

FORMAT: ins (Y)
Y is an even address

FUNCTION: Set C(WO) = C(WO) .ins. C(Y)

EXAMPLE:

ins(2000)

2000
2001

WO before

WO after

0 9

I A I B
0 9

I A I X
0 9

18 2 7 35

I c I o I
18 2 7 35

I c I v I
18 27 35,

POP: INSI Insert indirect

F ORMA T : 1 n s i (Y)
Y is an even address

FUNCTION: Set C(RP(WO)) = C(RP(WO)) .ins. C(Y)

POP: INSIP Insert indirect, and prune

FO~ T: insip(Y)
Y is an even address

FUNCTION: 1. Set C(RP(WO)) = C(RP(WO)) .ins. C(Y)

2. Prune WO

MUL TICS SYSTEM- PROGRAMMERS"' ~NUAL SECTION BZ.7.02 PAGE 17

POP: INSB Insert into bottom
(See ERB.)

F ORMO. T: in sb (Y)
Y is an even address

FUNCTION~ Set C(B) = C(B) oins. C(Y)

POP: INS1 Insert into W1

F ORMO. T: ins 1 (Y)
Y is an even address

FUNCTION: Set C(W1) = C(W1) .ins. C(Y)

POP: INS2 Insert into W2

F ORMO. T: i ns2 (Y)
Y is an even address

FUNCTION: Set C(W2) = C(W2) .ins. C(Y)

C. Not Operation

Pop

POP: NOT Not

FORMO. T: not (Y)

FUNCTION: If C(Y) = 0, set C(Y) 0-17 = 1
If C(Y) ~ 0, set C(Y) = 0

EXAMPLES:

not(alpha)

ALP~ before I oooooo I oooooo ALP~ before I 0001 op I 000000 I
0 18 35

ALP~ after I ooooo1 I oooooo I
0 18 35

COMMENT: The purpose of this pop

and l 000001 I 000000 1.
0 18 35

0 18 35

ALP~ after J 000000 I OOQOODl
0 18 35

is to invert loooooo I ooooooi
0 18 35

The interpreter treats any

operand that is non-zero as if it were n:JoOCiOr·-rooooo]J.
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL

D. ROLL MANIPULATION POPS

1. Normal Roll Manipulation

~

POP: POB Put on bottom

FORMAT: pob (N)

SECTION BZ.7.02 PAGE 18

FUNCTION: 1. Bump bottom of roll N by 1 word

2. Set C(word 1) = C(WO)

POP: POBP Put on bottom, and prune

FORMAT: pobp(N)

FUNCTION: 1. Bump bottom of roll N by 1 word

2. Set C(word 1) = C(WO)

3. Prune WO

POP: POBS Put on bottom from storage

FORMAT: pobs (Y)

FUNCTION: 1. Bump bottom of roll M by 1 word, where
M=C (MRKER) 0-17

2. Set C(word 1) = C(Y)

POP: GOB Get off bottom

FORMAT: gob (N)

FUNCTION: 1. Set false, and go to next pop if C(TOP+N) 0-17 =
C(BOTTOM+N) 0-17. Otherwise, set true and perform
steps 2-3.

2. Add 1 to work counter

3. Set C(WO) = C(C(BOTTOM+N) 0-17- 1)J i.e., load
the word immediately above the bottom of roll N

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

POP: GOBP Get off bottom# and prune

FORMATz gobp(N)

SECTION BZ.7.02 PAGE 19

FUNCTION: 1. Set false# and go to next pop if
C(TOP+N) 0-17 = C(BOTTOM+N) 0-17. Otherwise#
set true and perform steps 2-4.

2. Add 1 to work counter

3. Set C(WO) = C(C(BOTTOM+N) 0-17 - 1); i.e.# load
the word immediately above the bottom of roll N

4. Set C(BOTTOM+N) 0-17 = C(BOTTOM+N) .0-17 - 1;
i.e.# prune one word from the bottom of roll N

POP: CNT Count roll

FORMAT: cnt (N)

FUNCTIONz 1. Add 1 to work counter

2. Set C(WO) = C(BOTTOM+N) - C(TOP+N)
This calculation gives the number of words
between the top and the bottom of the roll;
i.e.# the number of unreserved words in use.

POPa CNTG Count group

FORMAT: cntg(N)

FUNCTION: Count the last variable size group on roll N.

1. Assume that RP(ROLPTR+N) is the location of
the VSW of the last group on roll N. Count
the group (w words)

w = C(BOTTOM+N) 0-17 -RP(ROLPTR+N)-1

2. Set C(VSW) 0-17 a w

MUL TICS SYSTEM-PROGRAMMERS' M4NUAL SECTION BZ.7.02 PAGE 20

EXAMPLE:

cntg(6)

TOP+6 I 100000 I 000000 I BOTTOM+6 I 1 001 07 I 000000 I
0 18 35 0 18 35

ROLPTR+6 I 100 I X I 6 I RP(ROLPTR+6) = 100100
0 18 30 35

VSW after I 000006 !unchanged I (100107-100100-1 = 6)
0 18 35

Illustration

Roll 6

100000

100100 000006 000000 Variable size word
100101 first word

100107 Bottom
0 18 35

COMMENT: In executing this pop, the interpreter ignores
C(ROLPTR+N) 30-35.

POP: PRU Prune ro 11

F ORfv'A T: pru (N)

FUNCTION: Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17

POP: PTP Prune to pointer

FOR~ T: ptp(Y)

FUNCTION: Set C(BOTTOM+C(Y) 30-35) 0-17 = RP(Y)

POP: PTPP Prune to pointer in work and prune

FORMAT: ptpp()

FUNCTION: 1. Set C(BOTTOM+C(WO) 30-35) 0-17 = RP(WO)

2o Prune WO

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7 .02 PAGE 21

COMMENT: Assume C(C1) = 000001 000000
0 18 35

In this case, ptpp() is equivalent to ptp(wO)
prw(c1)

POP: PBCT Prune by count

FORMAT: pbct(N)

FUNCTION: Set C(BOTTOM+N) 0-17 = C(BOTTOM+N) 0-17 - C(WO) 0-17;
i.e., prune C(WO) 0-17 words from the bottom of
roll N

POP: PBCTP Prune by count, and prune

FORMAT: pbctp(N)

FUNCTION: 1. Set C(BOTTOM+N) 0-17 =
C(BOTTOM+N) 0-17 - C(WO) 0-17

2. Prune WO

POP: PTCT Prune to count

FORMAT: ptct(N)

FUNCTIONz Set C(BOTTOM+N) 0-17 • C(TOP+N) 0·17 + C(WO) 0-17;
i.e., prune roll N, so that there are C(WO) 0-17
words from top to bottom

POP: PTCTP Prune to count, and prune

FORMAT: ptctp(N)

FUNCTION: 1. Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17 + C(WO) 0-17

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 22

POP: PLG Prune last group

FORMAT: plg(N)

FUNCTION: Set C(BOTTOM+N) 0-17 = C(BOTTOM+N) 0-17 -K, if the
difference~ C(TOP+N) 0-17. Otherwise, do not
prune group.

K = C(GRPSIZ+N) 0-17, if C(GRPSIZ+N) 0-17 is non-zero

K = C(VARSIZ) 0-17 + 1 if C(GRPSIZ+N) 0-17 is zero.

POP: REMOV Remove

FORMAT: remov(N)

FUNCTION: Make all but one of the words from anchor to floor of
roll N available to other rolls, and put roll Non
the list of removed rolls.

Set C(BOTTOM+N) = 0, and set C(TOP+N) = information
to be used by the interpreter.

POP: OPN Open

FORMAT: opn(N)

FUNCTION: Case 1: C(BOTTOM+N) ~OJ i.e., the roll is already
open

Go to next pop

Case 2: C(BOTTOM+N) = 0

1. Take roll N off the list of removed rolls

2. Set C(BOTTOM+N) and C(TOP+N) both equal to
C(ANCHOR+N)

NOTE: If all of the available words on the
removed roll were used, C(ANCHOR+N)
points to the remaining word on roll N.
Otherwise, C(ANCHOR+N) points to the
first unused word on roll N.

,.. MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 23

POP: RSV Reserve

FORMAT: rsv(N)

FUNCTION: 1. Compute the number of words currently reserved
(w words) w = C (TOP+N) 0-17 - C (ANCHOR+N) 0-17

2. Bump the bottom of roll N by 1 word

3. Set C(word 1) 0-17 = w. Ignore the lower
half of word 1.

4. Set C(TOP+N) 0-17 = C(BOTTOM+N) 0-17

This is illustrated below:

Anchor

Top
Bottom

Ro 11 N Before

Anchor
w words

1-------_, - - - - - - -

Top, Bottom

0 35

Roll N After

Reserved

w !ignored

Free
(Roll Count =0)

0 35

POP: REL Release

FORMAT: re 1 (N)

FUNCTION: Case 1: C(TOP+N) 0-17 = C(ANCHOR+N) 0-17; nothing
is reserved

Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17

Case 2: Roll N contains one or more reserved words

1. Set C(BOTTOM+N) 0-17 = Q-1, where
Q = C(TOP+N) 0-17

2. Recover w, C(Q-1) 0-17 (See RSV pop.)

3. Set C(TOP+N) 0-17 ~ C(ANCHOR+N) 0-17 + w

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 24

This is illustrated below:

Roll N Before Roll N After

Anchor Still 11
reserved w words w words

--- -· -Top - - -
Now in use

--- -aoftom-
Now .free

Top location Q
in use

Bottom
0 35 0 3

POP: RSVM Reserve and mark

FORMAT: rsvm(N)

FUNCTION: 1. Execute mrk(N)

2. Execute rsv(N)

POP: DNX Down next word

fORMAT: dnx (N)

FUNCTION: 1 • Case 1: C(ROLPTR+N~ = 0; i.e. 1 C(ROLPTR+N) =
I 0 I 0_ 0 I (Po nts to bottom.)
0 18 30 35

Set C(ROLPTR+N) = I 0 I Ol M I # where M = N.
0 18 30 35 · (Points to top.)

Case 2: C(ROLPTR+N) r 0; i.e., C(ROLPTR+N) =
[P I xl M J, where M is usually N.
0 18 30 35

Set C(ROLPTR+N) = I P+1 I 0 I M I
0 18 30 35

(Points one word
down.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 25

2. If roll M is removed~ set C(ROLPTR+N) = 0,
and set false

If RP(ROLPTR+N) ~ C(BOTTOM+M) 0-17, set
C(ROLPTR+N) = 0 6 and set false*

If RP(ROLPTR+N) < C(BOTTOM+M) 0-17, set true

EXAMPLE: Assume initial C(ROLPTR+6) = 0

ROLPTR+6 Roll 6

I i I ~ I I LB~:: tr------____ _1
0 18 30 35 0 35

ROLPTR+6
Before dnx (6)

I o I ol o I
0 18 30 35

I o I ol 6 I
0 18 30 35

I 1 I ol 6 I
0 18 30 35

l 2 I ol 6 I
0 18 30 35

ROLPTR+6
After Step 1

Case 1

I o I ol 6 I
0 18 30 35

I 1 I ol 6 I
0 18 30 35

I 2 I ol 6 I
0 18 30 35

I 3 I ol 6 I
0 18 30 35

ROLPTR+6
After Step 2

I 0 I ol 6 I Set true
0 18 30 35

I 1 I 01 6 I Set true
0 18 30 35

I 2 I 01 6 I Set t rue
0 18 30 35

I o I ol o I Set fa 1 se
0 18 30 35

*If roll M is the current read-spill roll (see Paragraph D.2.a)~
the interpreter does the following:

1. Determine whether there are more groups in the current
read-spill segment

2. If there are no more groups, set C(ROLPTR+N) = 06 and
set false

If there are more groups 6 set
C(ROLPTR+N) 0-17 = C(BOTTOM+M) 0-17 - C(TOP+M) 0-17,
append next section of groups to bottom of roll M6 and
~et true

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 26

POP: UNX Up next word

FORMAT: unx(N)

FUNCTION: Let 0 = C(BOTTOM+N) 0-17 - C(TOP+N) 0-17 , . Case 1: C(ROLPTR+N) = Os i.e.,
C (R OL PTR+N) = I_....E.-----;;.O----=r-I....___..Or-11.----.0~I

0 18 30 35

Set C(ROLPTR+N) = I P I 0 I N I , where P == 0
0 18 30 35

Case 2: C (ROLPTR+N) r/a ...=0..._1 ___,i.,_.,:...:e:.~..,• ~· .----.-.
C (ROLPTR+N) = I P [ignored I

0 18 35

Do -not change C(ROLPTR+N)

2. If p .. 0, then set C(ROLPTR+N) = I 0 r 0 I 0 I.
and set false 0 18 30 35

If P r/a a. then set C(ROLPTR+N) = [P-1 I unchangedL
and set t rue \:-0 ,_;___:_~1 8:.;..;....;;'-'-'=-..-.;3:-:5='""'

EXAMPLE: Assume initial C(ROLPTR+6) = 0

ROLPTR+6 Roll 6

I

0

I

0

I

6

I

•Top I
I

, g 6
2 6
0 0 0 ~Botti:

0 18 30 35 0 35

ROLPTR+6 ROLPTR+6 ROLPTR+6
Before unx(6) After step 1 After step 2

Q I o I Q I I 3
Case 1

I o I 6 II 2 I o I 6 Set true

2 I g I 6 I I Casf 2
2 ol 6 II] I o I 6 Set true

I I
C~se_2

I o I 1 I o I Q 1 I oJ 6 II 0 6 Set true

Case 2
I I 0 I o I 6 I I 0 I o I 6 I ! 0 I o I 0 Set false

0 18 30 35 0 18 30 35 0 18 30 35

COMMENTS: 1 • The interpreter assumes that roll N is not removed

2. N overrides C(ROLPTR+N) 30-35

3. No special action is taken for the read-spi 11 ro 11.

MULTICS SYSTEM-PROGRAMMERS"' MAN~L

POP: DLOAD Down and Load

FORMAT: dload(N)

FUNCTION: 1. Execute the pop dnx(N)

SECTION BZ.7.02 PAGE 27

2. If true condition was set. add 1 to work
counter; and set C(WO) = C(RP(ROLPTR+N))
i.e •• load the word pointed to
If false condition was set, do not change work

POP: DNG Down next group

FORMAT: dng (N)

FUNCTION: Let G = C(GRPSIZ+N) 0-17 and let
V = C(RP(ROLPTR+N)) 0-17

Execute the pop dnx(N). with the following
exceptions:

In step 1. case 2; i.e •• C(ROLPTR+N) ~ P I x I M I
0 18 30 35

If roll N consists of lfixjd-si~e groups. set
C(ROLPTR+N) = I P+G - 0_ M --

0 18 30 35

If roll N consists of variable-size groups. set
C(ROLPTR+N) =I P+V+l I 0 ~ M I

0 180 35

POP: ULOAD Up and load

FORMAT: uload(N)

FUNCTION: 1. Execute the pop unx(N)

2. If true condition was set. add 1 to work
counter; and set C(WO) = C(RP(ROLPTR+N))
load the word pointed to

If false condition was set. do not change work

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 28

POP: UNG Up next group

fORMAT: ung (N)

fUNCTION: Let G = C(GRPSIZ+N) 0-17. (Here 1 G must be non-zero)
Execute the pop unx(N) with the following exception:

In step 2, if P ; 0, set
C(ROLPTR+N) • I P - G !unchanged!

0 18 35

COMMENT: This pop required fixed-size groups.

POP: CPY Copy

fORMAT: cpy (N)
M = C(MRKER) 0-17

fUNCTION: 1. Count roll N, to determine the number of words
between the top and bottom of the roll.
w = number of words counted

2. If w • 01 take no further action.

If w ~ 0, bump the bottom of roll M by w wordsJ
and copy w words (top to bottom) from roll N into
this w-word area of roll M. (Words are copied
sequentially.)

EXAMPLE: mrk (5)
cpy(6)

TOP+5 l1 00000 l 0000()0 I BOTTOM+6 I 101002 I 000000 I
TOP+6 _ 101000 _ 000000 0 18 35

0 18 35

BOTTOM+5 before 1 1 00003 I 000000 l
0 18 35

BOTTOM+5 after! 100005 I 000000 I

I Jlustration

Before
100000

101000

POP
2

100
200

1
1000

0
0
0

0
0

-

0 18 35

•P After po
Top roll 5 100000

Bottom

Top roll 6 101000

Bottom
0

2
100
200

1
1000

1
1000

0 18 35

0
0
0
Q_
0

0
0

18 3

Topro115

Bottom

Top roll 6

Bottom

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

POP: CPYR Copy and release

FORMAT: cpyr(N)

FUNCTION: 1. Execute cpy(N)

2. Execute rel(N)

POP: CPYP Copy and prune

FORMAT: cpyp(N)

FUNCTION: 1. Execute cpy(N)

SECTION BZ.7.02 PAGE 29

2. Set C(BOTTOM+N) 0-17 = C(TOP+N) 0-17

POP: CPYG Copy group

FORMAT: cpyg(Y)
X andY are locations of roll pointers
X = C(MRKER) 0-17

FUNCTION: Copy the group starting at location RP(Y) (group A)
to the group starting at location RP(X) (group B).
Either group may be fixed-size or variable-size.
(If variable-size# the roll pointer points to the
VSW.) Group sizes need not be the same.

1. Detennine group size of each group# as follows:
G = C(GRPSIZ+M) 0-17 #where M =roll number

If G ~ 0# group size equals G

If G = 0, group size equals C(VSW) 0-17

2. Copy group A into group B, according to the
following rules:

a. If group A is a variable size group, do not
copy the VSW. Begin by copying the word
following the VSW.

b. If group B is a variable size group, do not
change the VSW. Copy the first word from
group A into the location following the VSW.

c. Copy words sequentially

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 30

d. If the group size of group A = N words, and
the group size of ~roup B > N words, then copy
group A into the f1rst N words of group B and
set the remaining words of group B to zero.

e. If the group size of group B = N words, and
the group size of group A ~ N words, then copy
the first N words of group A into group B.

EXAMPLE: mrk(ro1ptr+6)
cpyg(rolptr+S)

Assume RP(ROLPTR+S) is the location of the first word of the
following fixed-size group on roll 5:

word 1
wor
wor
wor

The following illustrations show how this group would be copied
into different types of groups on roll 6:

3-word
Fixed size

s-word
Fixed size

4-word 3-word
Fixed size Variable size

word 1
word 2
word 3

word 1
word 2
word .~.
wora 14-
zeros

word 1
word 2
word 3
word 4

VSW unchanged
word 1
word 2
word 3

POP: CPYGB Copy variable-size group from Y pointer to bottom
of marked ro 11

FORMAT: cpygb(Y)
Y is the location of a roll pointer
M = C(MRKER) 0-17

FUNCTION: In the following discussion, RP(Y) is the location
of the VSW of the group to be copied, and
C (VSW) 0-1 7 = V

1. Set C(VARSIZ) 0-17 = V

2. Bump bottom of roll M by V+1 words

3. Set C(word 1) 0-17 = V
Set C(word 1) 18-35 = 0

4. Copy remaining words (if any) into words 2
through V+1

MULTICS SYSTEM-PROGRAMMERS' Wl.NIAL SECTION BZ.7.02 PAGE 31

EXAMPLE: cpygb (ro 1 pt r+5)

GRPSIZ+5 000000 TOP+5 100000
GRPS IZ+6 000000 TOP+6 101000

0 0

ROLPTR+5 I 10 I ol 5 I BOTTOM+6
0 18 30 35

MRKER I ooooo6 I oooooo I
0 18 35

VARS IZ after I 000002 I unchanged I
0 18 35

BOTTOM+6 after I 102003 I 000000 I

Illustration

Roll 5

Anchor

100000

100010

,___" ___

000002
000100
000200

Bottom 0

ignored
000000
000000

18 35

POP: CPYX Copy expression

FORM!l. T; cpyx (N)
M = C(MRKER) 0-17

Anchor

101000

102000

FUNCTION: Case 1: Roll N is empty

Set false

0 18 35

Roll 6

r-000002 000000 Old bottom
000100 000000
000200 000000

0 18 35 New bottom

Case 2: Roll N is not empty

1. Set true

2. Determine the length of the expression to be
copied, using the following rules:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 32

a. The elements of the expression are either
operands or operators:

I K I 0 I ignored I ~
10

K 13 !ignored I
20 35 0 18 20 35 K words 18

1-wo rd ope rand 1-word operator
K 12 I ianored

0 18 20 31

(K+1)-word operand

where: K ~ 1

EXAMPLE:

Z =A+ B
= Z + A B

Location

B 100000

A 100001

+ 100002

z 100002

= 100004

b. Unless the expression consists only of one
operand# its first element is an operator

c. Elements are stored backward (from bottom to
top). The first element appears immediately
above the bottom# but the last element does
not necessarily end at the top.

d. The interpreter scans the elements from
bottom to top. It initially sets a counter
to 1. Each operand subtracts 1 from the
counter. Each operator adds K-1 to the
counter. When the count reaches 0, the
expression ends.

3. Bump bottom of marked roll by number of words to copy

4. Copy expression onto the marked roll.

0

FORTRAN expression
Polish expression

I

Value f counter# after
scanning of each element

Representation on Roll

Offset of B in
roll 0
Offset of A in
roll 0

2

Offset of Z in
roll 0

2

0

0

3

0

3

anything

anything

code for +

anything

code for =

0

1

2

1

2
18 20 35 1 (initial value)

B, A, and Z are on links in roll o. Here, the offsets are the
locations of the VSW's for these links.

MULTICS SYSTEM-PROGRAMMERS"' MANUAL

POP: CPYXP Copy expression. and prune

FORMAT: cpyxp(N)

FUNCTION: 1. Execute cpyx(N)

SECTION BZ.7.a2 PAGE 33

2. If true. set C(BOTTOM+N) a-17 = location of
last word in the expression, i.e., the word
nearest the top of the roll.

POP: ZBG Zero bottom group

FUNCTION: Let G = C(GRPSIZ+N) a-17 and V = C(VARSIZ) a-17

Case 1: G ~ a

1. Make ROLPTR+N point to the bottom of
roll N

2. Bump bottom of roll N by G words

3. Set C(word 1) =a. ••·• C(word G) • a

Case 2: G =a

1. Make ROLPTR+N point to the bottom of
roll N

2. Bump bottom of roll N by V+1 words

3. Set C(word 1) a-17 = V

Set C(word 1) 18-35 =a

4. Set C(word 2) =a ••••• C(word V+1) =a,
if V>a

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 34

POP: SORTR Sort roll

FORMAT:

FUNCTION:

EXAMPLE:

sortr(S)

top

bottom
0

sortr(N)
Roll N consists of 2-word groups; the first word of each
group is the key.

sort the groups of roll N (from top to bottom) so that
the keys are in ascending logical order; i.e., the
keys are interpreted as signless 36-bit numbers.

Roll 5 After
top 1 0

5 0
12 0
4 0

1003 0
6 0

bottom
18 3 0 18 3~

COMMENT: This pop is used to sort addresses or one-word symbols.
It is not used for sorting signed numbers; in this
case, the positive numbers would precede the negative
numbers.

2. Manipulation of Spill Rolls

a. Spill Rolls

The following discussion covers the use of spill rolls by a

two-pass compiler or assembler. These rolls cannot be used

by a one-pass procedure.

Assume N-1 is the last roll used, where N = C(OPNERS) 0-17.

Rolls N-1 and N-2 are used as read or write spi 11 rolls, as

described below:

MULTICS SYSTEM-PROGRAMMERS' ~NU8.L SECTION BZ.7.02 PAGE 35

Pass 1 :

N-1 Wri te-spi 11 ro 11
The interpreter writes data on this roll

N-2 Not used

Pass 2:

N-1 Read spi 11 roll
The interpreter reads data from this roll

N-2 Wri te-spi 11 roll (binary roll)
The interpreter writes data on this roll

Pass 3: WBIN (See WBIN pop)

N-1 Not used

N-2 Read spill (binary roll)
The interpreter reads data from this roll. to
produce text. linkage. and symbol segments
during the execution of WBIN

RSPTR and WSPTR are data segment registers denoting offsets

on the current read- and write-spill rolls. respectively:

RSPTR I offset I ignored I N R I N R - Number of current
0 18 30 35 read-spi 11 roll

NOTE: If C(RSPTR) = o. there is no current
read- sp i 11 ro 11

WSPTR I offset I ignored I N WI N W - Number of current
0 18 30 35 write-spill roll

NOTE: If C(WSPTR) • o. there is no current
write-spill roll

Words above the location denoted by RSPTR may be discarded.

Words above the location denoted by WSPTR may be written on

an auxiliary data segment. called a write-spill segment.

During pass 1. the write-spill segment is spill segment 1;

any data written on spill segment 1 is read during pass 2.

During pass 2. the write-spill segment is spill segment 2;

any data written on spill segment 2 is read during pass 3.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 36

The first section of data from the appropriate spill segment

is read via a RWND popJ remaining sections are read via DNG

pops (see the discussions of these pops for details).

The read- and write-spill rolls consist of variable-size groups.

Figure 2 illustrates the setup of these rolls during pass 2:

Anchor of roll N-1

...__ RP (RS PTR)

Bottom of roll N-1

Floor of roll N-1

Figure 2. Setup of Read-Spill and Write-Spill Rolls During Pass 2

The following information is true for both the read-spill and the

write-spill rolls:

1 •

2.

3.

Initially. anchor. top. and bottom are at the same location.

Thereafter. anchor is the location of the first word in useJ
bottom is one word after the last word in use. and the
distance between top and anchor a total number of words
released.

The only significance of top is for roll pointer addressingJ
i.e •• the offset of any word on either of these rolls is
fixed. even if information has been released above it.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 37

b. Manipulation of Space

Manipulation of spill rolls is summarized below:

Pass 1 -- N W = N-1

Assume: 1. Interpreter tried to bump bottom of some roll~
but there was insufficient space in the data
segment.

2. C(WSPTR) 1: 0

3. RP(WSPTR) > C(ANCHOR+N W) 0-17J i.e.~ there
is available space to release~ starting with
the anchor and ending with RP(WSPTR) -1.

Action: 1. Copy words from available space to spill segment 1
(starting with next free location in spill
segment 1).

2. Release the space on roll N W
I

3. Set C(ANCHOR+N W) 0-17 = RP(WSPTR)

4. Perform any necessary roll movements

Result: C(ANCHOR+N W) 0-17 - C(TOP+N W) 0-17 = cumulative
number of words written on spill segment 1

Example:

zbg(N W) Here~ the write-spill roll is the expanding roll

Before After

Anchor Space Anchor Copied RP(WSPTR)*
Available When w words

Needed New Group

RP(WSPTR n use Bottom
Free

Bottom ree Space here~
but not
enough Free Floor

Floor Work stac
No space Work stack
available
here

*Top was adjusted by
subtracting w words

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 38

Pass 2 -- N R = N-1

Assume: 1. Interpreter tried to bump bottom of some roll_
but there was insufficient space in the data segment.

2. C (RSPTR) {a 0

3. RP(RSPTR) > C(ANCHOR+N R) 0-17J i.e._ there is
available space to release_ starting with the
anchor and ending with RP(RSPTR) -1.

Action: 1. Release space

2. Set C(ANCHOR+N R) 0-17 • RP(RSPTR)

3o Perform any necessary roll movements

Result: C(ANCHOR+N R) 0-17 - C(TOP+N R) 0-17 = Cumulative
number of words released

Comment: In pass 2_ roll N-2 may obtain space from roll N-1-

without moving any words. The interpreter merely

adjusts the floor of roll N-2- which is always the

anchor or roll N-1. The interpreter releases only

the required number of words from roll N-1- and saves

the remaining releasable words for future allocation.

During pass 2_ usually more words are read than

written. Therefore_ the read-spill roll (N-1) should

make space available to the write-spill roll (N-2)

fast enough to eliminate the need for moving any words.

In pass 2_ the write-spill roll is manipulated in the

manner described for pass 1. In this case_ however_

the write-spill roll is N-2- and released words are

copied into spill segment 2.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 39

RWND Po(?

POP: RWND Rewind

FORMAT a rwnd(N)
N is the number of the current read-spill or
write-spill roll

FUNCTION: Case 1: If C(RSPTR) 30-35 = N. then rewind the
read-s pi 11 ro 11

1. Set C(TOP+N) = C(ANCHOR+N)
Set C(BOTTOM+N) = C(ANCHOR+N)

2. Set C(RSPTR) = 0

Case 2: If C(RSPTR) 30-35 ~ N. then rewind the
write-spi 11 roll

1. Set C(RSPTR) = I 0 I 0 I N I
0 18 30 35

Set C(WSPTR) = 0

2. If current write-spill segment is
empty. go to next pop
Otherwise. perform steps a. b. and c

a. Copy remaining words from roll N
(anchor to bottom) to write-spill
segment. (This segment now becomes
the read-spill segment.)

b. Set C(TOP+N) = C(ANCHOR+N)

Set C(BOTTOM+N) = C(ANCHOR+N)

c. Get first section of groups
(implementation dependent) from new
read-spill segment and put them on the
bottom of roll N; i.e •• bump the bottom
of roll N by the appropriate number of
words. and copy the words from the
read-spill segment to roll N.

:COMMENTs The RWND pop should be used as follows:

At end of pass 1 -- rwnd(N-1)

At end of pass 2 --/rwnd (N-1)
Lrwnd(N-2)

MULTICS SYSTEM-PROGRAMMERS' MANUAL

E. CONTROL POPS

f2R.i

POP: JMP Jump

SECTION BZ.7.02 PAGE 40

FOR~ T: jmp(Y)
Y is a location in the procedure segment

FUNCTION: 1. Set pop counter equal toY

2. Execute the pop at location Y

POP: JMPP Prune and jump

FOR~ T: jmpp(Y) .
Y is a location in the procedure segment

FUNCTIONa 1. Prune WO

2. Set pop counter equal toY

3. Execute the pop at location Y

POP: JNX Jump on no index

FOR~ T: jnx(Y)
Y is a location in the procedure segment

FUNCTION: If C(WO) 7-17 • 0~ then execute jmpp(Y)

EXAMPLE:

If C(WO) 7-17 ~ 0, then set C(WO) 7-17 a C(WO) 7-17 - 1

NOTE: C(WO) 7-17 is called the count field.

In this example, control passes to jmp(loop) three times, then,

WO is pruned, and control passes to done.

eaw(3)
loop:pop

•
•
•

jnx(done)
jmp(loop)

,.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POPa DOML Do machine language

FORMAT: dom 1 (Y)

SECTION BZ.7.02 PAGE 41

Y is a location in the procedure segment. It is
the location of the first word of a machine language
program

FUNCTION: Execute the GE-645 instruction tra(Y)

COMMENTa Assume that ALPHA is the current C(X1), and that
BETA is the location of the next pop to be
interpreted after leaving the machine lan~uage
program. At any location GAMMA, the mach1ne
language program may return to the interpreter
as follows:

Case Instryction(s)

BETA = ALPHC\ ganma: tra(popset,ri)

BETA = ALPHC\+1 gamma: t ra (next, ri)

BETA • GAMMA+1 gamma: trx(x1,popset,rf)

Otherwise ganma: 1dx(x1 ,beta,du)
tra(popset, ri)

POPSET and NEXT are locations of ITS pairs in the data segment.

Each ITS pair points to a location in the interpreter segment.

POP: EXEC Execute

FORMATa exec(Y)
Y is a location in the procedure segment

FUNCTION: Execute the pop at location v. using the current
value of the pop counterJ i.e., do not set the
pop counter to location Y.

EXAMPLEs

The following is part of a conversion routine to handle

principal part, decimal scale, and binary scale.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 42

Assume C(WO) 0-17 = 0 if principal part is to be converted

1 if decimal scale is to be converted

2 if binary scale is to be converted

The following code appears in the procedure segment:

table: cona(char)
conda(char)
conba (char)

The code below could be used to convert a character

xntv(wO)
exec(table)
jmp(endn)
next pop

"execute one of the above three instructions11

"go here if end-of-line"
"go here otherwise"

COMMENT: If the executed pop is a JSB pop (see Paragraph F) 1

then the exit stack records the location following

the EXEC pop (not the location following the JSB pop).

MULTICS SYSTEM-PROGRAMMERS' MANUAL

F. SUBROUTINE POPS

Pops

POP: JSB Jump to subroutine

SECTION BZ.7.02 PAGE 43

FORMAT: j sb (Y)
Y is a location in the procedure segment. It is
the location of an entry word in a subroutine

FUNCTION: 1. Add 2 to exit counter

2. Set C(word 1) 0-17 = L + 1, where L is the
location of the current JSB pop

Set C(word 1) 18-35 =current work size

Set C(word 2) = 0 (i.e., set false)

3. Execute jmp(Y)

POP: EXIT Exit

FORMAT: exit(N)
N is usually o.

FUNCTION: 1. Prune two words from the exit buffer

2. Jump to location L + N + 1, where L is the
location of the last executed JSB pop.

3. Restore true/false status that existed before
the last JSB was executed.

POP: EXITP Prune and exit

FORMAT: exitp(N)

FUNCTION: 1. Execute PRWX pop

2. Execute exit(N) pop

COMMENT: exitp(N) is equivalent to prwx()
exit(N)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 44

POP: PRE Prune exit

FORMAT: pre (Y)

FUNCTION: Subtract 2 * C(Y) 0-17 from exit counter; i.e., prune
exit stack by C(Y) 0-17 pairs of words

EXAMPLE:

Assume a program contains the following subroutine calls:

subroutine 1

ca 11 s

I subroutine 2

~ calls

To return directly from a location in subroutine 3 to location

ALPHA in subroutine 1, the user would write:

pre (c2)
jmp(a lpha)

,.. MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 45

G. ADDRESS SUBSTITUTION POPS

The locations WO through WS, and DO through DS are treated

as pops when they appear as operands with other pops 1 e.g.,

add(wO). Another group of pops, AO through AS, are also

in this category (see Argument Pops below).

~

POP: The work pops: WO, W1, W2, W3, W4, and WS

FORMAT: pop(Wn)

n = 0, 1, 2, 3, 4, or 5

FUNCTION: 1. Form a new pop whose left half is the location
of Wn and whose right ha 1 f is "pop"

2. Execute this new pop

EXAMPLE:

Assume that the work counter is set at 777005.

add(w3) look like this: ~,..10___;:6~~1~33""-=5~1 18 35

The interpreter converts this to: I 777002 I 6 I
0 18 35

This means: Set C(WO) = C(WO) + C(777002)

COMMENT: If a work pop has a true or false tag, the tag
is added toWn, and the test is made before step 1.

POP: The dummy pops: DO, 01, D2, D3, D4, and DS

FORMAT: pop(Dn)

n = 0, 1, 2, 3, 4, or 5

FUNCTION: 1. Form a new pop whose left half is C(Dn) 0-17
and whose right half is "pop••

2. Execute this new pop

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 46

EXAMPLE a

Assume that the dummy counter is set at 777405

777404 I 3ooo I o I
0 18 35

add (d 1) 1 ooks li ke t hi s : ~.:1 --"6::....___.1~4:..:2-:-:-Ll
0 18 35

The interpreter converts this to: I 3000 I 6 I
0 18 35

This means: Set C(WO) = C(WO) + C(3000)

COMMENT: If a dummy pop has a true or false tag, the tag is

added to On, and the test is made before step 1.

POPa The argument pops: AO, A1, A2, A3, A4, and AS

FORMAT 1 pop(An)

n = 0, 1, 2, 3, 4, or 5

FUNCTION: Get the argument of "pop" from the argument list of
the last executed JSB pop.

Assume the last executed JSB pop is at location L.

Location

L+O
L+1
L+2
L+3
L+4
L+S

Pop

Jsb(YO)
bort(Y1)
bort (Y2)
bort (Y3)
bort(Y4)
bort(YS)

NOTEa The subroutine should be terminated by the pop
exit(S), so that none of the BORT pops will be
executed.

1. Form~ new pop whose left half is Yn .and
whose right ha 1 f i s " pop"

2. Execute this new pop

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ. 7.02 PAGE 47

EXAMPLE:

Assume that the last JSB pop is at location L and that

locations L through L+2 contain the following data:

add(a1) looks like this: I 6 I 366 I
0 10 35

The interpreter converts this to: '=-I ,.---=a __ ~l..-:::.-=6;...,;n;:ll
0 18 35

This means: Set C(WO) = C(WO) + C(a)

COMMENTS: 1. If an argument pop has a true or false tag,

the tag is added to An, and the test is made

,. before step 1.

2. The use of SORT pops in forming the argument

list insures against a possible bug in the pops

procedure. If control accidentally reaches

one of these pops, the interpreter will abort

the procedure.

3. The number of BORT pops depends on the number

of arguments. If there are more than 5 arguments,

then an XNDW pop must precede any reference to

the sixth (or succeeding) argument.

4. The argument indices and the exit indices are

off by one 1 e.g., tenmination of a subroutine

by exit(O) would set the pop counter to

location L+ 1.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 48

H. INDEX POPS

Each index pop is followed by another pop, and it modifies the

operand of this following pop. This modification affects only

the execution of the modified pop, it does not chpnge the

representation of the pop in the procedure segment.

~

POP: XNTF Index next table by fixed

FORMAT: xntf(Y)
pop(Z)

FUNCTION: Use Y + Z instead of Z

EXAMPLE: See Figure 3

COMMENT: The following coding illustrates the use of the
XNTF pop:

1: xntf(3)
m: stor (table)

•
•

jmp(1) 11 To store in TABLE+311

jmp(m) 11 To store in TABLE~'

POP: XNTV Index next table by variable

FORMAT: xntv (Y)
pop(Z)

FUNCTION: Use C(Y) 0-17 + Z instead of Z

EXAMPLE: See Figure 3

POP: XNIF Index next indirect by fixed

FORMAT: xnif(Y)
pop(Z)

FUNCTION: Use Y + C(Z) 0-17 instead of Z

EXAMPLE: See Figure 3

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 49

POP: XNIV Index next indirect by variable

FORMAT: xniv(Y)
pop(Z)

FUNCTION: Use C(Y) 0-17 + C(Z) 0-17 instead of Z

EXAMPLE: See Figure 3

POP: XNPF Index next pointer by fixed

FORMAT: xnpf(Y)
pop(Z)

FUNCTION: Use Y + RP(Z) instead of Z

EXAMPLE: See Figure 3

POP: XNFP Index next fixed by pointer

FORMAT: xnfp(Y)
pop(Z)

FUNCTION: Use RP(Y) + Z instead of Z

EXAMPLE: See Figure 3

POP: XNPV Index next pointer by variable

FORMAT: xnpv(Y)
pop(Z)

FUNCTION: Use C(Y) 0-17 + RP(Z) instead of Z

EXAMPLE: See Figure 3

POP: XNVP Index next variable by pointer

FORMAT: xnvp(Y)
pop(Z)

FUNCTION: Use RP(Y) + C(Z) 0-17 instead of Z

EXAMPLE: See Figure 3

POP: XNDW Index next work, dummy, or argument

FORMAT: xndw(Y)
pop(Z)

FUNCTION: Add C(Y) 0-17 to work, dummy, or argument address

EXAMPLE: See Figure 3

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 50

Data Segment Setup

Location

100 5

200 700

300 2
0

EXAMPLES:

xntf(3)

stor(400)

xnif(3)

stor(200)

xnpf(3)

ianored

ianored

iQnored
18 35

= stor(403)

= stor(703)

= stor(120004)
stor(rolptr+5)

xnpv(100)
= stor(120006)

stor(rolptr+5)

xndw(300)

stor(w3)

. xndw(300)

stor(d3)

xndw(300)

stor(a3)

= stor(w1)

= stor(d1)

= stor(a5)

Some characteristics of roll 5

C{TOP+5) 0-17 = 120000
ROLPTR+5 = I 1 I X I 5 I

0 18 30 35

RP(ROLPTR+5) = 120001

xntv(100)

stor(400)

xniv(100)

stor(200)

xnfp(rolptr+5)

stor(3)

xnvp(rol pt r+5)

stor(100)

= stor(405)

= stor(705)

= stor(120004)

= stor(120006)

Figure 3. Examples of the Index Pops

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 51

Genera 1 Convnents

1. XNDW is the only indexing pop that can be followed by

an address substitution pop.

2. XNFP and XNVP are faster than XNPF and XNPV, respectively.

3. The following example illustrates a complex use of the

XNTV pop:

xntv(wO)
stor(400)

Assume WO is at location 777000 in the data segment,

and that it has the following format:

wo I ooooo7 I oooooo I
0 18 35

xntv(wO) looks like this: I 354 I 332 I
0 18 35

The interpreter converts this to: I 777000 I 354 I
0 18 35

Thus, the modified pop is: stor(407)

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

I. MOVE POPS

Pops

POP : MOV Move

FORMAT: mov (Y)
to(Z)

SECTION BZ.7.02 PAGE 52

FUNCTION: Set C(Z) = C(Y) and skip the pop to (Z)

EXAMPLE:

mov(c3)
to(varsiz)

NOTEs The interpreter ignores the number of the pop
following the MOV pop

C3 I 000003 I 000000 I
0 18 35

VARSIZ after I 000003 I 000000 I
0 18 35

COMMENTS: See TO

POP: TO

FORMAT: mov (Y)
to(Z)

FUNCTION: See MOV

COMMENTS: 1. The TO pop should not be executed alone. However,
the user may allow a certain number of illegal
executions of the TO pop to occur before an abort,
by setting TOCNT, a one-word register in the data
segment.

When a TO pop is executed alone{ the interpreter
adds 1 to C(TOCNT). If C(TOCNTJ is 0 or positive,
an abort occurs. If C(TOCNT) is negative, an error
message is printed (e.g., EXECUTED TO POP AT
015610)J and the interpreter executes the next pop.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ. 7. 02 PAGE 53

2. The following rules apply to the MOV and TO pops:

a. The TO pop must have the same tag (true, false,
or none) as the MOV pop has

b. The TO pop cannot be indexed

c. The operand of the TO pop cannot be an address
substitution pop

NOTE: The following code is permitted:

Indexed Moye Moye with Address Substitution Pop

xnpf(S) mov(w3)
mov(rolptr+6) to(alpha)
to(alpha)

3. The following comparative code shows the advantage
of the MOV pop:

Fast

mov(Y)

~
2 pops in one

POP: MOVF Move from

FOR~ T: movf (Y)

Slower

cload(Y)
stor(Z)

FUNCTION: Set C(FROM) 0-17 • Y

Eyen Slgwer

load(Y)
,s:~p(ZJ

Pushes down and
pops up work

FROM is a one-word register in the data segment.
(The interpreter ignores C (FROM) 18-35)

EXAMPLE: See MOVT

COMMENTS: See MOVT

MULTICS SYSTEM-PROGRAMMERS# MANUAL SECTION BZ.7.02 PAGE 54

POP: MOVT Move to

FORMAT: movt (Y)

FUNCTION: Move n consecutive words from starting location
C(FROM) 0-17 to starting location Y.
n = C(WO) 0-17
FROM is a one-word register in the data segment.
(The interpreter ignores C(FROM) 18-35.)

EXAMPLE: In this example, the words at locations ALPHA -- ALPHA+7
are moved to locations BETA -- BETA+7.

ceaw(7)
movf(alpha)
movt(beta)

COMMENTS: 1. Each MOVF overrides the preceding MOVF

2 • Any number of MDV T pops may fo 1 1 ow a MOVF pop

3. Any number of pops may be executed between a
MOVF pop and a MOVT pop

4. There are no restrictions concerning true/false
tags, or the use of address substitution pops

5. Words are moved in a fonward sequence; thys, the
upward move on the left works and the downward
move on the right does not work:

Uoward Move
Before After

Qownwa rd Move
Before After

X Position 1
Position 2
Position 3
Position 4
Position 5
Position 6
Position 7
Position 8
Position 9
Position 10
Position 11
Position 12

Here, the numbers in the left
.column were moved up 3 positions
to form the right column. The
boxed numbers were moved.

X

Here, the numbers in the left
column were moved down 2 to
form the right column. The
boxed numbers were moved.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

J. INPUT POPS

SECTION BZ.7.02 PAGE 55

1. Character Input

The source of character input is an input stream. There

are two types of input streams: the source procedure, and

strings. The source procedure is the ASCII text in the

input segment; e.g., FORTRAN source procedure. String

input consists of portions of type-1, type-2, or type-3

strings, as summarized below:

string

Type-1

Type-2

Type-3

Input Stream

Excludes count-character and characters not
included in the count

Excludes end-of-file character and any
characters that follow it

Excludes the two control words at the beginning
of each group of the string

Characters excluded from a string direct the interpreter in

delimiting the string.

The source procedure comes from a file that was previously

created on the console. Type-1 and type-2 strings come from

SYMBUF or rolls. Type-3 strings come from rolls.

There is only one input stream at a time; this is called the

current input stream. Ini t ia 11 y, the current input stream

is the source procedure.

The input stream can be changed by a SWIP or a SWAP pop.

The SWIP pop nests input streams; this is similar to the

nesting of subroutines by JSB and EXIT: swip(O) corresponds

to the EXIT pop; and swip(Y), where Y ~ 0, corresponds to

the JSB pop. On the other hand, the SWAP pop is similar to

th~ JMP pop, in that 1~ changes input streams without

changing nesting.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 56

2. Input Registers

The input registers reflect the status of the current input

stream. The status may be one of the following:

Initial -- Signifies beginning of line (applicable only to
the source procedure)

Normal -- Signifies middle of line or string

End-of-file-- Signifies no more lines# if current input
stream is the source procedure
Signifies no more characters# if current
input stream is a string

The input registers are one-word registers in the data segment:

TLYIN -- GE-645 tally word. Points to next available character
in the current input stream.

NOTE: TLY IN points to a location in the data segr~ent.
If the current input stream is the source
procedure# this location is in a buffer containing
information which the interpreter copies from
the input segment.

MODES -- C(MOOES) 0-17 = -1 if current input stream is the
source procedure
Location of NXST file# if current input
stream is a string (See NXST.)

C(MOOES) 18-35 - 0 if current status is normal
-2 if current status in initial
-6 if current status is end-of-file

CHARC -- C(CHARC) 0-17 = Column number of current input
character. (On a source procedure line#
the leftmost character occupies
column 1.)

CHAR -- Representation of current character in the input stream.
as it appears in the TRANS table (See Chapter 1#
Paragraph G.2.b.)

Keys

0
I ASCII or I Keys
_ spec, char _
9 18

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 57

CRDNUM -- C(CRDNUM) 0-17 - Must be zero

CRDNUM+1

C(CRDNUM) 18-26 = Number of last group processed
in current type-3 string

C(CRDNUM) 27-35 - Must be zero

C(CRDNUM+1) 0-17- Must be zero

C(CRDNUM+1) 18-26 =Number of ~roups in current
type-3 str1ng

C(CRDNUM+1) 27-35 - Must be zero

SWIP and S~P initialize all necessary input registers

for a new current input stream. The character input

subroutine shared by the next character and next string

pops updates the input registers each time it fetches a

character from the current input stream.

3. Character Input Pops

Pops

POP: NXCH Get next character

FORMAT: a: nxch()

FUNCTIONa 1. If status is end-of-file, execute the pop
in location 2 in the procedure segment. This
will usually be a JMP or a JSB pop.

If status is initial, then change it to normalJ
and get next character, if any.

If status is normal, then get next character,
if any.

2. Case 1: If successful in getting another
character

a. Add 1 to column number

b. If this character is to be skipped, get
next character, if any, and go bacK to
beginning of step 2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 58

c. If this character is octal 201, then set
status to end-of-file and jump to location
a+1 in the procedure segment.

If this character is octal 000, octal 001,
•• • , or octal 177, then store the character
and its keys in CHAR, and jump to location
a+2.

Case 2: If unsuccessful in getting another character,
and input is from the console

Try to get the next line:

If unsuccessful, set status to end-of-file, and
jump to location a+1

If successful, set status to initial, set column
number to 0, add 1 to alter number, and jump to
location a+ 1

Case 3: If unsuccessful in getting another character,
and input is from a roll

If this is the end of a type-1 or type-3
string, set end-of-file condition, and jump
to location a+1

If this is a type-2 string, the unsuccessful
condition cannot occur, since these strings
are terminated with an end-of-file
character (octal 201).

EXAMPLE: See PAKA, Paragraph K

POP: NXST Next string

FORMAT: a: nxst(Y)

Y is the. location of a 3-word file:

location of key ro 11 II if non-0
y word SYMBUF if 0

type of string Pack-from option
1. 2 .. or 3 0 = off non-0 = on

Used only by NXSTCS_. SWIP_. and SWAP
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 59

C(Y) 0-17 -- Location of word with keys in bits
0-8 and 18-35

C(Y) 18-35 -- Roll into which string is to be
packed (or SYMBUF if 0)

C(Y+1) 0-17 -- Type of string to be formed

C(Y+1) 18-35 -- Option determining whether
C(CHAR) 9-17 is to be packed into
the string

FUNCTION: Pack the characters from the current input
stream into SYMBUF or on a roll. forming a type-1.
type-2. or type-3 string. Pack characters from
left to right. If the string is being formed
on a roll. start forming the string at the bottom
of the roll. If the string is being formed in
SYMBUF. assume that an RSYM pop was executed. and
start forming the string in the first location
in SYMBUF.

1. Initialize string according to its type

2. If the pack-from option is on. then pack
C(CHAR) 9-17 into the string

3. Simulate NXCH pop. with exceptions noted below

4. Case 1: If successful. compare keys in CHAR
with keys specified in key word.
If one or more bits match. terminate
the string according to type •. and jump
to location a+2 in the procedure
segment. (Also perform Case 2.c)
Otherwise. pack C(CHAR) 9-17 into the
string. and go back to step 3.

Case 2: If unsuccessful. perform the following
steps:

a. Terminate string according to type

b. Set C(CHAR) = I 000000 I 777777]
0 18 35

c. If the string was formed on a roll.
then make the corresponding roll
pointer point to the location of the
first word in string

d. Jump to location a+1 in the procedure
,-. segment

COMMENT: On end-of-line. the interpreter goes to the next
pop (same as NXCH).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7o02 PAGE 60

POP: NXSTC Next string continued

FORMAT: a: nxstc(Y)

FUNCTION: Continue forming a string (with an option to pack the
current character).
Execute NXST pop# eliminating step 1.

EXAMPLE: In this example# the interpreter forms a string in
SYMBUF# beginning with a left parenthesis and ending
with a right parenthesis.

Code:

FILE 1 KEY1 I 0
1 I 1
not useq_

0 18 35

KEY1 I oooooo I ooooo3 I
0 18 35

Assume the keys have the following meaning:

Bit 34 -- 1 if,.._ (escape character)
Bit 35 -- 1 if)

Assume that the current character is a left parenthesis.

rsym()
nxst(file1) "pack initial left parenthesis and

string up to break"
jmp(error)

more:scha(trans+octa1(176))
jmp(error)
jmp(done,f)

"specia 1 case if end of 1 i ne"
"advance if escape"
"special case if end of line"
"right parenthesis encountered

nxstc(file1)

jmp(error)
jmp(more)

•
•
• done :pak (char)

cnts ()

instead"
"continue string with escaped

cha rae te r"
"spec ia 1 case if end of 1i ne"
''test break character"

"pack terminal right parenthesis"
"count the string"

COMMENT: On end-of-line# the interpreter goes to the next
pop (same as NXCH).

~1ULTICS SYSTEM-PROGRAMMERS"' MANUAL SECTION BZ.7.02 PAGE 61

POP: NXSTCS Next string continued and save

FORMAT: a: nxstcs(Y)
Y is the location of a file with the same format
as the file for NXST. (See NXST.)

FUNCTION: Save next available position in type-3 string,
and then continue forming string •

. 1 o Set C(Y+2) = coded information describing
current input character and next available
position in string being formed

2. Execute nxstc(Y)

COMMENTS: 1. NXSTCS may not be used to form type-1 or
type-2 strings

2. The pops swip(Y) and swap(Y) use the information
in Y+2 to determine whether to switch to the
beginning of an input stream or to a saved
position in the stream.
If C(Y+2) = 0, swip(Y) or swap(Y) switches
to the beginning of the stream. The pops
procedure is responsible for clearing C(Y+2),
whenever necessary.

3. On end-of-line the interpreter goes to the
next pop (same as NXCH).

POP: NXICH Get next initial character

FORMAT: nxich()

FUNCTION: If the current status is normal, get the first
character of the next line
If the current status is end-of-file, execute the
pop in location 2 of the procedure segment
If the current status in initial, get the first
character of the current line

COMMENT: 1. This pop can only be used with the source
procedure. It cannot be used with string
input.

2. On end-of-line, the interpreter goes to the
next pop (same as NXCH).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 62

4. Changing Input Streams

Pops

POP: SWAP Swap input streams

FORMAT: swap(Y)

Y is the location of a file with the same format as
the file for NXST. (See NXST.)

If C(Y) 18-35 = 0~ the new input stream is in SYMBUF

If C(Y) 18-35 = N~ the new input stream is on rol 1 N
and RP(ROLPTR+N) is the location of the first word

FUNCTION: Change current input stream~ as directed by the file
at location Y.

If C(Y+2) = 0~ set C(CHARC) = 0

Other~ise~ set CHAR and CHARC according to coded
information in C(Y+2) (See NXSTCS.)

COMMENTS: 1. If Y = 0~ then the interpreter aborts the pops
procedure

2. SWAP can only change the input stream to SYMBUF
or a ro 11

POP: SWIP Switch input streams recursively

FORMAT: swip(Y)~ where Y ~ 0
or

swip(O)

(Here~ Y is the location of a
file with the same format as
the file for NXST.)

FUNCTION: Case 1: The operand is Y1 Y~O

1 •

2.

3.

Bump bottom of roll 4 (swip roll) by three
words

Use these three words to record current
position in current input stream for later
use by a swip(O)

Execute swap(Y); i.e.! change input streams
as directed by the file at location Y

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 63

Case 2: The operand is 0

1. Get three words off the bottom of roll 4

2. Use these words to recover current positf~n
in a previous input stream ·

3. Change to previous input stream~ as directed
by these words

4. Prune roll 4 by three words

COMMENT: 1. It is illegal to change the input stream to
a type-3 string using a swip(Y) pop~ if a
type-3 string is already nested

2. The swip(Y) pop can only change the input stream
to SYMBUF or a roll

3. The input stream can be changed to the source
procedure only by the appropriate number of swip(O)
pops.

5. Changing Mode

Pops

POP: MOOB Mode blank

FORMAT: modb()

FUNCTION: Cause NXCH to accept any character; i.e.~ after this
pop, NXCH will accept any character~ until the
next MOONB pop says otherwise.

POP: MODNB Mode non-blank

FORMAT : modnb (Y)
Y is usually a location the the TRANS table.
C(Y) 9-17 = character to be skipped
modnb() is equivalent to modnb(trans+octal (40))
blank is 040

FUNCTION: Cause NXCH to skip the character whose code matches
C (Y) 9-.17
If Y = o. then NXCH will skip blanks.

EXAMPLE: In this example~ NXCH gets the next non-blank
character

modnb ()
•
•
•

nxch()
jmp(end1n)

MULTICS SYSTEM-PROGRAMMERS' MANUAL

K. STRING MANIPULATION POPS

SECTION BZ.7.02 PAGE 64

~

POP: CNTS Count symbol

FORMAT: cnts(Y)

FUNCTION: Assume SYMBUF contains a type-1 string

1. Count the number of characters and the number of
words in type-1 string in SYMBUF.

2. Set C(SYMBUF) 0-8 = number of characters in string.
Set C(SYMCNT) 0-17 = number of words in string.

3. If Y is a non-zero, then set C(Y) 0-17 = number of
words in string.
Otherwise, do not change C(Y) 0-17.

This is illustrated below:

SYMCNT I w :
S Y MCN T + 1 t--=--r-""T--r---1
SY MBUF ~C -:!1::--.:-::::----~1~

The interpreter would change
W and C. If Y ~ 0, C(Y) 0-17
would be set tow. NOTE:

0 9 18 2 7 35 W = C/4 + 1 (ignoring remainder)

POP: RSYM Reset symbol buffer

FORMAT: rsym()

FUNCTION: Assume SYMBUF contains a type-1 string

1 •

2.

3.

4.

Count the type-1 string currently in SYMBUF (i.e.,
count the number of words and the number of
characters in SYMBUF).

Change the count field of the string to zero.

Change the remaining characters in the string
to blanks

Set C{SYMCNT) = 0
Set C(SYMCNT+1) = 0

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: PA K Pack

FORfJA T: pak(Y)

SECTION BZ.7.02 PAGE 65

FUNCTION: Insert C(Y) 9-17 immediately to the right of the
last character inserted into SYMBUF
C(Y) 9-17 is a 9-bit ASCII character

EXAMPLE: pak(char)

The character 1 would look like this in C~R: lkeysl 0611 keys 1
0 . 9 , 8 35

If SYMBUF contains the null striniT, the interpreter sets
C(SYMBUF) as follows: I 0 _! I t.6 11;6 I

0 9 18 2 7 35

POP: PA KR Reset and pack

FOR~ T: pakr (Y)

FUNCTION: 1. Execute RSYM pop
2. Execute pak(Y) pop

POP: PA KA Pack and advance

FORMAT: paka(Y)

FUNCTION: 1. Execute pak(Y) pop
2. Execute NXCH pop

EXAMPLE:

loop;

The following coding causes the interpreter to keep
packing characters Into SYMBUF, until it receives
a blank:

modb() ''accept blanks''
rsym() "reset symbol to blanks"
nxch() "get next character''
jmp(endln) "·special case if end of line"
sch(trans+octal (40)) "octal 40 is blank"
jmp(blk,t) "jump if blank"
paka(char) "otherwise, pack in symbol,

jmp(endln)
jmp(looP+2)

• .

and advance"
11 spec ia 1 case if end of 1 i ne"
''continue"

blk: cnts() 11 count the symbo 1"

COMMENT: On end-of-line, the interpreter goes to the next
pop (same as NXCH).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 66

POP: PAKAR Reset 1 pack~ and advance

FORMAT: pakar (Y)

FUNCTION: 1. Execute RSYM pop

2. Execute pak(Y) pop

3. Execute NXCH pop

COMMENT: On end-of-line 1 the interpreter goes to the next pop
(same as NXCH).

POP: PLXP Plex put

FORMAT: plxp(N)

FUNCTION: Given a type-1 string in SYMBUF 1 put a plex on the
bottom of roll N. The string need not have been
counted.

EXAMPLE:

plxp(5)

1. Count the string in SYMBUF (i.e. 1 count the number
of words and the number of characters)
w = number of words

2. Bump bottom of roll N by W+1 words

3. Move type-1 string from SYMBUF to word 1
(inclusive)

word w

4. Set C(word W+1) 0-17 = w (the lower half of this
word is used by the interpreter.)

Assume the type-1 string "continue" is in SYMBUF.

Roll 5 after

8 c 0 n Old bottom
t i n u
e t6 ~ ~

3 special
0 9 18 27 35 New bottom

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 67

POP: PLXG Plex get

FORMAT: plxg(N)

FUNCTION: Given a plex on the bottom of roll N, form a type-1
string in SYMBUF.

EXAMPLE:

plxg(5)

1. Recover number of words in string (w words)
from the last word of the plex (word W+1)
w = C(word ~1) 0-17 (See PLXP)

2. Move word 1 -- word w (inclusive) to SYMBUF --
SYMBUF + w - 1 (inclusive)

3. Set C(SYMCNT) 0-17 = w

4. Set C(SYMCNT) 18-35 = 0

5. Set C(SYMCNT+1) = C(word W+1)

6. If the previous string in SYMBUF had more than
w words, then fill these words with ASCII
blanks.

Assume roll 5 contains the plex shown in the example for PLXP.

plxg(5)

SYMCNT
SYMCNT+1
SYMBUF

SYMBUF after

3 0
3 special

8 c 0 n
t i n u
e ~ ~ ~

0 9 18 27 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ. 7. 02 PAGE 68

POP: PLXM Plex make

FOR~ T : p 1 xm (N)

FUNCTION: Convert a type-1 string into a plex. Assume the
fo 11 owing:

EXAMPLE:

plxm(5)

RP(ROLPTR+N) is the location of the VSW of the last
group on roll N. This group contains a type-1 string.
The bottom of roll N follows the last word of the
string
The string has been counted (i.eo, the number of
words and the number o'f characters have been counted)

NOTE: The group need not have been counted

Let w = number of words in the string

1. Bump bottom of roll N by 1 word

2. Set C(word 1) 0-17 • w (The lower half of
this word is used by
the interpreter)

3. Set C(VSW) 0-17 = ~1

Set C(VSW) 18-35 = 0

Assume the last group on roll 5 is the string, '1continue 11 •

Roll 5 after

4 0
__ 8 c 0 n

t 1 n u
e .tiS -~ ~

3 special Old bottom
0 9 18 27 35 New bottom

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 69

POP: CCAT Concatenate

FORMAT: ccat(N)

FUNCTION: Concatenate a type-1 string in SYMBUF to a type-1
string in roll N.

EXAMPLE:

ccat(5)

Assume the following:

RP(ROLPTR+N) is the location of the first word
of the second type-1 string

The bottom of roll N immediately follows the
last word of the second type-1 string

Both type-1 strings have been counted (i.e.,
the number of words and the number of characters
have been counted)

1. Bump bottom of roll N if the concatenated string
requires more words.

2. Add the character count of the first string
to the character count of the second string.

3. Concatenate the first string to the second
string.

4. Insert trailing blanks into the last word,
if necessary.

Assume SYMBUF contains the string, 11 to", and RP(ROLPTR+5)
is the location of the string, "go".

Resulting string in roll 5:

[~
0

I ~ I ~ t ~ I o 1 d bot tom
9 187 35 new bottom

MULTICS SYSTEM-PROGRAMMERS~ MANUAL

L. SYNTAX POPS

Pops

POP: FEX Set FEXIT

FOR~ T: fex (Y)

FUNCTION: Set C(FEXIT) 0-17 = Y

SECTION BZ.7.02 PAGE 70

FEXIT is a one-word register in the data segment.
(The interpreter ignores C(FEXIT) 18-35)

POP: PSAV Position save

FORMAT: p sa v ()

FUNCTION: 1. Bump bottom of roll 2 (save roll) by four words

2. In these four words, record the current status
of the input stream.

EXAMPLE: See PRES

POP: PRES Position restore

FORMAT: pres ()

FUNCTION: If C(BOTTOM+2) 0-17 1: C(TOP+2) 0-17, go back to last
saved position; and remove four words from roll 2.

Otherwise, take no action

EXAMPLE:

Input stream: ABCDEF

fQQ Character read

nxch() A
popnop()
psav()
nxch () B
popnop()
nxch() c
popnop()
pres ()
nxch () B
popnop()

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: PDES Position destroy

FORMAT: pdes()

SECTION BZ.7.02 PAGE 71

FUNCTION: If C(BOTTOM+2) 0-17 ~ C(TOP+2) 0-17. prune four
words from the bottom of roll 2

MULTICS SYSTEM-PROGRAMMERS' MANUAL

M. COUNTING POPS

SECTION BZ.7.02 PAGE 72

Pops

POP: ZER Zero

FORMAT : ze r (Y)

FUNCTION: Set C(Y) = 0

POP: ZERO Zero double

FORMAT: zerd(Y) Y is an even address

FU~CTION: Set DP(Y) = 0

POP: ONE One

FORMAT: one (Y)

~UNCTION: Set C(Y) 0-17 = 1
Set C(Y) 18-35 = 0

POP: INC Increment

FORMAT: inc(Y)

FUNCTION: Set C(Y) 0-17 = C(Y) 0-17 +1

POP: OCR Decrement

FORMAT: dcr(Y)

FUNCTION: 1 • If C(Y) 0-17 = 0, set false
If C (Y) 0- 1 7 f. 0, set true

2. If true, set C(Y) 0-17 == C(Y)

EXAMPLE:

0-17 -1

In this example, control passes to loop three times; then control
passes to the pop after jmp(loop,t).

· ceaw(3)
stor(alpha)

loop: pop
•
0

•
dcr(a lpha)
j mp (1 oop, t)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 73

N. CONVERSION POPS

The following number will be used to demonstrate the use of

the conversion pops:

1.5e2b17

This number is equivalent to the fraction:

1 ,5 * 1 0**2
2**17

It is represented in octal as follows:

I ooo226 I oooooo I (226 octal= 150 decimal)
0 18 35

The number consists of three parts:

1,5 -- Principal part. If a sign preceded this number#
the interpreter would not consider the sign to
be included in the principal part.

e2 Decimal scale. The decimal scale may be positive
or negative,

b17 Binary scale. The binary scale may be positive
or negative •

1, Setting Mode

The interpreter uses the data-segment register CONMOD# to

determine whether a number to be converted to binary format

is to be treated as a decimal number or an octal number.

It has the following format:

CONMOD I 0 = dec. 1 = oct .I ignored I
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Pops That Set CONMOD

POP: MOOD Decimal mode

r OR~ T : modd ()

SECTION BZ.7.02 PAGE 73a

FUNCTION: Set C(CONMOO) 0-17 = 0; i.e., cause decimal conversions

POP: MODO Octal mode

FORMAT: modo()

FUNCTION: Set C(CONMOD) 0-17 = 1; i.e., cause octal conversions

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 74

2. The Number Buffer

Number conversions occur in the following group of contiguous

data-segment registers, the number buffer:

CONBUF

CONBUF+1

FCNT

SIGN

DSCALE

BSCALE

DSIGN

BSIGN

Principal part (ignoring the decimal
point) changed to binary. A two
word signless integer.

35

The user sets the following registers in the number buffer:
FCNT, SIGN, DSIGN, and the upper half of BSIGN. The following
coding is recommended for this purpose:

To signify a negative number -- one(sign)

To signify a negative decimal or binary scale -- one(dsign)
or one(bsign)

To count each digit to the right of the decimal point -
inc(fcnt)

The interpreter sets all the other registers (including the lower
half of BSIGN) as directed by the conversion pops.

EXAMPLE:

The number buffer would be set as follows for the number 1.5e2b17.
Assume decima 1 conversion throughout.

CONBUF
CONBUF+1

FCNT
SIGN

DSCALE
BSCALE

DSIGN
BSIGN

0

0
0
1

2
171

0
0
8

0
15

0
0

0
0

0
1

8 35

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 75""'

Pops That Set Registers in the Number Buffer

POP: RNUM Reset number

FORMAT: rnum()

FUNCTION: Set the 8 words in the number buffer to zero

POP: CON Convert principal part

FORMAT: con (Y)
Y is usually CHAR

FUNCTION: Let integer= DP(CONBUF), and digit = C(Y) 14-17.
(D.igit is a number from 0 through 9.) .

Octal conversion- Set integer= 8*integer +digit

Decimal conversion- Set integer= 10"~'rinteger + digit

These formulas convert the principal part from
left to right, digit by digit.

Following conversion, the entire principal part=
DP(CONBUF), ignoring any decimal point or sign.

POP: CONA Convert and advance

FORMAT: cona (Y)
Y is usually CHAR

FUNCTION: 1. Execute con(Y) pop

2. Execute NXCH pop

COMMENT: On end-of-line, the interpreter goes to the next pop
(same as NXCH)

POP: CONR Reset and convert

FORMAT: conr(Y)

FUNCTION: 1. Execute RNUM pop

2. Execute con(Y) pop

MULTICS SYSTEM-PROGRAMMERS' tvlANUAL SECTION BZ.7.02 PAGE 76

POP: CONAR Reset, convert, and advance

FORMAT: conar(Y)

FUNCTION: 1. Execute RNUM pop

2. Execute con(Y) pop

3. Execute NXCH pop

COMMENT: On end-of-line, the interpreter goes to the next pop
(same as NXCH).

POP: CONBA Convert binary scale, and advance

FORMAT: conba(char)
CHAR is always assumed to be the operand for this pop,
regardless of the operand.

FUNCTION: 1. Let integer= C(BSCALE) 0-7,
and digit= C(CHAR) 14-17.
(Digit is a number from 0 - 9)

Octal conversion -

Decimal conversion

Replace integer by 8* integer
± digit
- Replaces integer by 10*

integer ± digit

· NOTE: This pop is normally preceded by a MOOD pop.

The formula converts the binary scale from left
to right, digit by digit.

Following conversion, the entiresigned binary
scale= C(BSCALE) 0-7.

2. Set C(BSIGN) 18-35 = 1.
I

3. Execute NXCH pop

COMMENT: On end-of-line, the interpreter goes to the next pop
(same as NXCH).

POP: CONDA Convert decimal scale, and advance

FORMATs conda(char)
CHAR is always assumed to be the operand for this pop,
regardless of the operand

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 77

FUNCTION: 1. Let integer= C(DSCALE) 0-17,
and digit = C(CHAR) 14-17.
(Digit is a number from 0 - 9)

Octal conversion - Replace integer by 8*
integer± digit.

Decimal conversion - Replace integer by 10*
integer ±digit.

NOTE: This pop is normally preceded by a MOOD
pop.

The formula converts the decimal scale from
left to right, digit by digit.

Following conversion, the entire signed decimal
scale= C(DSCALE) 0-17.

2. Execute NXCH pop.

COMMENT: On end-of-line, the interpreter goes to the next
pop (same as NXCH).

3. Conversion and Storage of Binary Numbers

The following pops convert binary numbers in the number buffer
to fixed-point or floating-point numbers of single or double
precision.

Pops

POP: FXDS Convert to fixed-point, single-precision

FORMAT: fxds(Y)
Y is the location of a single word in the data segment

FUNCTION: Convert the number in the number buffer to a
fixed-point, single-precision number, and store
the number in Y.

EXAMPLE: See FLTD.

POP: FXDD Convert to fixed-point, double-precision

FORMAT: fxdd(Y)
Y and Y+1 are the locations of a pair of words in
the data segment. Y is an even location.

FUNCTION: Convert the number in the number buffer to a fixed- ~
point, double-precision number, and store the
number in Y and Y+1. The high-order bits are in Y,
and the low-order bits are in Y+1.

EXAMPLE: See FLTD

,..

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 78

POP: FLTS Convert to floating-point, single-precision

FOR!'ftAT: flts(Y)
Y is a location of a single word in the data segment

FUNCTION: Convert the number in the number buffer to a floating
point, single-precision number, and store the number in
Y.

EXAMPLE: See F LTD

POP: FLTD Convert to floating-point, double-precision

FOR!'ftA T: fl td(Y)
Y and Y+1 are the locations of a pair of words in the
data segment
Y is an even location.

FUNCTION: Convert the number in the number buffer to a floating
point, double-precision number, and store the number
in Y and Y+1. The high-order bits are in Y, and the
low-order bits are in Y+1.

EXAMPLES:

Assume that ALPHA is an even location in the data segment, and
that the number buffer is set as shown in the example on page 74.

Pop

fxds (a 1 pha)
fxdd(a 1 pha)
f 1 ts (a 1 ph a)
fltd(alpha)

ALPHA after ALPHA+1 after

0000
35

MULTICS SYSTEM-PROGRAMMERS' MANUAL

0. PRECISION ARITHMETIC POPS

SECTION BZ.7.02 PAGE 79

The precision arithmetic pops use a two-word register,

located in the data segment:

MPAC MPAC+ 1

36 bits 36 bits
Even Odd

1. Fixed-Point Operations

Double-precision fixed-point numbers are integers ranging

from -2**71 through 2**71 - 1.

EXAMPLES:

I 4ooooo I oooooo I oooooo I oooooo I -2**71
0 18 35 0 18 35

I 111111 I 111111 I 777777 I 777777 I -1
0 18 35 0 18 35

I oooooo I oooooo I oooooo I oooooo 1 o
0 18 35 0 18 35

I oooooo loooooo 1 oooooo I ooooo1 I 1
0 18 35 0 18 35

I 377777 I 777777 I 777777 1 777777 I 2 **7 1 - 1
0 18 35 0 18 35

Pops

Each of the followlng pops requires a single-precision operand.

However, several of the pops require extension of C(Y). Here,

extension means that the interpreter prefixes C(Y) with 36

bits, each of whic~ is a copy of C(Y) o. (See -1 and 1 in

the examples above.)

POP: PADD Precision add

FORMAT: padd (Y)

FUNCTION: Set DP(MPAC) = DP(MPAC) + C(Y) where C(Y) is
extended to double precision

MULTICS SYSTEM-PROGRAMMERS' MANUAL

EXAMPLES:

padd(a 1 pha)

SECTION BZ.7.02 PAGE 80

MPAC before I oooooo I 000001 I 000000 I oooooO 1 2''r*36
0 18 35 0 18 35

ALPHA extended! 000000 I OOOoOOI oudodi I ouooou I
18 35

MPAC after

padd(alpha)

MPAC before

0 18 35 0

boooooo I ~oooo! I ooooo1
1 5 0

r oooooo 1
18 35

1 oooooo ~ ooooo~ 1 oooooo 1 ooooog 1
0 8 5 0 18 5

ALPHA extendedr 777777 ~ 7 7777i I 777777 r ooooo~ I
0 8 5 0 18 5

MPAC after I oooooo I ooooo~ I 777777 I ooooo~ I
0 18 5 0 1R 5

POP: PSUB Precision subtract

FORMAT: psub(Y)

2,'r*18
(extended)

2**36

-2**1 8
(extended)

FUNCTION: Set DP(MPAC) = DP(MPAC) - C(Y) .where C(Y) is extended to
double precision

EXAMPLES:

ps u b (a 1 ph a)

MPAC before 1 oooooo I oooo01 I oooooo I oooooo f 2*,\-36
0 18 35 0 18 35

ALPHA extendedbddoooo I ~0000~ I 000001 I 00000~ I
1 5 0 18 5

2*''"18
(extended)

MPAC after

psub(a 1 pha)

I oooooo I ooooo~ I 777777 I oooooo I
0 18 5 0 18 35

MPAC before I oooooo I 000001 I oooooo I oooooo I 2 **3 6
0 18 35 0 18 35

ALPHA extended! 777777 I 777777 I 777777 I 000000 I -2**18
0 18 35 0 18 35 (extended)

MPAC after i 000000 rooooo1 I 000001 I 000000 I
0 ; 8 35 0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: PMLT Precision multiply

SECTION BZ.7.02 PAGE 81

FORMAT: pml t(Y)

FUNCTION: Set DP(MPAC) = C(MPAC+1) * C(Y)

POP: PMLTD Precision multiply double

FORMAT: pmltd(Y)

FUNCTION: 1. Set DP(MPAC) = DP(MPAC) * C(Y)
2. Truncate product to 72 bits, if necessary.

EXAMPLE:

pmltd(alpha)

If truncation is necessary, set false
If no truncation is necessary, set true

MPAC before roooooo ~00000~ I 000000 I ooooo; I 2**37 + 1
0 8 5 0 18 5

ALPHA I 000000 I 000003 I 3

MPAC after
(Set true)

0 18 35

I oooooo ~ ooooo6 I oooooo I ooooo3 I
0 8 35 0 18 35

POP: PDVD Precision divide

FORMAT: pdvd(Y)

FUNCTION: 1. Set DP(MPAC) = DP(MPAC) / C(Y)

EXAMPLE:

pdvd(a 1 ph a)

Extend the quotient to double precision
Note: If the quotient falls outside the range

from -2**35 to 2**35 - 1, a divide
check error occurs.

2. Set C(RMD) = remainder
RMD is a one-word register in the data segment

MPAC before f 000000 I 000000 I 000000 I 000007 I 7
0 18 35 0 18 35

ALPHA I 000000 I 000003 I 3
0 18 35

MPAC after I 000000 I 000000 I 000000 I 000002 I 2
0 18 35 0 18 35

RM:> I 000000 I 000001 J 1
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 82

2. Floating-Point Operations

Double-precision floating-point numbers consist of an exponent, e,

which is an integer ranging from -128 to +127 in steps of 11 and

a mantissa, m, which is a fraction ranging from -1 to 1 -2**-63

in steps of 2**-63. (For further information, see the GE-635

Programmers' Reference Manual.) These numbers are subject to

the following restrictions:

For negative numbers, -1 < m < -1/2

For zero, m = 0 and e = -128

For positive numbers, 1/2 < m < 1

Both m and e are in two's complement form

The floating-point number m * 2**e is represented in the MPAC

register as follows:

MPAC
r e 1
0 8

m
35 0 35

Pops

Each of the following pops requires a double-precision operand.

The user can extend a single-precision number to double precision,

by moving it to an even location and setting the following odd

location to zero:

ALPHA [~I m I
0 8 35'

BETA, BETA+1 I el m I 000000 ~000000~
0 8 35 0 8 3

where C(ALPHA) is extended via the following pops:

mov(a 1 pha)
to(beta) 11 BETA must be an even locat ion11

zer(beta+1)

CAUTION: Overflow may occur in each of the following operations!
i

MULTICS SYSTEM-PROGRAMMERS' MANUAL S ECTI.ON BZ. 7. 02 PAGE 83 ~

POP: PADDF Precision add floating

FORMAT: paddf(Y)

FUNCTION: Set DP(MPAC) = DP(MPAC) + DP(Y)

EXAMPLE:
·, ·•• I

paddf(alpha)

MPAC before

ALPHA

MPAC after

10 00670o ~ ~oooo~5 1 gooooo ~ ~oooo~51

I oo27oo I oooooo I oooooo ~ oooooo I
0 18 . 35 0 8 35
I 01 o43o I oooooo I oooooo I oooooo I
0 18 35 0 18 35

POP: PSUBF Precision subtract floating

FORMAT: psubf(Y)

FUNCTION: Set DP(MPAC) = DP(MPAC) - DP(Y)
• .. ·• i

POP: PMLTF Precision multiply floating

FORMAT: pmltf(Y)

FUNCTION: Set DP(MPAC) = DP(MPAC) * DP(Y)

POP: PDVDF Precision divide floating

FORMAT: pdvdf(Y)

FUNCTION: Set DP(MPAC) = DP(MPAC) I DP(Y)

3. Conversion Operations

Pops

POP.:• ··FLT Float

FORMAT: fl t(Y)
C(Y) is a single-precision integer

7.00 = 7/8 * 2**3

1.75 = 7/8 * 2**1

8. 75=35/64 * 2**4

FUNCTION: Set DP(MPAC) = C(Y) converted to a double-precision
floating-point number

,...

MULTICS SYSTEM-PROGRAMMERS' MANUAL

EXAMPLE:

flt(alpha)

SECTION BZ.7.02 PAGE 84

ALPHA I 000000 I 000001 I 1 (fixed point)
0 18 35

MPAC after I 002400 I 000000 I 000000 I 000000 I 1 (floating point)
0 18 35 0 18 35

POP: FIXS Fix Single

FORMAT: f ixs (Y)
C(Y) is a single-precision floating-point number
Y may be an even or odd address

FUNCTION: Set DP(CONBUF) = C(Y) converted to a double-precision
fixed-point integer.

POP: FIXD Fix Double

FORMAT : f i xd (Y)
DP(Y) is a double-precision floating-point number
Y must be an even address

FUNCTION: Set DP(CONBUF) = DP(Y) converted to a double-precision
, ·· . fixed-point integer

EXAMPLE:

fixd(mpac)

MPAC I 002400 I 000000 I 000000 I 000000 I 1 (floating point)
0 18 35 0 18 35

CONBUF after I 000000 I 000000 I 000000 I 000001 I 1 (fixed point)
0 18 35 0 18 35

' ' \ ...• '.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 85

P. SET POPS

The set pops compare two items to determine whether a certain

condition is met. If the condition is met. they set the true

indicator. If the condition is not met. they set the false

indicator.

1. Algebraic Com09risons

Algebraic comparisons involve 36-bit signed integers. The

largest number is octal 377777777777 (2**35- 1). The

smallest number is octal 400000000000 (-2**35).

Pops

POP: SGT Set on greater than

FORMAT: sgt (Y)

FUNCTION: Set true if C(WO) > C(Y) algebraically
Otherwise. set fa 1 se

POP: SGTP Set on greater than. and prune

FORMAT: sgtp(Y)

FUNCTION: 1. Set true if C(WO) > C(Y) algebraically
Otherwise. set false

2. Prune WO

POP: SEQ Set on equal

FORM!\ T: seq (Y)

FUNCTION: Set true if C(WO) = C(Y)
Otherwise, set false

POP: SEQP Set on equal, and prune

FORMAT: seqp(Y)

FUNCTION: 1. Set true if C(WO) = C(Y)
Otherwise.., set false

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS' MANUAL SEC TlON BZ. 7. 02 PAGE 86

POP: SLT Set on less than

F ORMA T : s 1 t (Y)

FUNCTION: Set true if C(WO) < C(Y) algebraically
Otherwise, set fa 1 se

POP: SLTP Set on less than, and prune

F ORMA T : s 1t p (Y)

FUNCTION: 1. Set true if C(WO) < C(Y) algebraically
Otherwise, set false

2. Prune WO

2. Masked Comparisons

Pops

POP: SME Set on masked equality

F ORMA T : sme (Y)
Y is an even address

FUNCTION: Set true if C(WO) k = C(Y) k, whenever C(Y+1) k = 0
(ignoring all other bits)
Otherwise, set false.

EXAMPLE:

sme(alpha)

wo
ALP~

ALP~+1
In this case, set true

POP: SMEP Set on masked equality, and prune

FORMAT: smep(Y)
Y is an even address

FUNCTION: 1. Set true if C(WO) k = C(Y) k, whenever C(Y+1) k = 0
(ignoring all other bits)
Otherwise, set false

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: SME1 Set on masked equality in W1

FORMAT: sme1(Y)
Y is an even address

SECTION BZ. 7. 02 PAGE 87 ~

FUNCTION: Set true if C(W1) k = C(Y) k , whenever C(Y+1) k = 0
(ignoring all other bits)
Otherwise, set false

POP: SME2 Set on masked equality in W2

FORMAT: sme2(Y)
Y is an even address

FUNCTION: Set true if C(W2) k = C(Y) k, whenever C(Y+1) k = 0
(ignoring all other bits)
Otherwise, set false

POP: SMEI Set on masked equality indirect

FORMAT:

FUNCTION:

smei(Y)
Y is an even address

Set true if C(RP(WO)) k = C(Y) k , whenever
C(Y+1) k = 0 (ignoring all other bits)
Otherwise, set false

POP: SMEIP Set on masked equality indirect, and prune

FORMAT: smeip(Y)
Y is an even address

FUNCTION: 1. Set true if C(RP(WO)) k = C(Y) k, whenever
C(Y+1) k = 0 (ignoring all other bits)
Otherwise, set false

2. Prune WO

POP: SMEB Set on masked equality on bottom
(See ERB.)

FORMAT: smeb(Y)
Y is an even address.

FUNCTION: Set true if C(B) k = C(Y) k , whenever
C(Y+1) k = 0 (ignoring all other bits)

Otherwise, set false

MULTICS SYSTEM-PROGRAMMERS"" M4NUAL

3. Bit Comparisons

Pops

POP: SEV Set on even

FORMAT : sev (.)

FUNCTION: Set true if C(WO) 17 = 0
Otherwise, set false

POP: SEVS Set on even in storage

FORMAT: sevs (Y)

FUNCTION: Set true if C(Y) 17 = 0
Otherwise, set false

POP: SCA Set on comparative and

FORMAT: sea (Y)

SECTION BZ.7.02 PAGE 88

FUNCTION: Set true if C(WO) .and. C(Y) I: 0
Otherwise, set false

EXAMPLE:

The following is a test to determine whether bit 7 or bit 8 of

CPAR is 1:

ceaw(octal(3000))
sca(char)
jmp(bothoff,f)

The CEAW pop puts 1 in bits 7 and 8 of WO, and 0 in each of

the other 34 bits.

POP: SCAP Set on comparative and, and prune

FORMAT a scap(Y)

FUNCTION: 1. Set true if C(WO) .and. C(Y) I: 0
Otherwise, set false

2. Prune WO

MULTICS SYSTEM-PROGRAMMERS' MANUAL

POP: SNZ Set on non-zero

F ORMA T : s n z ()

FUNCTION: Set true if C(WO) ~ 0
Otherwise, set false

POP: SNZS Set on non-zero in storage

FORMAT: snzs (Y)

FUNCTION: Set true if C(Y) ~ 0
Otherwise, set false

POP: SCNT Set on roll count

FORMAT: scnt(N)

SECTION BZ.7.02 PAGE 89

FUNCTION: Set true if C(TOP+N) 0-17 ·~ C(BOTTOM+N) 0-17
Otherwise, set false

4. Character Comparisons

Pops

POP: SCH Set on character equa 1

FORM!\ T: sch (Y)

FUNCTION: Set true if C(CH4R) 0-17 = C(Y) 0-17
Otherwise, set false

POPa SCHA Set on character equal, and advance

FORMAT: scha (Y)

FUNCTION: 1. Set true if C(CHAR) 0-17 = C(Y) 0-17
Otherwise, set false ·

2. If true, execute NXCH pop 1
If false, skip a pop

EXAMPLE: The following two pops would cause a blank to be
suppressed:

a: scha(trans+octa1(40))
jmp(endln)

The following pops would suppress all leading blanks:
a: scha(trans+octal{40))

jmp(endln)
jmp(a,t)

COMMENT: On end-of-line, the interpreter goes to the next
pop (same as NXCH)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 90

POP: SCKY Set on character keys

FORMAT: scky(Y)

FUNCTION: Set true if C(CHAR) 18-35 .and. C(Y) 18-35 ~ 0
Otherwise. set false

POP: SCKYA Set on character keys. and advance

FORMAT: sckya(Y)

FUNCTION: 1. Set true if C(CHAR) 18-35 .and. C(Y) 18-35 ~ 0
Otherwise. set false

2. If true. execute NXCH pop
If false. skip a pop

EXAMPLE:

sckya(a lpha)

Assume the TRANS table entries for comma and semicolon are:

TRANS+ octa 1 54 T oo~s4 I oo2ooo~ -- comma
a 1s ~

TRANS+ oc ta 1 73 6ooqe73 ~Q1aaa~~ -- semicolon

In this example. a 1 in bit .23 signifies a semicolon. and a

in bit 25 signifies a conma.

C(ALPHA) Result

Case 1 : IO I 2000 I Set true and execute NXCH pop

Case 2: lo I 10000 I Set true and execute NXCH pop

Ca~e 3: ro 1120001 Set true and execute NXCH pop
0 18 35 or ;

COMMENT: On end-of-line. the
(same as NXCH)

interpreter goes to the next

1

if

if

if

pop

•
.
II

•

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 91

5. Null Comparisons

The following pops make no comparisons, but simply set true

or false.

Pops

POP: STRU Set true

FORMA T : s t ru ()

FUNCTION: Set true

POP: SFAL Set false

F 0Rfv1A T : s fa 1 ()

FUNCTION: Set false

6. Symbol Comparisons

Pops

POP: SSKY Set on symbol key

FORfv1A T: ssky (Y)

FUNCTION: Set true if C(Y) .and. C(SYMKEY) ~ 0
Otherwise, set false

I

COMMENT: The user must be sure that C(Y) 0-17 = 0, since
this is a full-word comparison. (See ORKEY.)

POP: SSKYA Set on symbol key, and advance

FORMAT: sskya (Y)

FUNCTION: 1. Set true if C(Y) .and. C(SYMKEY) 1: 0
Otherwise, set false

2. If true, execute the pop at location 1 of the
procedure segment
If false, go to the next pop

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 92

POP: SSY Set on symbol

FORMAT: ssy(Y)

Y is the location of the first word of a type-1 string

FUNCTION: Assume SYMBUF contains a type-1 string

1. Count the type-1 string in SYMBUF.

2. Compare the string in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison.

3. If all words match, set true
Otherwise, set false

POP: SSYA Set on symbol, and advance to next symbo 1 if equa 1

FORMAT: ssya(Y)

Y is the location of the first word of a type-1 string

FUNCTION: Assume SYMBUF contains a type-1 string

COMMENTS:

1. Count the type-1 string in SYMBUF.

2. Compare the string in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison.

3. If all words match, set true
Otherwise, set false

4. If true, execute the pop at location 1 in
procedure segment
If false, go to the next pop

1 • The pop at location 1 is usua 11 y a JMP or

2. ssya(symbol) is equivalent to ssy(symbol)
exec(1,t)

the

a JSB

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 93

0. REQUIRE POPS

The require pops compare two items to determine whether a

certain condition is met. If the condition is met# the

interpreter goes to the next pop (or advances). If the

condition is not met, the interpreter executes the syntax

fail routine. The syntax fail routine executes a PRES pop

and jumps to the location specified by FEXIT (see FEX).

1. Symbol Comparisons

Pops

POP: RSY Require on symbol

FORMAT: rsy(Y)

FUNCTION: Assume SYMBUF contains a type-1 string

1.

2.

3.

Count the type-1 string in SYMBUF

Compare the string in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison.

If all words match, go to next pop.

Otherwise, execute syntax fail routine.

POP: RSYA Require on symbol, and advance.

FORMAT: rsya(Y)

FUNCTION: Assume SYMBUF contains a type-1 string

1.

2.

3.

Count the type-1 string in SYMBUF.

Compare the string in SYMBUF with the string
starting at location Y. This is a word-by-word
comparison.

If all words match, execute the pop at location
1 of the procedure segment.

Otherwise, execute syntax fail routine.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02

POP: RSKY Require on symbol key

FORMAT: rsky (Y)

FUNCTION: Go to next pop if C(Y) .and. C(SYMKEY) ~ 0

Otherwise, execute syntax fail routine.

POP: RSKYA Require on symbol key, and advance

FORMAT: rskya (Y)

PAGE 94

FUNCTION: If C(Y) .and. C(SYMKEY) ~ 0, execute the pop at

location 1 of the procedure segment.

Otherwise., execute syntax fail routine.

2. Character Comearisons

Pees

POP: RCH Require on character equal

FORMAT : rc h (Y)

FUNCTION: Go to next pop if C(CHAR) 0-17 = C(Y) 0-17

Otherwise, execute syntax fail routine

POP: RCHA Require on character equal, and advance

F ORMA T: rc ha (Y)

FUNCTION: Execute NXCH pop if C(CHAR) 0-17 = C(Y) 0-17

Otherwise, execute syntax fail routine

COMMENT: On end-of-line, the interpreter goes to the next

pop (same as NXCH)

POP: RCKY Require on character keys

FORMAT : rcky (Y)

FUNCTION: Go to next pop if C(CHAR) 18-35 .and. C(Y) 18-35 ~ 0

Otherwise, execute syntax fail routine

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02

POP: "RCKYA Require on character keys, and advance

FORMAT: rckya (Y)

PAGE 95

FUNCTION: Execute NXCH pop if C(CHAR) 18-35 .and. C(Y) 18-35 ~ 0

Otherwise, execute syntax fail routine.

COMMENT: On end-of-line, the interpreter goes to the next

pop (same as NXCH)

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 96

R. SEARCH POPS

1 • Genera 1

The search pops search a roll for a search item matching a given

item called a clue.

Two types of rolls may be searched: linked and non-linked.

A linked roll consists of variable-size groups that are linked

on threads via link words. Each link word contains the address

of the next logical link word on the thread. A linked group is

set up as follows:

VSIJJ
step rea1on*
link address I hash -- Link Word
tYQe-1 st rinq_ or remal nder oJ search __ i_tem-1:-

0 18 35

* May be any number of words

The link address is 0 if no more links follow, otherwise, it

is the location of the next link word. For roll 0 it is an

absolute location; for rolls 1-63 it is relative to the top.

If the clue is a type-1 string, then the interpreter computes

the hashJ in this case, the hash is not included in the clue

or in the search item. If the clue is not a type-1 string,

.the interpreter uses the right half of the first word of the

clue as the hash; in this case, the hash is included in the

clue and in the search item.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 97

The step region contains any pertinent information describing

the search item.

A non-linked roll may consist of fixed or variable-size groups.

It is set up as follows:

(oossiblv) VSW
step reoion*
search 1tem*

0 35

* May be any number of words

Roll 0 must be set up as a linked roll. Rolls 1-63 may be

linked or non-linked.

2. Types of Threads

Two types of threads are used for linked groups~ depending

on the roll number and on the type of clue to be matched:

Thread Type ~ Ro 11 Number , Type-1 string 0

2 {Type-1 string 1 -63

Anything else 0-63

There are 32 type-1 threads. There may be any number of

type-2 threads.

The first 32K of roll 0 (after the first eight words) consists

of one page for each type-1 thread. The links in this area

are contiguous. If the total requirement for a type-1 thread

exceeds 1024 words, the excess words are stored somewhere

in the 32K area after page 31.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 98

EXAMPLE:

Assume that the first four links for thread n (a type-1 thread)

take up 1024 words:

Ro 11 0 Blown up picture of page n
Page 0 1 ink 1 - thread n

llnk 2 - thread n
link 3 - thread n

Page n pnk 4 - thread n
0 35

Page 31

Link 5-thread n
~Usee llaneous

1 inks

Link 6-th read. n
0 35

The thread table for roll 0 contains an entry for each type-1

thread:

I 0 or non-zero J ignored
0 18

Here 0 means that the thread is empty. A non-zero value gives

the absolute location of the first link word on the thread. The

thread table THREAD is located in the data segment.

Links for type-2 threads in roll 0 are placed after page 31 by

the interpreter. The user may start such a thread in the first

7-word group on roll 0, provided that the step size is 0-6

and C(ROLPTR) = 0. Otherwise, these type•2 threads must emanate

from the step region of a type-1 thread. In each case, all

subsequent 1 inks are placed after page 31.

MULTICS SYSTEM-PROGRA~ERS' MANUAL SECTION BZ.7.02 PAGE 99 ""'

EXAMPLE:

I
I

\
' \

\

/
I
I

' '

' \
'

Roll 0

Below thread 31

-~ ~--------~~

Step region for type-2 thread

-- ?d ~~~::...;.:-;ir-=-...._.,~~End of type-2 thread

NOTE: If the type-1 thread is thread T, C(THREAD+T) 0-17 = a

The type-1 thread is connected by a solid arrow. The type-2

thread is connected by dashed arrows. X, Y and Z are 18-bit

constants, most likely offsets on some other roll (pointing

to other information).

3. The Search File

The search file for srch(Y), srchp(Y), linkn(Y), and linkp(Y)

has the following format:

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 100

y roll number (N) 0- not rel. links
non-0- rel. links

step size 0 - non-masked
non-zero - masked

II of words in ignored clue
Tells whether clue location of clue is type-1 string

Y+4 mask (if any) -II of bits in mask
must match #of bits in clue *

0 18 35

-.'r May be any number of words

The items in the search file have the following functions:

C(Y) 0-17 -Number of the roll to be searched

C(Y) 18-35- In a search file for roll 0, C(Y) 18-35 is ignored

In a search file for another roll containing links,
C(Y) 18-35 = non-zero

In a search file for another roll not containing
links, C(Y) 18-35 = o

C(Y+1) 0-17 - Number of words in step region

C(Y+2) 0-17 - Number of words in clue (computed by interpreter for
type-1 strings).

C(Y+3) 0 - If 0, the clue is not a type-1 string

If 1, the clue is a type-1 string

Bits 1-17 are ignored.

C(Y+3) 18-35 -A location in the data segment, usually SYMBUF

If this field contains -1. C(MRKER) 0-17 is the
location of a roll pointer which points to clue.

If this field contains -2, C(MRKER) 0-17
specifies the location of the clue.

This permits the clue to be in the work stack.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 101

Mask - The mask is used, only if selected portions of the clue

are to be compared. In the mask, a 1-bit means ignore

and a O-bit means compare. The number of words in the

mask mat.ches the number of words in the clue: if there

is no mask, the search file is 4-wordsJ if there is a

mask, the search file is 4-words plus the number of

words in the clue.

Masks may be used only for non-linked searches.

The following search file is for step size 2 and

type-1 strings in roll 0:

0
2
0

-1 s
0 8

4. Linked Searches

If there are no links on the roll to be searched, the search

is unsuccessful. Otherwise, the interpreter begins a linked

search by determining the proper thread to search and the

location of the first link on that thread. It uses one of

the fo 11 owing methods :

Type-1 thread The interpreter computes the thread number

and looks in the thread table to obtain the

location of the first link word in the thread.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 102

Type-2 thread -- In this case, the user must make ROLPTR+N point

'j•"•

. . ·:,' ~_:. -~· j . -~

.. ~ .. : .. ,__,

to ~h~·vsw of the first link on the thread. The
. . '

interpreter~computes the absolute location of

the VSW, and adds the number of words in the
·- ·-'

step region plus one to determine the location

of the link word.

Next, the interpreter computes the hash number of the·;c: lue.

(See Paragraph R.1.)
; . '. ~ :: '

I,:, ·-,· ',

The interpreter them s.tarts the,usearch ·by :comparing the::hash in

the first link word with the hash of the clue. If they match,

and the clue is not a type-1 string, the search is successful.

If they match, and the clue is a type-1 st:rlng, the i'nterpre.ter

compares the clue words with the search item words; if they· do

not:rna,tch (v~ry:· ,rare), :lt .. looks ·for .. another occurre;hce of the

· , :same hash. , If the- 'two hashes do,·.not match:,: the interpre·ter: ·

uses .tpe. ·link word .to det.ermine the address· of the next 1 ink
··;~ ;:--~~ ··;~-, . . ' -.. -~ .. ··; ~ .,_ . :· :

word. The in.:terprete,r:continues ~this-process,-until it finds

, a .. ma.tch~:or ·reaches the iend of·.,the· .·thread.·
-

. -~- ~ ~-.. . ..

s. Non-Linked Searches

If there c:h·.~.' no~·gr9ups_: ~:>n.)t!'l~;:r.o..J). to. be s~arched, then the
- ',1 ••

search is unsuccessful. Otherwise, the interpreter assumes that

RP(ROLPTR.~N) ... locatio~;, of the· f·trst .word· {or VSW) pf a group,

it:,··locates. the fir.st:J:tem.accordi,ng to one~ of• the following

equations:

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BZ.7.02 PAGE 103

For fixed-size groups -- Search i tern location =
RP(ROLPTR+N) + step size

For variable-size groups -- Search item location =
RP(ROLPTR+N) + step size +1

Next, the interpreter compares the search item with the

clue. If the comparison is unsuccessful, the interpreter

simulates the pop dng(N) to find the first word of the

next group.

The: inter-preter continues its search, until it is successful,

or until it reaches the bottom of the roll.

POP: SRCH Search

FOR~T: srch(Y)

Y is the location of a search file (See Paragraph R.3.)

FUNCTION: 1. Perform the search as directed by the search file

2. If successful, make CURPTR and ROLPTR+N point to
tne location of the first word of the group
containing the clue, and set true.

CURPTR is a one-word register in the data segment
with the following format:

o 8 3o
N l

!5

CURPTR is a roll pointerJ it points to
P + C(TOP+N) 0-17

If unsuccessful, set C(ROLPTR+N) = 0, and set
false

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 104

EXAMPLE:

In this example, the user scans for a left parenthesis and
then searches for a symbol.

modnb()

rsym()

loop: nxch()

jmp(endln)

sch(trans+octal(SO))

jmp(loctr+3,t)

pak(char)

jmp(loop)

cnts()

s rch (sf i 1 e)

jmp(absent,f)

POP: SRCHP Search Put

FORMAT: srchp(Y)

11 ignore blanks'•

11 reset symbo 1 to b 1 anks"

''get next character"

"spec ia 1 case if end of 1 i ne"

"octal 50 is left parenthesis"

"jump if left parenthesis"

11 otherwise, pack in symbol"

11 ••• and continue"

"count the symbol' 1

11 search for it"

"jump if unsuccessful"

Y is the location of a search file (See Paragraph R.3.)

FUNCTION: 1. Perform the search as directed by the search file

2. If successful, perform actions indicated for SRCH
pop. If unsuccessful, perform steps 3-10.

3. Set false

4. Determine number of words to create (n words)

5. Allocate space for group, as follows:

Roll 0, type-1 thread- If there is room on the
page corresponding to the thread, allocate
space at the bottom of the page

If there is no room on the page, allocate
space on the bottom of the roll

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 105

EXAMPLES:

NOTE: The first time the interpreter determines
that there is no space available on a
page, it closes the page; even if a
subsequent link wi 11 fit on the page,
it is not put there.

Roll 0, type-2 thread-- Allocate next available
space on the bottom of the roll

Roll 1-63 --Allocate next available space at
the bottom of the roll

6. If this is a variable size group, create VSW,
as follows:

I n-1 I o ~
0

7. Fill the step region with zeros.

8. Create link word, if necessary. (The link
address of this word is o.)
Set the link address of the previous link word
(if any) in the thread to the absolute or
relative location of the newly created link
word.

9. Copy the clue.

10. Make CURPTR and ROLPTR+N point to the location
of the first word of the newly created group.

Assume that the user wants to form a type-2 thread on roll 6.
Thts is the only thread on roll 6. To accomplish this, he
writes the following code:

pru(6)
srchp(fi 1e1) 11 The search wi 11 fail, and the clue

wi 11 be put on roll 6. 11

To put a new link on the same thread, the user writes:

zer(rolptr+6)
srchp(fi le1)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 106

POP: LINKN Link next

FORMAT: linkn(Y)

Y is the location of a search file (see Paragraph R.3.).
Here, only the first two words are applicable:

ro 11 number(N) Ignored
search step Ignored

u 18 35

FUNCTION: Assume RP(ROLPTR+N) is the location of the VSW of a
linked group on roll N.

If C(link word) 0-17 = 0, set false

Otherwise, make ROLPTR+N point to the VSW of the next
link in the thread; and set true.

EXAMPLE:

linkn(alpha)

ALPHA
ALPHA+1

ROLPTR+5 before

ROLPTR+5 after

000000
000000

8 3

b1oo 18o Jo5~5
I 2oo I o ! s I
0 18 0 35

The true condition would be set.

Illustration

Roll 5

step region

step region

TOP+5 I 1 00000 f 000000 I
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 107

Comments: 1. This pop can use a search file set up for
a search pop. In this case, it simply
ignores all information except C(Y) 0-17
and C(Y+1) 0-17. .

2. The interpreter gets N from the search
file. It assumes C(ROLPTR+N) 30-35 = N.

POP: LINKP Link put

FORMAT: li nkp(Y)

Y is the location of a search file (see Paragraph R.3.).

FUNCTION: Assume RP(ROLPTR+N) is the location of the VSW
of the last link on roll N. Also assume that the
first word of the clue is special: the left half
is ignored, and the right half is to be used as
hash

Place a link on the bottom of roll N, according
to the specifications of the search file:

1. Determine number of words to create

2. Allocate space for link

3. Create VSW

4. Fill the step region with zeros

5. Create link word: zero in left half, followed
by right half of first word of clue

6. Make the link word in the previous link point
to the newly created link word.

7. Copy the remaf.nder of the clue (if any)

8. Make CURPTR and ROLPTR+N point to the location
of the first word of the newly created link

EXAMPLE:

linkp (alpha)

ALPHA
ALPHA+1
ALPHA+2
ALPHA+3

0

5
2
1
0

1
0
0

20000
18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 108

20000 Ignored! 767 ROLPTR+5 I 1oo I xl 5 I
0 , 8 30 35

1oooooroooooo BOTTOM+5 16 01 000 ls 00000~5

Roll 5

100100 3 0
step region

1003 676 Upper half set by pop (rest of group unchanged)

101000 3
0
0

0

0

767

Old bottom
step region

POPs TSRCH Table search

FORMAT: tsrch(Y)

If Y ~ 0, then Y is the even location of a 2-word search
file

Otherwise, FTAB, a two-word register in the data segment,
is the location of the search file

word
word

1 table
2
u

Search File

location 0
0 If of table entrie~

17 l B 35

C(word 1) 0-17 --Location of table consisting of 4-word entries.
The first two words of each entry are the key,
and the keys are in ascending logical order.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 109 ""

The following illustration shows how the keys are sorted:

2 d 0 li5
2 i f lzS
3 e n d
7 e n d f l 1 e

0 9 18 27 35 0 9 18 • 7 3 5
word 1

C(SYMBUF,SYMBUF+1) =clue. A typical tlue is shown bel~v:

SYMBUF
SYMBUF+1

FUNCTION: 1. Search the table for a key that matches the
clue

2. If there is no match, set false

EXAMPLE:

Otherwise, set true, and C(MRKER) 0-17 =
location immediately following the matching
key; i.e., word 3 of the entry satisfying
the test.

In this example, if the search is successful, the interpreter
will load words 3 and 4 of the entry satisfying the test.

cnts()

ts rch()

jmp(absent,f)

xntv(mrker)

load(1)

xntv(mrker)

load(D)

'' 1 cad word 411

11 load word 311

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 110

POP: SRCHK Search keys

FORMAT: srchk(Y)

Y is the location of a 6-word search file

y
Y+1
Y+2
Y+3
Y+4
Y+5

0

Search File

0 (ro 11 0)
steo- s 1ze

1anored
ianored
mask

-n

I searcn oot1on
r 0

I octa 1 12
18 35

C(Y+5) 0-17 -- Offset relative to link word in any link on
roll o. This is the offset of a selected word
in the step region. Therefore, n must be ~ step
size.

C(Y+4) -- 36-bit mask. The 1~s in this mask define bits to be
tested in the selected word. These bits are called
the keys.

C(Y) 18-35 -- 0 if a test is to be made for all keys off

1 if a test is to be made for any keys on

FUNCTION: 1. Test keys in each link on roll 0, according to the
search option, until successful or until there are
no more links.

2. If successful, set true; and make ROLPTR+O point
to the VSW of the link satisfying the test.

·If unsuccessful, set falseJ and set C(ROLPTR+O) = 0.

MULTlCS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 111

EXAMPLE:

s rchk(a 1 pha)

ALPHA

3

NOTE: 777775 is -3

Here. the interpreter tests each link for any 1 bits
in the shaded areas in step word -3.

COMMENT: The interpreter performs the search as follows:
It first searches thread 31. then thread 30.
then thread 29. etc. However. it performs a
forward search on each thread.

POP: SRCHKC Search keys continued

FORMAT: srchkc(Y)

Y is the location of the 6-word search file used
by the last executed SRCHK or SRCHKC pop. (See
SRCHK for format.) 1

FUNCTION: 1. Determine whether the last executed SRCHK
or SRCHKC pop was successfu 1

2. If the pop was not successful. then set
false and set C(ROLPTR+D) = 0.

If the pop was successful. execute SRCHK
pop with the followin~ modification:
RP(ROLPTR+O) is point1ng to the VSW of
the link satisfying the test. If this
link is the last on thread N. then start
search at the first link of thread N-1.
If this link is not the last link qn thread
N. then start search at the next link of
thread N.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 112

S. SHIFT POPS

POP: WRKL Shift work left

FORMAT: wrkl(Y)

FUNCTION: Shift work left by C(Y) 0-17 bit positions. Fill
with zeros on the right of wo.

EXAMPLES:

C3

wrkl (C3)

1 ooooo3 1 ooooog 1
0 18 5

Case 1

WO before I 007777 l 000000 I
0 18 35

WO after I 077770 l 000000 I
0 18 35

Case 2

WO before I 777777 l 000000 I
0 18 35

WO after [777770 l 000000 1
0 18 35

COMMENT: WRKL is equivale;nt to multiplication by a power of 2.

POP: WRKR Shift work right

FORMAT: wrkr(Y)

FUNCTION: Shift work right by C(Y) 0-17 bit positions.
zeros on the left of WO.

EXAMPLES i

wrkr (C3)

c 3 I ooooo3 l oooooo I
0 18 35

Fill with

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 113~

Case 1 Case 2

WO Before I 007777 I 000000]
0 18 35

WO Before I 777777 I 000000]
0 18 35

WO After I 000777 I 700000 I WO After I 077777 I 700000 1
0 18 35 0 18 35

COMMENT: WRKR is a logical shift, not an arithmetic shift.

It should not be used to divide a negative number by a

power of 2.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

T. EXCHANGE POPS

Pops

POP: XCH Exchange work and storage

FORMAT: xch (Y)

FUNCTION: Exchange C(WO) and C(Y)

EXAMPLE:

xch(w1)

Before

SECTION BZ.7.02 PAGE 114

After

wo [550oo.3 I oooooo -, wo 1 ooooos-Ioooooo 1

0 18 35 0 18 35

wr Jooooo5 I oooooo---1
0 18 35

w1 l-ooooo3 J ooo-c)oo--]
0 18 35

POP: XLR Exchange left and right halves of work

F ORMA T : x 1 r ()

FUNCTION: Exchange C(WO) 0-17 and C(WO) 18-35

POP: XLRS Exchange left and right halves of storage

FORMAT: x 1 rs (Y)

FUNCTION: Exchange C(Y) 0-17 and C(Y) 18-35

EXAMPLE:

x 1 rs (alpha)

ALPHA before] 000005 I 000000 1
0 18 35

ALP~ after I 000000 I 000005 I
0 18 35

COMMENT: xlr() is equivalent to xlrs(wO)

MULTICS SYSTEM-PROGRAMMERS' MANUAL

U. DUMMY POPS

~

POP: DMY Load Dummy

FORMAT: dmy (Y)

FUNCTION: 1. Add 1 to dummy counter

EXAMPLE:

2. Set C(DO) 0-17 = Y

Set C(DO) 18-35 = 0

SECTION BZ .7 .02 PAGE 115""

dmy(7) appends the following word to the dummy stack:

I ooooo7 I oooooo I
0 18 35

POP: PRO Prune Dummy

FORMAT: prd (Y)

FUNCTION: Subtract C(Y) 0-17 from dummy counter;

i.e •• prune dummy stack by C(Y) 0-17 words

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 116

V. USER POPS

There are five user pops. Each corresponds to a GE-645 machine

language subroutine in the procedure segment. The starting

locations of these subroutines are stored in the upper halves

of locations 3-7 in the procedure segment. For example:

/

3
Loc. of subroutine
for user1

I Ignored

0 18 35

Each of these starting locations is somewhere after the reserved

locations (octal 0-12).

In writing the subroutines constituting the user pops~ the user

must observe the following conventions:

1. The base pairs are all reserved:

Used by Pops Interpreter

AP - Procedure segment
BP - Data segment

2. The following registers are reserved:

Used by Multics

SP - Stack segment
LP - Linkage segment

X1 - Pop counter - Relative to AP
X3 - Work}
X4 - Exit
X5 - Dummy

- Relative to BP

3. The other registers may be changed.

4. The user routines return to the interpreter in the

manner described for DOML (see DOML).

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 117 ~

Pops

POP: USER1 1 USER2 1 USER3, USER4 1 and USERS

FORMAT: userN (Y)

N = 11 2 1 3,4 1 or 5
Y is a location in the data segment

FUNCTION: Execute the corresponding user routine

EXAMPLE:

user3 (w2)

Assume user3 is a store lower pop: The operand is Y, a

location in the data segment.

The routine sets C(Y) 18-35 = C(WO) 18-35.

wo I oo17so I ooo62s I
0 18 35

W2 before I 000764 I 000235 I
0 18 35

W2 after I 000764 I 000625 I
0 18 35

COMMENTS: 1. True/false tags and address modification pops
may be used with the user pops; i.e., the pop
user4(w2 1 f) is permitted.

2. The user pops are similar to DOML; however,
they are more versatile, since the operand of
a user pop may specify data. The operand of
the DOML pop simply specifies the location
of the machine language subroutine. (See DOML.)

....

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 118

W. TIMING POPS

Pops

POP: TYMF Time from

F ORM.L\ T: tymf (N)
N is normally roll 3 (fact roll)

FUNCTION: Record time by setting TYMER and TYMER+1. These are
contiguous one-word registers in the data segment,
with the following formats:

TYMER Locat1on of current 1
(even address) TYMF

~~--~~--~~--~----~------~ Current time (1n 64ths of a

0

TYMER+1 millisecond)
0 18 35

POP: TYMT Time to

FORMAT: tymt(N)
N is norma 11 y ro 11 3

FUNCTION: 1. Compute elqpsed time between last time recorded
(TYMF) and current time (TYMT)

2. Bump bottom of roll N by two words, and put the
following information in these words:

word 1

word 2
0

35

Time difference= current time- C(TYMER+1)- C(TYMASK)

TYMASK is a 36-bit cell in the data segment, with the
following format:

k bits 36-k bits
I 11
0 k

Fudge factor
35

The k-bit field may be used to set a flag in word 1,
indicating that timing information follows. If the
k-bit field contains 1, ·then the first k-bits of
word 1 are set to 1's. The user should choose k small
enough, so that 36-k bits are sufficient for recording
the time difference. If k=O, then there will be no
flag in word 1.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 1.19"'

The fudge factor is set equal to the time spent
in executing the TYMF and TYMT pops. so that this
may be omitted from a critical time calculation.
This time may be determined by executin~ a pair
of successive TYMF and TYMT pops and us1ng the
elapsed time. The current estimate is
25 (milliseconds/54).

General Comments

1. Any number of pops may appear between a TYMF pop and
a TYMT pop.

2. If there are several TYMF pops. each TYMF overrides
the preceding TYMF.

CAUTION: The current implementation of the interpreter does
not include a Multics timer interface. Therefore.
until further notice. all times will be o. The
timer feature was originally provided for a GECOS
environment. where the timings would be more
meaningful than in a Multics environment.

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ.7.02 PAGE 120

X. ERROR POPS

Each of the error pops bumps the bottom of roll 1 (error roll)
by one word and sets C(word 1) as follows:

I Card Number

0

'Column Number

8 9

y

18 19

Card number C(CRDNUM) 18-26.

Column number -- The number of the column in which the error
occurred. This is either C(WO) 0-17 or
C(CHARC) 0-17, depending on the pop. The
first 9 bits in this number must be zero.

Pip -- A character printed as part of the error list (see Printing
the Error List, paragraph Y.1.c). If C(word 1) 18 = 0,
the pip is a ... • This appears under the erroneous
character. If C(word 1) 18 = 1, the pop is a ... This
appears under a character after the erroneous character.

Y -- The operand of the pop. This is the location of the first
word of the error message. This location must be in the
lower half of the data segmentJ i.e., Y must be < 2**17
The error message is a type-1 string

EXAMPLE:

17 I L L
E G A L
tl5 c H A
R A c T
E R ttS ttS

0 9 18 2 7 35

~

POP: EROR Error on work

FORMAT: eror(Y)
Y is the location of the error message. (See description
above).

FUNCTION: 1. Bump bottom of roll 1 by one word

2. Set C(word 1) as follows:

C(word 1) 0-8 = C(CRDNUM) 18-26
C(word 1) 9-17 = C(WO) 9-17. (Here, C(WO) 0-8 must

be zero.)
C(word 1) 18 = 0
C(word 1) 19-35 = Y

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 121~

POP: ERRP Error on work_ and prune

fORMAT: errp(Y)
Y is the location of the error message.
(See description above.)

fUNCTION: 1. Execute eror (Y)

2. Prune WO

POP: ERRCC Error on current column

fORMAT: errcc (Y)
Y is the location of the error message.
(See description above.)

fUNCTION: 1. Bump bottom of roll 1 by one word

2. Set C(word 1) as follows:

C(word 1) 0-8 = C(CRDNUM) 18-26
C(word 1) 9-17 = C(CHARC) 9-17. (Here_ C(CHARC)

C(word 1) 18 = 0
C(word 1) 19-35 = Y

COMMENT: errcc(Y) is equivalent to load(charc)
errp(Y)

POP: ERRLC Error on last column

fORMAT: err 1 c (Y)
Y is the location of the error message.
(See description above.)

fUNCTION: 1. Bump bottom of roll 1 by one word

2. Set C(word 1) as follows:

C(word 1) 0-8 = C(CRDNUM) 18-26

0-8 must be zero.~

C (word 1) 9-17 = C (CHARC) 9-17. (Here_ C (C~RC)

C (word 1) 1 8 = 1
C(word 1) 19-35 = Y

0-8 must be zero.)

r
~,.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 122

Y. OUTPUT POPS

1. Print Pops

The print pops (PRNT and PRNTC) prepare data for printing.

They specify the format of the data and the order in which it

is to be printed.

Each print line may contain up to 132 ASCII characters.

The characters constituting the print line are first placed in

F>LHJE ~ a 37-word buffer in the data segment. PLINE has the

following format:

PLINE+O
PLINE+1
PLINE+2

PLINE+32
PLINE+33
PLINE+34
PLINE+35
PLINE+36

•
•
•

Print positions 1-4
Print positions 5-8
Print positions 9-12

Print positions 129-132

Extra words, which may be needed for control
characters.

(The locations PLINE-3, PLINE-2, and PLINE-1 provide a backstop

in case any integer extends to the left of print position 1.)

When a line is terminated 1 the interpreter moves the line to

the list segment or the error segment.

a. The Parameter File

The operand of a print pop is the location of the parameter

file in the data segment.* Six types of words may be used in

this file:

* This is true if Y ~ O. (See Printing the Error List,
paragraph Y. 1 .c.)

MU~TICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7 .02 PAGE 12.~

\
I

ATH - ASCII to ASCII conversion

HTH- Hollerith to ASCII conversion

FlO, LID, RID, FlO, LIO, and RIO - Numeric to.
ASCI I conversion

sk\p - Skip a certain number of words in the parameter
file

Leave - Go to the next pop, without terminating the
print 1 i ne

PRT - Terminate the print line, and go to the next pop.

Each file word consists of five fields:

Field 1 (bits 0-2) - Code - This field identifies the type
of file word, as follows:

0 - SKIP
1 - ATH
3 - HTH
4 - FlO, LID, RID, FlO, LIO, and RIO
5 - PRT
2,6, and 7 - not used

The code field is not applicable to the leave file word.

Field 2 (bits 3-7) - Word Count (lrJ) - This field tells the
number of words to be moved to PLINE (ATH, HTH) or the
type of integer conversion (FID, LID, RID, FlO, LIO, RIO).
Otherwise, it is ignored.

Field 3 (bits 8-14) - Print Position (P) - The meaning of this
field depends on the type of file word.

Field 4 (bits 15-17) and Field 5 (bits 18-35) - Index (I) and
Address (A) - These fields give an effective address,
which is computed as follows:

-~

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I 0 N B Z • 7 • 02 PAGE 1 2 4

Index Effective Address

I = 0 A Each index corresponds to
I = 1 A+C(X1) } a GE-645 index register.
I = 2 A+C(X2) Therefore., this feature
I = 3 A+C(X3) can be used only by the

i nte rprete r.
I = 4 A+C (OUTAG4) 0-17} I = 5 A+C (OUTAG5) 0-17 OUTAG4., OUTAG5., and OUTAG6
I = 6 A+C (OUTAG6) 0-17 are ce 11 s in the data

(See
segment.

I = 7 LEAVE., page 126)

The meaning of the effective address depends on the type
of f i 1 e word •

b. Description of File Words

1. A TH - ASCI I to ASCI I

F ORMA T : at h (A ., I ., P., W)

REPRESENTATION IN DATA SEGMENT:

I 1 I w I P
0 3 8

MEANING OF OPERANDS:

I I I A l
15 18 35

A and I -- Effective address is location of first word
in string

P Print position for first ASCII character (1-127)
ASCII characters are moved into PLINE left to right

W Word count. If W = 0, a type-1 string is to be
moved to PLINE
If W = 1.,2, ••• , or 31, 4W characters
are to be moved to PLINE

NOTE: The first character in a type-1
string tells how many charact
ers are to be moved to PLINE,
but this character itself is
never moved.

2. HTH- Hollerith to ASCII

F ORMA T : h t h (A , I , P, W)

REPRESENTATION IN DATA SEGMENT:

I 3 I w I P
0 3 8

I I I A J
15 18 35

MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ. 7.02 PAGE 125~

MEANING OF OPERANDS:

A, I, and P -- Same as for ATH

The ASCII equivalents of the Hollerith characters
are moved into PLINE left to right.

W --Word count. If W = 0, a type-1 Hollerith
string is to be moved to PLINE

If W = 1,2, ••• , or 31, 6W
characters are to be moved to
PLINE.

COMMENT: The difference between an ASCII type-1 string
and a Hollerith type-1 string is illustrated
below:

ASCI I 3 A B C
003 1 01 1 02 1 03

Hollerith 5 A B C D E
05 21 22 23 24 25

3. Integer to ASCII (macros shown below)

FORMAT: macro(A, I, P)

Macro

FlO
LID
RID
FlO
LIO
RIO

REPRESENTATION IN DATA SEGMENT:

I 4~ W* I p I I I A
0 8 15 18 35

*The macro determines W. (See MEANING OF OPERANDS.)

MEANING OF OPERANDS:

A and I -- Effective address is location of integer
I,

P -- Print position for least significant digit
(1-127) Numeric data is moved into PLINE right
to left.

W -- Conversion type - The value of W for each of
the macros is shown in the chart below:

Meaning Value of W Number of characters

Full integer decimal n Number of significant
Left integer decimal digits (Plus one, if
Right integer decimal the sign is negative)
Full integer octal 8 12
Left integer octal 9 6
Right integer octal 10 6

~

MULTICS SYSTEM-PROGRAMMERS' MANUAL

EXAMPLE:

SECT I 0 N B Z • 7 0 02 PAGE 12 6

C(ALP~) = I 777777 I 000001 I
0 18 35

Print Positions
--

-262143
~-

-1 -----T-
777777000001

177777
000001

9 20

f i d (a 1 p ha, 0, 2 0)
1 i d (a 1 pha, 0, 2 0)
rid(alpha,0,20)
fio(alpha,0,20)
1 i o (a 1 pha, 0, 2 0)
rio(alpha,0,20)

COMMENTS: 1. For negative decimal numbers, the leftmost
character is the sign. Otherwise, the leftmost
character is the most significant digit"

2. Leading zeros are printed with octal numbers.
No leading zeros are printed with decima 1 numbers.

3. Zero is represented as shown below:

FID, LID, RID 0
LIO, RIO 000000

FlO 000000000000

4) LEAVE - Leave

FORMAT: leave ()

REPRESENTATION IN DATA SEGMENT

I 1 1 1 1 7 l2£_7_L_2 1 1 1 1
0 15 18 35

The macro determines the entire word

The 7 in bits 15-17 indicates that the file word is
LEAVE
All other bits are ignored

5) SKIP - Skip

F ORMA T : s k i p (A , I) or s k i p (A)

REPRESENTATION IN DATA SEGMENT:

I~..,;O~l _.::::0~1 ~0:...__+.1 1:-----~1~--'-'-A ---:;-;::1
0 3 8 15 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON B Z. 7 • 02 PAGE 12 7 Ailllt

MEANING OF OPERANDS:

A and I -- Effective address is location of
next parameter word relative to
current parameter word.

COMMENT:

The user may specify a backward skip~ but may
not specify a skip of 0 words:

6) PRT-- Print

skip(O) is illegal (terminates line~ with
error message)

skip(1) goes to next word~ as usual
skip(2) ski~s one word
skip(-3) goes back three words

FORMAT: prt(P~ I,A)

REPRESENTATION IN DATA SEGMENT:

I s I o I P
0 3 8

MEANING OF OPERANDS:

I I I
15 18

A
35

A and I -- An effective address of 1-15 decimal
specifies the number of lines to space
after printing: 1 means single space,
2 means double space, etc.

An effective address of 20 decimal
specifies that a new page should begin
after the line is printed.

P -- The report code:

2~ if the line should be included in the list
segment

Any other number, if the line should be included
in the error segment

MULTICS SYSTEM-PROGRAMMERS' MANUAL

Pops

SECTION BZ.7.02 PAGE 128

POP: PRNT Print

FORMAT: prnt (Y)
If Y ~ 0~ it is the first word of the parameter file
(See Printing the Error List, paragraph Y. I .c, for a
description of what happens when Y = O.)

FUNCTION: 1. Clear PLINE -- PLINE+36 to ASCII blanks

2. Proceed as directed by parameter file

EXAMPLE:

2rocedure Segment

prnt(list)

Qata Segment

list: hth (string1,0,1,2)
ath (string2,0,20,0)
fio(number,0,60)
prt(1,0,3)

STRING1

STRING2

NUMBER

PLINE

COMMENTS: 1 •

2.

3.

I H 0 L IL E R

Is A Is c
I ooooo? I oooooo l
0 18 35

I HOLLERITH
1

I I H

I I

ASCI I
20

I t6 ~ ~

I t6 t6

0000070000001
60 Print

Position

The interpreter will truncate an ASCII or Hollerith
string on the right~ if necessary, so that it will
not exceed to the right of print position 132.

Data may be placed in PLINE in any order; e.g.,
positions 22-35 may be filled before positions
3-10. Data may also be superimposed on other data

CAUTION: Always use a PRNT or PRNTC pop to place
data in PLINE -- do not move any strings directly
i,nto the buffer.

POP: PRNTC Print continue

FORMAT: prntc(Y)

~ FUNCTION: Proceed as directed by parameter file
NOTE: This pop does not clear PLINE buffer

COMMENTS: See PRNT

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 129 ,..._

c. Printing the Error List

POP: PRNT Print

FORMAT: prnt(O)

FUNCTION: Case 1: Input Stream on Cards-- Roll 1 (error rol 1)
empty

EXAMPLE:

Go to next pop

Case 2: Input Stream on Cards -- Roll 1 non-empty

1. Scan each word on error roll, and print
each error message

2. Prune error ro 11

Case 3: Input Stream on Roll N -- Roll 1 empty

Set C(BOTTOM+N) 0-17 = RP(ROLPTR+N)

Case 4: Input Stream on Roll N -- Roll 1 non-empty

1. Sort error roll in ascending order

2. Place the following information in the
error segment: each message on
the error roll, with the corresponding
FORTRAN statement (including pips).
(See Error Pops, Paragraph X.)
(The input stream must be a type-3 string).

3. Pruneerrorroll

4. Set C(BOTTOM+N) 0-17 = RP(ROLPTR+N)

The following messages are part of a FORTRAN error list:

38 IF(L(J)-MC(K)) 299,50,299
OPERAND IN WRONG MODE.

67 999 FORMl\T (15H1 ~·-.~(*SUB-LATINS) ..
MULTIPLY DEFINED EFN.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

2. WBIN Pop

SEC TIm~ R Z • 7 • 02 PAGE 1 3 0

WBIN uses information on the binary and relbit rolls to produce

text~ linkage~ and symbol segments.

a • B i na ry Ro 1 1 Format

Each group on the binary roll defines a section of consecutive

words in the text~ linkage~ or symbol segment. The binary roll

contains variable-size groups with the following fot·mat:

vsw
K words

0 35

C(VSW) 0-17 - Size of group

C(VSW) 18-35 - 0 if not labeled COMMON
Otherwise~ offset of word on SYMREF roll
Note: This field is used only by FORTRAN IV~ not

by the interpreter.

C(VSW+1) 0-7- Number of words in section (k)

k = 0~ 1 ~2~ •• ·~or 255

C(VSW+1) 8-11 - Segment type (in octal)

0-7 Illegal (does not apply here)
10 Object procedure (text segment)
11 Absolute (does not apply here)
12 Linkage (linkage segment)
13 Blank COMMON (does not apply here)
14 Stack (does not apply here)
15 Definitions section (in text or linkage

segment)
16 Symbol segment
17 Illegal (does not apply here)

Note: Groups with types labeled "does not apply
her~' are ignored by the interpreter.

C(VS~V+1) 12-17- Ignored by the interpreter

,. C(VSW+1) 18-35 - Loading origin

k words -- Section of code to be moved to specified segment

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE .131 ~

b. Setup of Text and Linkage Segments

The interpreter uses the following data segmer t registers to

determine the setup of the text and linkoge sEgments:

TXTL

UJKL

PUTDEF

DFSL

-~ If of words in I Ignored
text for obj. proc.

0 18

;;~kage for obj.proc
~of words in Jignored

0 18

0 - Def. section
fo 11 ows text in
text segment Ignored
non-0- Def. sec.
follows 1 inkage
in linkaae seament

0 18

35

35
I

35

of words in Ignored J
definitions sect

'-:o=-==-=--='-'-'-=-=-=...=..:...:-=--=-=-=-...._-,~8=--------=y;

c. Loading Origin

The loading origin is an offset in the text, 1 inkage, or

symbol segment. It tells the interpreter where to begin

loading the k-word section. For the definitions section,

the loading origin is relative to the location of the first

definition word. Otherwise, it is relative to the first

word of the segment.

d. Relbit Roll Format

As each new group is being formed on the binary roll,

relocation codes (if any) for that group are stored on the

relbit roll. A 6-bit relocation code is stored for each

half-word in the k-word section. These codes are stored

contiguously, starting at the leftmost position in the relbit

roll. Figure 4 shows the setup of the relbit roll.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECT I ON BZ. 7. 02 PAGE 132

1U 1 L
,~

2U 2L
3U 3L ~

0 18 ':::'
35

Re lb it Ro 11

Top 1U 1L 2U 2L 3U
4U 4L 5U 5L 6U

3L
6L

k-word section
U = Upper
L = Lower

(k+2)/3 words (ignoring remainder)

Bottom 0 6 12 18 24 30 35

Figure 4. Setup of Relocation Information for k-word
Section

The relocation codes have the following meanings:

00
01-17
20-37
40-77

Multics code 0 (later squeezed to 1 bit)
Not used
Standard Multics codes (later squeezed to 5 bits)
Not used

e. Collection of Relbits

The interpreter uses the text and linkage segments to collect

relbits. After all relbits have been collected, the interpreter

squeezes the 6-bit relocation codes into 1-bit and 5-bit Multics

relocation codes, and places this information into the symbol

segment:

Before

000000
01xxxx

After

0 1-bit string
1xxxx 5-bit string

NOTE: These strings are concatenated; thus, 5-bit codes may

overlap words.

i

I
J

MUL TICS SYSTEM-PIWGRAMMERS' MANUAL SECTION EZ.7.02 PAGE 133 ~

After all relbit~ have been moved to the symbol segment,

the interpreter moves text to the text segment, linkage

to the 1 i nkage segment, and symbo 1 s to the syrm>o 1 segment.

The relbits are collected in the text arid linkage segments

as follows: There are four classes of relbits: text, linkage,

definitions, and symbol. The text and link.age segments are each

. ':'d into sectors. Each sector is approximately 2"~h";-18/3 words.

The second sector of the text segment contains text relbits,

the third sector of the text segment contains definitions relbits,

the second sector of the linkage segment contains linkage relbits,

and the third sector of the linkage segment contains symbol ~

relbits. The first sector in each segment is not us~d in the

collection of relbits. Since Multics preclears each unused page

on first reference, the interpreter does not praclear the sectors

before collecting relbits.

The sectors containing .relbits have the following setup: The

first four words of each sector are used by the interpreter to

store pointers. The remaining words in the sector contain

relocation codes in the same format as they would ~ppear on
i·

the relbit roll.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

EXAMPLE:

TXTL

Ultimate
Contents
of
Text
Segment

c
1
2
3
4
5
6

7

ou
1U
2U
3U
4U
5U
6U

Text Used by

0

OL
1L
2L
3L
4L
5L
6L

Sector Interpreter

, 8 24 30 35

f. Symbol Segment

SECTION BZ.7.02 PAGE 134

The first portion of the symbol segment contains symbols which

are moved from the binary roll. Following this are three

sections of relbits for the text, linkage, and symbol

segments, respectively.

The interpreter uses the contents of the SYML register in the

data segment to determine the setup of the symbol segment:

SYML II of words in
symbol segment
(excludina relbits)

0 18

Ignored

35

Relbits for the definitions section are concatenated with

those for the text segment or for the linkage segment,

depending on the value of PUTDEF.

Group A 0

Group B 5

Group C 10

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION !~Z. 7.02 PAGE 13:,

Re1bits for the !·.ymbol segment pertain only tc the: symbol w~1rds

stored in the first portion.

The setup of the symbol segment is shown below:

symbol words

Relbit~ for text
(possibly incl.
definitions)

!Relbits for
i 1 i nkage (pass.

incl def)
Re lb its for
s_y_mbo 1 s

0 35

The fo 11 owing i 1 1 L s t rates the format of a ty pic.:ll relbits section:

~
jf_ of relbits in area below

packed relbits

0 35

g. Definitions Section

The definitions section should begin with the fo 11 owing words:

') _0
T 2

8 r e 1 } - t e X

_to 0 0 0

Left half is offset of next group in rlefinitions section
T = offset of text relbit sect. in syi;Jbol seg. ,2=symbol seg.

Symbolic name for text relbits; identifies word above

10 0 Left half is offset of next group in definitions section
L = offset of linkage relbit section in symbol seg. , L 2

R 1" p 1 ··~ - 1 i n
k 0 0 0

2 = eymbol seg.
Symbolic na~e for link relbits; identifies word above

15 0
s 2

10 r e 1 ~ - s v m
b 0 1 0

Left half is offset of next group in definitions section
S = offset of symbol relbit sect. in symbol seg., 2 = symbol seg.

~ Symbolic name for symbol relbits; identifies word above

0 9 18 26 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION 87.7.02 PAGE 136

The second word in each group is set by the interpreter. All

other words are set by the user.

The offsets of these three groups in the definitions section are

contained in three data segment registers set by the user:

RELTX I Offset of Group A 18 0
ignored

35

~[LLK I Offset of Group B 18 0
ignored

RELSY I Offset of Group c 1s 0
ignored

35

If the definitions section is set up as described above~

C(RELTX) 0-17 = 0~ C(RELLK) 0-17 = 5~ and C(RELSY) 0-17 = 10.

This feature allows the user to place these groups anywhere

in the definitions section.

PoQ

POP: WBIN Write Binary

FORMAT: wbin(O)
or

wbin(N) where N is the number of the binary roll

FUNCTION: Case 1: The operand is 0

BI NREL

81 NREL+1

This pop determines the numbers of the binary and
re1bit rolls from two data segment registers:

~
(Even location2

I Ignored: I of binary ro 11
0 18 35

[
'

~l of re1bit ro 11 Ignored
0 18 35

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION ·3Z.7.02 PAGE 137 ~

1. If relbi·:: roll is empty, go to next pep.

Otherwise, move 6-bit characters from relbit roll
to proper sector in text or linkage segment.

2. Prune relbit roll

Case 2: The operand is N

1. If C(LNKL' 0-17 = 0, then set C(LNKL) 0-17 = 8, and
~reate dummy 8-word linkage header:

(0 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 8
7 0 8

0 18 35

2. Squeeze relbits and move them to the symbol segment

3. Set the three relbit pointers in the definitions
section.

4. Scan the binary roll and move the text, linkage, and
symbol words to the proper segments.

COMMENTS: 1. The wbin(O) pop should be executed as each group
is put on the binary roll (if the group contains
relocatable information).

2. The wbin(N) pop should be executed only after
the last group has been put on the binary roll.

3. If the operand of the WBIN pop is N, N overrides
C(BINREL) 0-17

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02

Z. EXECUTIVE AND TERMINATION POPS

1. Snap Pops

There are two snap pops:

SNAPC

SNAP

Snap core

Snap panel, stacks, and rolls

PAGE 138

The format of each of these pops is pop(Y), where Y is the

location of a file in the data segment.

All snap output appears in the error segment.

a. Core Dumps

1) File Format

Each word of the file for a SNAPC pop has the following

format:

I origin I N J
0 18 35

If origin ::/: 777777, the file word directs the interpreter

to snap N words in the data segment, starting at origin.

The file may contain any number of words of this type.

EXAMPLE:

I o1 oooo I ooo1 oo I
0. 18 35

This word causes the interpreter to snap data segment

locations 10000 -- 10077.

If origin= 777777, the file word signifies the end of the

file. Every file must include a word of this type.

MULTICS SYSTEM-PROGRAMMERS' MANUAL

A typical file i~:

010000 000100
034000 000040
777777 000000

0 18 35

2) Snap Format

SNAPC produces th~ following output:

1 . The f i r s t 1i ne is :

SNAP LOC nnnnnn

SECTION I\Z.7.02 PAGE 139 ""

where nnnnnn is the octal location of the SN~PC pop in the

procedure segment.

2. Following this message, all snaps requested in the file

appear in single-spaced format. Each line begins with the

octal address of the first word snapped in the line. This

is followed by eight octal words, in each line except the

last. For example, 013100 indicates that the line snaps

data segment locations 013100 -- 013107. The last line

snaps one to eight words, depending on the number of words·

remaining; i.e., N = 81 + J (I 1 ines of 8 words and 1 1 ine

of J words).

A star appearing to the right of one of the octal addresses

indicates that one or more lines were deleted. A deletion

occurs whenever an s-word pattern is repeated. Most

deletions occur because of a block of zeros.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ .7.t12 PAGE 140

EXAMPLE:

000600
002020*

Here, the lines starting with the following addresses were

deleted: 000610 -- 002010;

C(600) = C(610) =
c (601) = c (611) =

•
C(607) = C(617) =

= C(201 0)
= C(2011)

= C(2017)

The last line of a snap is never deleted.

b. Panel. Stack. and Roll Dumps

1) F i 1 e Format

Each word of the file for a SNAP pop has the following format:

I M I N I
0 18 35

The significance of these fields is summarized in the

following chart:

Sign-bit Sign-bit Meaning After
0 f M f 0 N i Mean na 1n Fi rst Wor d F i t W d rs or

0 0 S nap ro 1 1 M. I f N+O, it is the Same as in
· location of a message to precede first word

the snap; the message is a
type-1 string (generally the
name of the roll) in the data
seoment.

0 1 N is a negative two's complement Same as in
number. Snap INI rolls starting first word
at ro 11 M: i • e., snap ro 11 s M
through M+ IN I - 1
EXAMPLE: 100001017777741

0 18 35
says snap rolls 10,11,
12, and 13 (oc ta 1) .
_(777774--41 -, 0 Snao stacks End of file , , Snap stacks an..d panel End of file

MULTICS SYSTEM-P~:OGRAMMERS' MANUAL SECTION EZ.7.02 PAGE 141

If the sign bit c·f the first word= 1, then th~ first word is

a special word; its interpretation is different from that of tho::~

following words in the file. There are three)QSSiblc types

of setups:

special word
roll words
end word

special word
end word

roll words
end word

The sign bit of the end word= 1. A typical file is:

777777
000006
777777

0 18

2) Pane 1 Snaps

777777
000000
777777

35

Snap stacks and panel
Snap rcll 6 (no message)
End of file

A panel snap displays the following registers in the data

segment: SYMTLY, SYMCNT, SYMBUF-1, FEXIT, SYMKEY, CHAR, CHARC,

MODES, CONMOD, VARSIZ, MRKER, FCNT, DSCALE, BSCALE, DSIGN, BSIGN,

SYMBUF, CURPTR, RMD, MPAC, TLYIN, CONBUF, and ALTER. The

identification of the register appears above its contents.

3) Stack Snaps

A stack snap displays the currently used words in the work,

dummy, and exit stacks. A word in the left margin identifies

the stack: WORK, DMY, or EXIT. The format is similar to that

of a core snap. However, there is no suppression of lines;

and the addresses are relative to the beginning of each stack.

The appearance of addresses anywhere within the range

777000 -- 777770 ~ndicates that the stack was over-pruned.

In this case, the snap displays the over-pruned area.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02

EXAMPLE:

(-1 00) 777700
(- 70) 777710

PAGE 142

Indicates octal 100(i.e.~64) words
over-pruned .

777770

The stack snap is single spaced.

4) Ro 11 Snaps

A (i._.,: 1 snap may be preceded by a message (see the chart on

page 140). The format of the snap depends on the characteristics

of the roll:

1. If the roll is empty or over-pruned~ the following message

appears: n EMPTY~ where n is the roll number in decimal.

There is nothing else in the snap.

2. If the roll is not open~ the following message appears:

n NOT OPEN~ where n is the roll number in decimal. There

is nothing else in the snap.

3. Otherwise~ the snap displays the roll from the anchor

up to (but not including) the bottom.

The first two items on each line are: the roll number

(in decimal)~ and the location in octal of the first word

in the line relative to the anchor. These are followed

by eight octal words in each line except the last. If

the number of words from anchor to bottom is a multiple
"

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 143 ~

of eight, then tre 1 as t oc ta 1 11 ne contains s irnp 1 y the ro 11

number and the offset of the bottom from the anchor. Otherwise,

the last octal line also displays one to seven words. These

octal lines are double spaced.

The following subtitles appear below the octal words to which

they apply:

"'ANCHOR
lOP
""ANCHOR, TOP

One of the following subtitles appears below the empty space

corresponding to the bottom:

EXAMPLE:

'"'BOTTOM
lOP ,BOTTOM

003726000000
"'BOTTOM

If the last line of the roll dump contains no items of the

roll, then '"'BOTTOM or IOP,BOTTOM appears below the first empty

space.

Suppression is possible. However, only the lines under which

no subtitles appear may be suppressed. The first and the last

lines are always printed.

The following information appears below the indication of the

bottom:

n1 TO FLOOR VAR GRPSIZ(or n2 GRPSIZ) n3 GUESS n4 ROLPTR

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02

where: n1 = number of words from bottom to floor

n2 = number of words in fixed-size groups
(VAR indicates variable-size groups)

n3 = number of words in the initial guess

PAGE 144

n4 = C(ROLPTR+N) 0-17. If no number appears here
then C(ROLPTR+N) = O.

These are all decimal numbers.

For roll 0 only_ the snap concludes with a table showing

the start of each of the 32 threads in the roll_ the

number of links in each thread_ and the number of references

made to each thread (by SRCH or SRCHP).

Pops

POP: SNAPC Snap core

FORMAT: snapc(Y)

Y is the location of the first word of a file
(See Paragraph Z.1.a.)

FUNCTION: Produce a snap_ as directed by the file

POP: SNAP Snap panel_ stacks and rolls

FORMAT: snap(Y)

Y is the location of the first word of a file
(See Paragraph Z.1.b.)

FUNCTION: Produce a snap. as directed by the file

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 145 ~

2. Termination Pops

Pops

POP: BORT Abort procedure

FORMAT: bort ()

FUNCTION: 1. Snap data segment locations 0 to location preceding
top of ro 11 0

POP:

2. Execute a snap(Y) pop, usin9 C(ROLDMP) 0-17 as
the file location. ROLDMP 1s a register in the
data segment with the following format:

'location of file
for snap(Y)

0

j ignored

18 35

3. Terminate the procedure (See Chapter 1, Paragraph F)

FIN Finish procedure

FORMAT: fin()

FUNCTION: Terminate the procedure (See Chapter 1, Paragraph F.)

Appendix A

Summary of Commonly
Used Areas in the Data Segment

' ,.
·., ,j

I
rata \ 'l,.lustration
Area ..

___ . JSe~ By ~ ~~sed By • ' I C!eared By).,

-t ... ----·· -. .. EUPs that refer to· r4>l12
Anchor
tab lei

Bottom
Table

BSCALE

BS I Cl.J

CHAR

ANCHOR+N _ll'"!i~ia.!lza_t.i.£n r_outin~ ·11 Ro11 expansion routine
Lower half cleared
·by initialization
routine r-----~----r----------, ~11- expansion routine OPN, REL, f£MOV, RSV tocation of anchor \ 0 I d pops that put infor-· RSVM, RWND, SNAP

_for roll N . . tion on the bDttom
0 18 35 --~1~-.-----;----\.---.c------~-_..:.-----

. Initialization routine Pops that refer to roll h lf 1 d
Roll expansion routine koll expansion routine bwe: iai lei earie

· CPYP, CPYR, GOBP, OPN, CNT, CNiG, CPY~-CPYP, Y 1 n t a zat on
BOTTOvi+N

location of bottom I 0 I PBCT. P.BCTP PLG . CPYR CPYX CPYXP ···· routine
~or roll N . . ' ' ' ' ' ' -- ---:o 18 35 I PRNT(O), PRJ, PTCT, Il..OAD, D\JG, .ll\IX, ERB,

"Q==lilnan _ _s_cale

PTCTP, PTP, PTPP, REL, GOB, GOBP, INSB~. OPN,
REMOV, RSV1~J~S,V_iv1~,__-A_~ND PBCT, PBCTP, !:._~? LPLG,

PLXG, PRES, PSAV, RSV,
RSVM, SCNT, SNAP, SMEB,
SORTR, ULOAD, UNG, UNX

!
CONBA 1 FXDD, FXDS, SNAP CONR, CONAR, ANUM

~ after b I S · I et to 0 and 1 nored I i Pos. or ne~.l g J 1

0 . 8 3~ Use-r (upper) ~~,-~-------y-1 FXDD,-Fxns·, ·sNAP- I COOR, CONAR, R\JUM
CONBA(lower) -· - --- -- , ISig!"l _C)f ~bfri<.;-~?:Ie: j 0-n~ bin. scale #j

~ = +. non-zero = 1-~JD. sgale #
~r· - 1S·- 35

I K !ASCII or t K I eysspec. char eys
Cbaract~r i npu(~u~r!;
SWIP~ ·swAP .. .

--·- . --· --
0 9 18 35

I
'
J
I

'Character input subrt.
i CONBA, GONDA, RCH, RCHA,
1RCKY, RCKYA, SCH, SCHA,
! SCKY....L ~CKYA, SNAP

CHARC · ~ol. # of current I 0 1
ppyt character

Character input subrt.
SWIP, SWAP

'Character input suorf.
. ERRCC, ERA-C, SNAP

0 18 35

CO;\JBJF · rincipal part (ignoring the decimal I QON,:coo_A_,~COOAR, COOR, · FLTD, FLTS, FXDS, FXDD,j
&CONB.JF+1 oint) c~nged ~o binary. A two-word \ FIXD, FIXS SNAP I

------ 0 18 35 1 I

COOMOD I 0 - dec. 1 - oct. I !~pored I I MODD,MOOO CON,CONA,COOAR,CONBA, ,.I
0 18 35 I CONDA,CONR,SNAP I

CONR, CONAR, RNUM

!

3
~
-t -("')
Vl

(/)

-<
(/)

......
fT1
~
I

;g
0
(i)

~
J:
J:
fT1
;o
(/)

\.

~
z
i
I

(/)

fT1
n
-t -e z
1:11
N ..
-..J
•
0
N

:r

I
)

lata Illustration
Area

CRll\JUM I 0 I D I 0 I
0 18 27 .35
where n = # of last group processed

in current type-.3 string

eRU'JUM+1 I OJ I D I Q I
0 18 27 .35
where n = number of groups in current

type-.3 string

CUAPTA I P (offset rela-~ ignored I N I tiye to to~ ofNQ
0 18 'JO •. .35

- _____ .,...._ -
•• --- - ------·· ---- --- _____ =...:!.._~--=--:~---

IFSL 1 # of words in . . j- Ignored J definifions ssectn •.
0 18 3-s'·

D'v1YS I Z ~i~~ Qf CUW~)! I 0 I
1g 35

e=decimal scale

Set By
)

Gh~r~ae.-r· i}lput subrt.
SWAP, SWIP

. • -,; .. --#-- ___ ...

Char~ct~r_Jnput subrt.
-s-wAP, SWI P

U.NK?_.,_, SACH, SACHP

User

User !
!

I

Used By ~eared By

.. ·~· '
Character input ~u.bri. ~
EAOA, EARG91 _ER'FLC_,- EAff>,
PANT ..

Charac~er input subrt.
EROA, EARCC, EAA..C, EARP,
PA\IT

SNAP

WBIN

Initialization routine
I
I

\

3:
c
~ -("")
Vl

Vl
-<
Vl
-1
rT1
3:
I

""0
;;o
0

~
)>
3:
3:
fTI

~
'
~
z
~ DSCALE II # follow.ing e Set to -~d and __ .. F·- · · ~DA FLTD, FLTS, FXDD, FXDS, CONA, CONAA, ANUM

Pos or--rieo. ~# ionor• 10 1 8 35 r - -- -- r

-DS;; ~i-g~ -o; de::-4~.~~-::--T--l·--~s:r---· ---- --- FLTD, FLTS, FXDD, FXDS, ;CONA, CONAA, ANUM 5
: =+, noozero = - 1~02red 1 SNAP i -
: 0 18 _35 ! 1 0 ! . z

----.. --.. .l. ·-·-· ' -- -·--. --- .. --------~ ttl

FCNT ! k #of digits to ~- Set t_o .. o and l I User FLTD, FLTS, F>fOD, FXDS, : CONA, COOAA, ANUM N

i i~b1.8f..9eC~ ~· ·t ili(oored I SNAP I! ~
' 0 . .. - 18' .35 . •

1 I , -"----2
FEXIT i _p~e~ifie~lpc. for 0 FEX , ACH, ACHA, RCKY, ACKYA,

: ~)!otax fa~ 1 rout i oJ I 1 -RSKY, RSKY A, RSY, RSY A
0 18 .35

t

FUNBUF l FUNBUF+n where n = offset of word User 1 nterP.r_eJ~r
in fU\'JBUF

-~~~~~·~tic·~= '
f;>QSl IOnS . _ _ _ 35 :0::~---- ··-----·-· -------------t-

~)
,

~
>,
N

I,,
/

rata Illustration
ArE>.a 1 Floor+N
Floor I Lot:ation of floor I 0 I Table · [gt: rQll N

0 18 35

FROO ~Starting location I ignored .I fQr data mQyement
0 ' 18 35

FTAB I Tabl~ los;s.iioc ~ Qf ±ab~~ ~c±t:i~:ii I FTAB+i
0 18 35

GRPSIZ GRPSIZ+N

I ~ I ___ i_~D2t~g I
0 18 35
~b ~Rap· N ·contains G1i?rd group·s·_
~ - Roll N coiitaT ris var. ·si ze.-groups

...
'.

GJESS GJESS+N

I s~~~i fi~:ii :ii~i~ ~1'12~. ·r!i~:.:J:2l 1 N I ·
0

- .. , -- -·-- - .. - - ----
35

LAST rtarting lac. of
rqlls I 0 I
0 18 35

.. --------·· f-..

LNKL I # of words in j Ignored I Jicka~e for obJ. Qroc
0 18 35

--·- ------- ~-- ...

MOLES [[Identifies current,ldentifies current~
li nn,,t stream lst::d"~=:

!0 18 35 I . -- -- -- - .

,,
J

Set By Used By

See Anchor Table See Anchor Table
..

MOVF MOVT

User TSRCH

User CPYG, D\1~1 __ E.BB, I NSB,
...... ~-·-- ____ :._

PLG,SMES;SNAP~ ·sHCf-f,' ~-·
SRa-IP, UNG, ZBG - ... -·· -·-

User Initialization routine
SNAP

User Initialization routine

User WBIN

Character input subrt. SNAP
SWAP, SWIP

.,
Cle~red By

See Anchor Table

------ .. ------ .

e
~ -n
Vl

(/)

-<
(/)

~ ,
~
1
-o ;o
0

~
~ ,
~
'
~
z
~
r

(/) ,
n
~ -0 z

~
•
'-..J
•
~

t w

I
I \ tlu.stration Set By) Used By ~I eared lata

ArE;la •• ····--··-··---~------ • - -·-·---· --··------ ···~ •• ----- -~--- &_ t--~------'----4------~---------+-~------

MTEST I 1/ Q ... Boll movement stat:istics given if l
r debug version
hon ... Q .. ~ll movement statistics never

dven

FLJ,pADD,PADDF
PDVD, PDVDF,PMLT,
PMLTD, PMLTf,P~~~--
PSUBF . -
MA5,RSVM, TSRCH

I User

....... ·- --~-0 ---· ----- -~-5_ -··--

OPNERSI(# of rolls to be I 0. I
OIJened. _. .

User

0 18 35

PADD,P~DDF,PDVD,PDVDF
PMLT,PMLTD,PMLTF,PSUB,
PSUBF ,SNAP

CPY ,CPYG, CPYGB, CPYP ,qPyR_l _-- ':;
CPYX, CPYXP ,ERB, I ~SB A I ~~fl.1~BSJ
§M~B;:~NA~,~-?~C_H_,§RCHP r-

Roll expansion routine 1n
debug version. Ignored in
production version.

Initialization routine
Roll expansion routine

-0Ji-A~1~ ;:dress used to detj I I User I PRNT(Y), PRNTC(Y)
effective address 0

r PRNT and PRNTC
cr 18 35

-

. __ ~~~:--=-:: :: ~:~~~~-~~~--1-t: :: ~:::-=t=._Sam_e_a_s_Cl.J_T_AG4 _____ -+--------
Same as Cl.JTAG{..

1--

PLINE I PLINE+n where n = o,r,-;.~~-35,er 36
- - --·

Buffer! I Foyr IJrint f20sitioos I - +~-~-- -- --------------~5 ____ _

PUTLEFI

PRNT(Y), PRNTC(Y) PRNT(Y)

User
-··· -·. -··----- -- --·····•·· -. WB-1 N-· ·-· -· ---~-------. ----·--t-----·--

I I . 1 noo-D - Def. sec!
\ follows linkage
i in linkage segment
l o. is 3s-
l

I
!J))

3: c
' ~ -n
(/)

(./'1

-<
(/)

-1 ,.,
3:
I

"'tJ
;o
0
(i)
;o
l>
3:
3: ,.,
;o
(./'1

'
~
z s ,....

(/) ,.,
n
-~ -0 z
tD
N
•
•
2

1

. ')) .

Iata !Illustration
') ') ~

~ i.-:-m_a_i_p-de_r_f_r-om_PD_VD_Q,p ___ e_r_a_t_i 0""'!';-· ----,

Set By

PDVD'

Used By

SNAP

Cleared By

0 . . 35
::3:

RCLD\,PI Location of Pile I Ignored I 1 LJser · BOAT ~
[or spap{Y) . . j

----~--~~0 _______________ 1~8 ____________ ~35~~----------------~--------------------,________________ ~
• • • ~ . • y • .•• • . V'l
.ll...OAD, -J.;li\IG,IDJX,LINKN CCAT,CNTG,CPYG,!!-08J:r., .Il...OAD,IDJG, IDJX, <
LTN'KP~SRCH,SRCHK,SRCHK , .PNG,p- -~~~~ 1 LINKP,PLXM .. ULOAD,UNG,UNX ~
SRCHP,ULOAD,UNG,UNX,ZB, PR~T(uJ,SRgH 2.SRCHi<C,SRCHP, (Also by user ,.,

i SWAP ,SWiP ,SNAP ,ULOAD,UNG, prior to one of f
! I UNX above pops.) ""'D ! ·- --·· --- --··· -· -- ··-· - ·-·- - ___ .._ _______ .. --- ·- ;o

RQPTRI r Offset rel. to ,, d I Poll # I
f N gnore N op o

0 18 30 35

1 Roll expansion routinA; Termination routine Initialization o
RSIZEI I Maximum count of rolll Ignored I 1 (only in debug version); (only in debug version) 1!'outine (only in ~ ~

0 18 35 i debug version) i
RSPTR I ~Offset in current, Ignored I NR I !User I Spill routine RWND ~

read-Sf)lll roll '1 RWND I ~-

SIGN

SYMBUF

0 18 30 35 i
where -~R-~- Re~cr ~pi 1 r roq I I ~

I Sign of mmber. 0 = + I luser J FLTD,FLTS,FXDD,FXDS CONR,CCl\IAR,R-JUM ~
pop-zero - - I ! r

o 35 1 l
SYMB.IF-tn where n = 0,1, ••• 128 or 129 j CNTS,NXST ,NXSTC,NXSTCS ~CCAf,9NTS,~WBI{;PAK~.PAKA, I PAKR,PAKAR,RSYM

: . ___ 1 .' PAK,PAKA,_PAK~R,PAKR,PLXGJ PAi<AR .. I?~£lXP sR~Y, [~ 4 character posd!ops J~-- __ PL?,(P,_ ~~X,_ R~y~,RSYM,~SY ,r RSYA,R$.YM..,S_NAP, ··_ .. · .• 1 .

V'l ,.,
("')
-1 -0 z I . . SSYA ;--·· SRCH,SRCHP ,SSY ,SSYA, . -J. ~

. . . · ! SWAP SW I P TSHCH 1 __ ·- __ _______ co
SYMCNT { # of words ln I ~ta used by I CN.TS,PAKAR,PAKBJ.P.LX~__, t>h)$G_,PL_ XP,RSY ,RSYA,·-----r--PAKAR,PAKR,RSYM !"'

, Sj'mbol 1pierpreier . PLXP,RSY,RSYA,RSY~, SNAP SSY SSYA ""
o . 18 35 SSY, SSYA ' ' . S

\ RSYM ,PAKAR,P.AKR
I

. F T ~~-1 String I
SYK:NT+111 Pl~X w¥ -2 Strino

For voe
~ of char. ip- Striogl ignored !
0 18 35

tPLXG
Character Input Subrt.

SNAP
Character input subrt.

I
l
I
I I i t
I I V1

;

.
I

)
Data Illustration
Area

STAR1F 0 - Special fund ion buffer not ·used·
non-0 - Special function buffer

used
0 35

I l4.n·-1 lli.1(Qc:tJ I ST~TY FUNBUF
0 18 30 35
FUNBUF -Location of first word in

functi~~ buffer _
n.- Nu~b~r ~t words in func~~on .

buffer -

ESCAPE 0 - Ignore NL character and its ke~s
non-0 - Pack NL character into FUN UF

and ~~amiD~ k~~s
0 35

' TOGOOD 1-'Funct. Buff. full
2- Roll 0 thr-ead A

Ignore
- . tab 1 ~- to be v.ir-i t ten

n :18 35.
BINREL Ill. Qf binar~ roll I lgoor~g I

0 18 35
~-., .

B I NREL +1 Ill. Qf r~l b i:t. rQll I lgnQr~d I
0 18 35

RELTX 1pffset of link word
l1for rel text · in lgnoed
jldefinttlons section

··----- ·- ..
I 0 18 35 't ------ --- ---------- _, .. --- ------ -- ----------- -----·- --- . -------

RELLK irffset of I ink word
\ ! for rel. link Ignored

I! in def. section ;

·o 18 35 --- ________ J
I

RELSY jfffset of link wQrd
. ,for rel_symbol ir Ignored I: :dtefj nib ons !'lect ion
'0 18 jj

·--·

.)

)
Set By Used By

User Character input subroutine

.User Character input subroutine

------·

User Character input subroutine

User Executed tot-1J pop
(Any other value means
that to(-1) is illegal.)

.. -- - --~ ---··-- ----~- -----··
User WBIN

...

User WBIN

User WBIN

. ' ··---- ---- ---· - - .. - ·----

User WBIN

1 User WBIN
i

J

)

Cleared By

.)

3:
c
'=i -~-
(Jl

~
(Jl

-1
I'T1
3:
I

;g
0
(j)

i
I'T1
:;:o

"" ,
~
z c
l>
r

(Jl

1"11
(")

-1 -0 z
ttl
N
•
-.....!
•
2

·>
I
0'

I
1'lstration ' ' Data .·. Set Bv I Used Bv Cleared _ l •

A(~g,
SYMKEY I Ignored . \ Vatue used in ~ OA<EY 1'(,. RSKYA,SNAP, User

&YJ!lhiU compar:LSO:: SSKY, SSKYA
0 18 35

SYML I Offset in symbol I Ignored I
Us~r WBIN

segment
0 18 35

~-·. ' . - -.- -· --
C(THREAi:>t:nt·where n··= 1 ,2·,-.- ;;3i;or32~· - 'SRCHP

..
THREAD SRCH,SRCHK,SRCHKC, Initialization

p - empty thread
SRCHP .

non-0 - abs. loc. of Ignored
1st link worn on thread
0 18 35

~-645 Tally ~ord - Points t? n~xt J l Gl!'!ac~Or input subrt. TLYIN SNAP
va1l. char. 1n the current 1nput str SWAP, SWIP

0 35

TOCNT ~ of illegal exect. of TO pop that ma1 User TO
~~ur b~fgc~ an abQti TO

! .0 3_5 I .. I

TOP . . ·-· .. .JOP+N . - Any pop that put~ irfo. T All .. pops thai refer to i Lower. Fiaif cleared
TABLE 'Locafi oif- of top

'
on the bott~m of_ a rol~ rolls . ! by initialization

for roll N 0 ..
i routine ·

0 18 35
CPYR,OPN,~,~MOV ,RSV i
RSVM,RWND I

- j .. ·- ·- -

PKFRSW I lod~ I l2oor~d I User Character Input subroutin~
0 18 35
~ M~aoin2 ·

0 Get pack-from option from NXST
file (as usual)

1 No kack-from this time; set
C(P FRSW) = 0 for next time

2 Pack-from this time; set
C(PKFRSW) = 0 for next time

3 No pack from
4 Pack-from . -·-

I
I

I
I
l

3:
c
~ -("")
(/)

(/)

-<
(/)

-I
1""1
3:
I
;g
0
(i)

~
3:
3:
1""1
:::0
(/)

\

~
z
~
r

Ul
f'Tl
("")

-1 -b z

-~
•
-..,J

• s

t
-..J

-,
Data tllustration Set By
Area

1
TRANS+n where n=l,2, ... ,200, or 201 octa~.

TRANS I ·r Keys !ASCII .rep. I Keys ~- user

I · of char. I
0 9 . 18 35

--- ---+--=-1< b i t s -k .
TYMASKI I 1[Fudge f~~f~r l

0 k 35

k-bit field - flag set here, to indicate
timing information follows

fudge factor - equals time spent 1n

execut. timing pops; this time may
be omitted from time calculation --··-- ··-····-··-· ...,.....__ -- .

'

JYMEB 1 Lo of r TYMF 0 . : I ~ I TYMER+~ C~~. Ti~~ !in 64t sofa msec)

User

TYMF

Used By

-.,
)

Character input subrt.

TYMT

TYMT

~ 0 18 35

~TLHTP of words in I ignored I !user WBIN I
text for obj. proc.

0 18 35

l
Cleared by'

------ -~-----------~-------------~~------~+-------------------~---------------------+-----------------
USCNT USCNT+o ~h~r~ o = 0.1 {F-4).or (F-5) ! r

! 1¥'01 Urnes ~0~ n was e~:~:ted L Execution of each pop ! Termination routine . ~Initialization
i 0 35 (Debug version only) i (Debug version only) routine (Debug

____ ·--·~ fl!ote: F = cunent V?)ue --~ fals~_!ag t v;ersion onlil
I

VARSIZ! ! #of words in var.l 0 I !User
! .size eroyf) . . I CPYGB
! 0 18 35 i ; ---· -----·---- .,_., ___________________ , '"'·--------·--+

WRKS I z! I Size of work I 0 I jUser

i

1 ERB, I NSB,PLG,SM.EB,tr ~G
SNf.P, .. ZBG

Initialization routine

User

! o 18 35 I
~-. - " ... -· - ··-·-·--r-·-----------------.----------------------+-------------

WSPTR \ Pffset in current lgnoredf NW I II'User
1 wri te-soi 11 rnll I
i wffere Nw=write-spil P~roll ;jj I l I

~I . I I
XITSIZI [Size of exit I t igoored l User Initialization routine I'

! o . 18 35 I
------~1 I

Spill routine

: [··- -- T

I I I
I .., : I
I I I

) .)
•

3: c
~ -n
(/1

(/1

-<
(/1

-1
('T'l

3:
I .,

;;o
0
C')

~
3:
3:
('T'l
;;;o
(/1

'
~
z c
l>
r

(/1
('T'l

n

"""' -0 z

~
•
'-I

" 0
1'-.)

:r
i;Q

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BZ. 7. 02

Appendix B

SPECIAL FEATURES

Function Buffe.r

PAGE B-1

Characters from the current input stream may be packed in a

special function buffer, located in the data segment. This

feature is currently used only by FL/I.

The interpreter examines STAR1F, a register in the data

segment, to determine whether to pack characters into the

function buffer:

STAR1F O(FORTRAN console input or any string
input stream) - buffer not used

non-0 (FL/I console input stream only)
buffer used

0 35

If C(STAR1F) ~ o, then STRMTY, another data-segment register,

is interpreted as a GE-645 tally word. The pops procedure is

responsible for setting STRMTY to its initial value; FL/I

initializes this register as follows:

s TRMTYI ~..: ~F~ON~B~D~F __ -+L 4;:.:8 n~--..:..1 -"'-[,.4~1.(oc=-=t~)~l
0 1 30 35

FUNBUF - Location of first word in function buffer.
n - Number of words in function buffer

The interpreter packs all non-skipped characters into the

function buffer. On end-of-line, the interpreter continues

with the first character from the next line; if there are

no more lines, it goes to the next pop. Its treatment of

the~ character depends on the contents of the ESCAPE register:

MULTICS SYSTEM-PROGRAMMERS' ~NUAL SECTION BZ.7.02 PAGE B-2

ESCAPE 0 - Ignore character and its keys
non-0 - PacR ~ character into FUNBU
and examine ke s

If C(STAR1F) = 0, the interpreter ignores C(ESCAPE) •.

When the function buffer is full, the interpreter set$ the data

segment register TOGOOO, as follows:

10 ooooo1 ~ ~oooo~~

The interpreter then executes the pop at location 8 (decimal)

in the procedure segment. This pop may be a jump to a routine

that copies the contents of the function buffer onto a roll

and reinitializes the buffer. The last executed pop in the

routine should be to(-1):

b'''''' ~~ooo2gt

Seecial Version of TO Poe to(-1)

. POP: TO

FORMO.T: to(-1)

FUNCTION: If C(TOGOOD) 0-17 = 1, return to point in character

input routine at which function buffer overflow

occurred, and proceed as if no overflow.

If C(TOGOOO) 0-17 = 2, then ca 11 the symout entry in

the FL/1 command to write out roll 0 and the thread

table. This feature allows the user to predefine

symbols. FL/1 uses this feature to save the symbol

table for initialization on future assemblies.

(See MSPM BX.7.01, The fl/1 Command.)

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.7.02 PAGE 8-3

Otherwise~ perform function of ordinary TO pop.

COMMENT: to(-1) clears C(TOGOOD) after testing it.

CCAT Pop -- Abnormal Case

If the total number of characters in a concatenated string

would be> 511~ then the interpreter sets C(TOGOOD) 0-17 = 3~ and

executes the pop at location 10(decimal) in the procedure

segment. This pop may be a Jump to a routine that starts

a new string instead. This routine should not contain a

to(-1) pop.

Pack-From Switch

The pack-from switch:, PKFRSW~ regulates the use of the

pack-from option (see NXST). This register~ located in the

data segment~ has the following format:

PKFRSW l~iun~d~e~x~~~g~nwo~r~e~d~l
0 18 35

Value of Index

0

1

2

3

4

Meaning

Get pack-from option from NXST

file (as usual)

No pack-from this time; set

C(PKFRSW) = 0 for next time

Pack-from this time; set C(PKFRSW) =
0 for next time

No pack-from

Pack-from

