
MULTICS SYSTEM-PROGRAMMERS~ MANUAL SECTION BZ .8. 01 PAGE 1

Identification

Lexical Analysis
J.D. Mills

Purpose

Pub 1 i shed: 10/25/68
(Supersedes: BZo8.04, 08/29/68)

Lexical analysis is the vehicle by which the PL/1 compiler
reads its input, a PL/1 source program, from its environment
which is Multics. The primary task of lexical analysis
is to translate its input from a character string and
produce as output a string of operators, identifiers
constants, and delimiters (these are called "tokens").
This string of tokens becomes the input to the parse.
Taken together then, lexical analysis and the parse form
the syntactic analysis phase, which is the first phase,
of the PL/1 compiler.

Lexical analysis also performs the secondary task of preparing
the source program listing (if the list option is on).

Definition Q£ Tokens

Defined below are the tokens which the lexical analyzer
recognizes.

Operators

The syntax of PL/1 has no unit called operator but the notion
exists and is useful. Thus, we identify the set of operators
as:

{+, -,
De 1 imi ters

*-·· " ,

Again, the term delimiter is not in the PL/1 syntax but
sort of falls out. Note that thou~h the space does in
fact delimit, it is not useful to 1dentify it as a delimiter.
The set of delimiters is:

{:, (,), ->, ., ;, !.}
The comma is a delimiter and is underlined here to distinguish
it from the set-notational commao

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.01 PAGE 2

Identifiers

Identifiers are recognized according to the PL/1 syntax rules.

Constants

The various forms of constants listed below are defined
in the syntax. Note that for strings the lexical analyzer
applies the replication factor, if present, to the string
before passing it to the parse as a token.

bit string

character string

f 1 oat i ng binary

floating decimal

binary integer

decimal integer

fixed binary

fixed decimal

Implementation

Input

isub

imaginary

imaginary

imaginary

imaginary

imaginary

imaginary

floating binary

floating decimal

binary integer

decimal integer

fixed binary

fixed decimal

Lexical analysis addresses the input se~ment as a synchronous,
packed array of characters. The array 1s based on the
pointer to the source segment.

Interface with the Parse

The lexical analyzer must be initialized before its first
use. This is accomplished by the call:

call lex$initiate(seg_ptr, length);

where the arguments are defined:

del seg_ptr ptr,

length fixed bin;

/*pointer to the source
segment;'(I

/*number of characters
in the source segment;'•'/

~-

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.01 PAGE 3

The parse calls lexical analysis once for each source
statement to be translated. The calling sequence is:

ca 11 lex;

The results of lexical analysis are contained in the
external static variables defined by'this declaration:

del (token_list(1000)ptr_ /*pointers to token
nodes.,.c/

statement_id fixed bin(31))_ /*a coded number repre
senting the line
number and statement

external static; number of the
statement being
pa rsedicf

Each pointer in the token list points to a node representing
the source token recognized. The declaration for the
token node is:

del 1 token_table based(p)#

2 node_type fixed bin(15)#

2 size fixed bin(15)#

2 context ptr_

2 declaration ptr _

2 next pt r ~

2 type fixed bin(15) 1

2 string char(n);

Method

/*identifies the node
as a token7c I

/*number of characters#,
slze=n~·

/*used during del
processing*/

/*used during del
processing,': I

/*ptr to next token
in token table*/

/*type of token -
identifier_ bit string_
etc.-.":/

/*source language
representation*/

The lexical analyzer reads input characters until a semi-colon
is encountered_ whereupon it returns to its caller with
the array of token pointers. PL/1 comments are ignored
except for writing onto the source listing.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8.01 PAGE 4

The reco~nition of tokens is accomplished by an approximation
to a fin1te-state machine. The token grammar is not quite
finite state so various programming devices are added
to the FSM. Since the lexical analyzer must produce output
as well as recognize tokens various actions are attached
to the state transitions in the FSM. These actions result
in the concatenation of the individual characters from
the input until the complete token is built up. It is
not desirable to convert numerical constants at this point
because the context of the constant may influence its
conversion.

The token table is hash-coded. A hash function of the
token gives an index into an array of pointers. Each
pointer in the array is null, or points to a list of tokens.
By ordering the tokens on lists according to size and
choosing the hash function so that no two single-character
tokens appear on the same list the search for those tokens
is ultra-rapid.

Subsidiary Entries

Other entries are provided, not for lexical analysis,
but for the use of the token table maintaining apparatus.

Token Insertion

Tokens are inserted into the hash-coded token table with
the procedure ''insert_token" whose calling sequence is:

call insert_token(p, string, type);

The arguments are defined by the declaration:

de 1 p pt r,

string char(n) varying,

type fixed bin(15);

Multiple Declaration Scanning

/*insert token returns
with p pointing at the
token node''~- I

/*the token to be
inse rtedo;.,. I

/*the type of the token
being inserted*/

At a later stage of compilation when all declarations
have been made the token nodes for all declared identifiers
contain pointers to lists of symbol table nodes representing
the declarations. There are circumstances under which

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BZ.8o01 PAGE 5

an identifier may legally have more than one declaration~
e.g. 1 when the declarations are in different blocks.
The entry 11 insert_token$scan_token_table 11 is provided
to search the entire token table for cases when multiple
declarations have been made for a declaration outside
the set of permissible situations.

The ca 11 is:

ca 11 insert token$token table; - -
The only results are the issuing of diagnostics for illegal
cases.

