
Honeywell

MODEL 645 PROCESSOR
REFERENCE MANUAL

RESTRICTED DISTRIBUTION

SUBJECT:

Programming Information for the Model 645 Processor, Including Machine Instructions,
Data Representation, Registers, and Addressing.

SPECIAL INSTRUCTIONS:

This manual supersedes document G0098, dated August, 1970, and its revisions 1
through 4, dated September, 1970, October, 1970, February, 1971, and March, 1971.

DATE:

May, 1972

ORDER NUMBER:

AH82, Rev. 0

PREFACE

This publication describes the Model 645 processor, a modified

version of the 635 processor. It is assumed that the reader is

familiar with the overall modular organization of the 635 and 645

systems and with the philosophy of the asynchronous operation of

these modules.

Emphasis has been placed on those Model 645 features which aug­

ment the function of the 635. However, the entire repertoire of

Model 645 instructions is explained. In addition, this manual pre­

sents a thorough discussion of virtual memory addressing concepts

including segmentation and paging.

The manual is intended primarily for use by system programmers

responsible for writing software to interface with the special virtual

m.emory hardware and with the fault and interrupt portions of the

hardware. It should also prove valuable to programmers who must

deal with machine instructions - particularly language processor

implemento r s . I

Although this manual makes occasional references to Multics

(Multiplexed Information and Computing Service) and tends to em­

phasize the use of the 645 's features in conjunction with the Multics

software, the information is generally applicable to any Model 645.

©1970, General Electric Company, U.S.A.
©1970, 1971, 1972, Honeywell Inform.ation System.s Inc. File No.: 2Y03

1

;

-.

TABLE OF CONTENTS

CHAPTER 1 I NTRODUCTION TO PROCESSOR
FEATURES OF THE 645 PROCESSm

Segmentation and Paging
Address Modification and Address Appending
Faults and Interrupts _
Brief Summary of 645 Processor t-eatures

PROCESSOR MODES OF OPERATION
Slave Mode
Master Mode
Absolute Mode
Append Mode

PROCESSOR UNIT FUNCTIONS
MAJOR UNITS OF THE PROCESSOR

CHAPTER 2 645 MACHlNE lN~THUCTlU~~

FORMAT OF INSTRUCTION DESCRIPTIONS
DATA MOVEMENT LOAD INSTRUCTIONS
BASE REGISTER INSTRUCTIONS
DATA MOVEMENT SHIFT INSTRUCTIONS
FIXED-POINT INSTRUCTIONS
FLOATING POINT INSTRUCTIONS
BOOLEAN OPERATION INSTRUCTIONS
COMPARISON INSTRUCTIONS
TRANSFER OF CONTROL INSTRUCTIONS
SPECIAL INSTRUCTIONS

CHAPTER 3 DATA REPRESENTATION
INFORMATION REPRESENTATION
POSITION NUMBERING
NUMBER SYSTEM
PROCESSOR MACHINE WORD
REPRESENTATION OF DATA

Alphanumeric Data
Numeric Data
Binary Fixed Point Numbers
Binary Floating Point.Numbers

COMPARISON RELATIONS
Alignment and Representation
Normalized Floating Point Numbers
Number Ranges

iii

1-1

1-1
1-2
1-3
1-3

1-3

1-4
1-4
1-4
1-5
1-6
1-7

2-1

2-5

2-20

2-25

2-30

2-50

2-72
2-81

2-92 .

2-103

3-1
3-1

3-1

3-2

3-3
3-3
3-4
3-5
3-7
3-8

3-9
3-9

3-10

TABLE OF CONTENTS, Continued

CHAPTER 4 PROGRAM ACCESSIBLE REGISTERS
ACCUMULATOR (A), QUOTIENT (Q),

ACCUMULATOR-QUOTIENT (AQ) REGISTERS
EXPONENT (E) AND EXPONENT ACCUMULATOR

QUOTIENT (EAQ) REGISTERS
ADDRESS BASE REGISTERS (AB,9)
DESCRIPTOR BASE REGISTER (DBR)
PROCEDJRE BASE REGISTER (PaR)
INSTRUCTION COUNTER (IC OR ICTC)
INDEX REGISTERS (X)
TIMER REGISTER (TR)
INDICATOR REGISTER (IR)
ASSOCIATIVE MEMORY REGISTERS (AR)

CHAPTER 5 ADDRESSING--SEGMENTATION AND PAGING
INTRODUCTION
SEGMENTATION

PAGING
MODE OF ADDRESSING (ABSOLUTE/APPEND)
CHANGING ADDRESS MODES

CHAPTER 6 EFFECTIVE ADDRESS FORMATION
I NTRODU CT I ON
EFFECTIVE ADDRESS FORMATION INVOLVING SEGMENT
OFFSET ONLY

Modifier Field of an Instruction Word
General Types of Modifications
Register, Register Then Indirect, and Indirect
Then Register

Indirect Word
Register Modification
Register Then Indirect Modification
Indirect Then Register Modification
Indirect Then Tally Modification
Tally Word
Indirect Only
Increment Address, Decrement Tally
Decrement Address, Increment Tally
Add Delta to Address
Subtract Delta from Address
Character Handl ing in the SC, SCR, and C I Variations
Decrement Address, Inc,-cl;,,~nt Tally, and Continue

1 V

4-1

4-2

4-3

4-4

4-5
4-6

4-6

4-7

4-7

4-8

4-11

5-1

5-1

5-3
5-6

5-6

6-1

6-2
6-2
6-3

6-4
6-5
6-5
6-5
6-6
6-8
6-9

6-10
6-10
6-12
6-13
6-1.:.
6-1,~
6-1()

1,

;

TABLE OF CONTENTS, Continued

CHAPTER 6 (Continued)

Increment Address, Decrement Tally, and Continue (IDC)
Sequence C~aracter (SC)
Sequence Character Reversed (SCR)
Character From Indirect (CI)
Other Types of IT Modification
Faul t Tag Modi fication

EFFECTIVE ADDRESS FORMATION INVOLVING SEGMENT NUMBER
AND SEGMENT OFFSET

Indirect to Segment (ITS)
I ndi rect to &se (I TB)
Use of Bit 29 to Specify an Address Base Register

CHAPTER 7 FAULTS AND INTERRUPTS
FAULTS

Priority 1 Faults

Startup
Execute

Priority 2 Faults
Trouble
Operation Not Completed

Pr ior i ty 3 Faul ts
Divide Check
Overflow

Priority 4 Faults
Par i ty
Illegal Memory Command
Lockup

Priority 5 Faults

Illegal Descriptor
Illegal Procedure
635 Compatibility
635/645 Compatibility
Master Mode Entry 1-4
Dera i 1
Fault Tag 1-3
Directed Faults 0-7

Priority 6 Faults

Connect
Timer Runout
Shutdown

Fault Vector Address

v

6-17
6-19
6-20
6-21
6-23
6-23

6-24
6-24
6-26

7-1

7-3

7-3
7-3

7-3

7-3
7-3

7-4

7-4
7-5

7-5

7-5
7-.6
7-6

7-7

7-7
7-7
7-8
7-8
7-8
7-8
7-8
7-8

7-9

7-9
7-10
7-10
7-10

TABLE OF CONTENTS, Continued

CHAPTER 7 (Continued)
Sequence of Fault Procedures
Segment Address and Segment Number Generation

EXTERNAL (PROGRAM) INTERRUPTS

Execute Interru?t Register
Interrupt Mask Register
I nterrupt Vector
Interrupt Priority
Interrupt Vector Address
Use of Interrupt Inhibit

APPENDIX A INSTRUCTIONS LISTED BY OCTAL CODE

APPENDIX B INSTRUCTIONS TIMING

APPENDIX C ASCI I CHARACTER SET

APPENDIX D SCU/RCU SUMMARY

APPENDIX E FORMAT OF WORDS USED IN ADDRESS APPENDING

APPENDIX F SEGMENT AND PAGE ACCESS RIGHTS

INDEX (Excluding Instructions)

INDEX TO INSTRUCTIONS

VI

7-10
7-12

7-13
7-13
7-14 i

7-15
7-15
7-16

A-1

B-1

0-1

D-1

E-1

F-1

Ind-1

Ind-6

CHAPTER 1 INTRODUCTION TO PROCESSOR

FEATURES OF THE 645 PROCESSOR

The 645 Processor was designed for use with the Muliiplexed Information and

~omputing §ervice (Multics) and contains, in addition to the standard 635

processor features, a number of special features that support Multics. The ad­

dressing mechanisms, in particular, are designed to permit the software to com­

pute relative and absolute addresses, locate data and programs on different

devices and retrieve such da~a and programs as necessary. Chapters 5, 6, and

7 describe the special features of the 645 including segmentation and paging;

address modification and address appending; and faults and interrupts. These

features are closely related and each is described briefly in the paragraphs

that follow.

Seementation and Paeine

A segment is merely a collection of data or instructions that IS assigned a

symbol i"c name by the programmer and addressed symbol ically by him. Paging is

at the discretion of the softwa.re; the user may not be aware of the existence

~ of pages. When a segment is paged, all of the pages are the same slze. Segments

and their pages are addressed by a segment number and a segment address.

The user may view each of his segments as if it were stored in an independent

memory unit. Each segment has its own orlgln which can be addressed as loca­

tion zero. The size of each segment may vary without affecting the addressing

of the other segments. Each segment can be addressed like a conventional core

image starting at location zero. Maximum segment size is 218 words; however,

the current Multics implementahon restricts the size to 216 words.

When viewed from the processor, memory consists of blocks of 64 or 1024 words.

Each block begins at an absolui:e address which can be either 0 modulo 64 or 0

modulo 1024. A segment can similarly contain pages which consist of 64 or 1024

words. Any page of a segment can be placed In any available memory block of

similar Slze. These pages may be addressed as if they were physically contiguous

even though they are in widely scattered absolute locations. Only currently

referenced pages need to be in memory at one time. I f a segment is "not paged,

the complete segment must be brought into memory and located in contiguous ad­

dress locations. In the current Multics implementation all user segments are

1-1

paged in 1024 word pages. Each of these IS developed by the appending hardware

as described in Chapter 5.

Address Modification and Address A~~endine

Prior to each memory access for an operand or indirect word, two major phases of

address preparation take place:

1. Address modification, if specified by the instruction or indirect word.

2. Address appending, which is a hardware process to form an address to

access memory.

Although the above two types of modification are combined In most operations,

they are described separately in Chapters 5 and 6.

The address modification procedure can go on indefinitely, with one type of mod­

ification leading to repetitions of the same type or to other types of modifi­

cation prior to a memory access for an operand. However, to simplify the

descriptions In this manual, each type of address modification is described as

if it were the first and usually the only modification prior·to a memory access.

faults and Interru~ts

The processor detects illegal operations by the software, faulty communication

with memory, programmed faults, certain external events, and arithmetic faults.

Many of the processor fault conditions are deliberately or inadvertently caused

by the software and do not necessarily involve error conditions.

Similarly, the processor communicates with the other system modules by setting

and answering interrupts. When a fault or interrupt IS recognized, a trap

results. This causes the forced execution of a pair of instructions in the

memory location known as the fault or interrupt vector. The first of the

forced instructions may cause safe storage of the processor status. The

second instruction in a fault vector should be a transfer, else the faulting

program will be resumed without the fault having been processed. Faults and

interrupts are described in greater detail in Chapter 7.

1-2

;

Brief SlJmmary of 645 Processor FeatIJres

The 645 has the following features:

1. Storage protection to place access restrictions on specified segments
and pages.

2. Capability to interrupt a process in execution at any point, save pro­
cessor status, and restore the status at a later time without loss of
continuity of the process.

3. Capability to fetch instruction pairs. Capability to buffer four in­
structions including the pair currently in execution.

4. Overlapping instruction execution, address preparation, and instruc­
tion fetch. While an instruction is being executed, address prepara­
tion for the next operand (or even the operand following it) or the
next instruction pair i~ taking place. The operations unit can be
executing instruction N; the operand for instruction N+1 could be
buffered in the operations unit (M register); and the control unit
could be preparing the address to fetch instructions N+4 and N+5 or
it could be preparing the address for the operand for instruction
N+3.

5. Capability to detect memory instructions that alter the contents of a
buffered instruction. Ability to delay preprocessing of an address
using register modification if the instruction currently in execution
changes the register to be used in that modification.

6. Interlacing capability to direct memory accesses to the proper system
controller module.

7. Intermediate storage of base address and control information in high
speed registers addressable by partial contents (associative memory).

8. Intermediate storage of base address and control information in base
address registers which are loaded by the executing program.

9. Absolute address computation at execution time.

PROCESSOR MODES OF OPERATION

There are two modes of memory addressing (Absolute mode and Append mode) and" two

modes of instruction execution (Master mode and Slave mode). In the Absolute

address mode, memory is addressed directly by the address field of instructions,

and all addresses are relative to the "zeroth" location of memory. The address

spectrum is limited to 218 locations, and Master execution mode is implied. In

the A[i)pend mode, the address is calCUlated using the information contained in "ap­

pending words ll • I nstructions may be executed in ei ther Master or Slave mode, and

the address spectrum is 224 memory locations. All addresses are relative to the

first location of the segment referred to.

1-3

Slave Mode

The Slave mode IS the normal mode of operation, and most instructions can be

executed In this mode. Certain instructions, classed as privileged, cannot be

executed In Slave mode. These are identified in the individual instruction

descriptions. An attempt to execute privileged instructions while in the Slave

mode results in an illegal procedure fault. In the Slave mode, an interrupt

cannot be inhibited, and various restrictions are indicated in segment descrip­

tor words and page table words which are explained in Chapter 5. Address forma­

tion is through the appending process. The processor executes in Slave mode

when the class bits of the segment descriptor word specifies either the Slave

procedure or the Execute-only procedure.

Master Mode

In Master mode, all instructions can be executed. All classes of information

may be accessed regardless of restrictions, with the exception that a data class

may not be accessed for an instruction fetch. The timer runout fault is ignored

in Master mode. An interrupt can be inhibited. Address formation IS through

the appending process. The processor executes in Master mode when the class

bits of the segment descriptor word specify master procedure. Please refer to

Chapter 5 for more detailed information.

Absolute Mode

All instructions can be executed In the Absolute mode and unrestricted access is

permitted to privileged hardware features. Interrupts may be inhibited in this

mode.

Instruction fetches are made with the absolute addresses relative to location

zero. During instruction fetches, only the instruction counter IS used; the

procedure base register is ignored. Since instruction fetching IS by the 18-bit

absolute address, only the lower 256K of memory can be accessed while in Absolute

mode.

The processor enters Absolute mode immediately after a fault or interrupt or

after an instruction which restores the indicators is executed. The processor

remaIns In Absolute mode until it executes a transfer instruction whose operand

address IS obtained via the appending mechanism.

1-4

-
\

A~~end Mode

This is the normal memory addressing mode. Operands and indirect words may be

accessed via the appending mechanism by placing a one In bit position 29 of the

instruction word. In this mode the effective address IS either added to a base

address, or its offset IS linked to the base address.

The modes of operation are summarized in the table that follows ..

FUNCTIONS

Executes privileged instructions.

Interrupt inhibited by bit 28 of
an instruction.

Address for instruction fetch.

Address for operand fetch.

Restriction of access to other
segments and pages.

SLAVE MASTER

No Yes

No Yes

Appending Appending

Appending Appending

Some Some
(less re­
str ict i ve
than Slave)

Table of Modes of O~eration

ABSOLUTE

Yes

Yes

Absolute

Controlled by
bit 29 of In­
struction.

NA

Detailed information on modes can be found In the discussion of descriptor seg­

ment words and page table words in Chapter 5·

1-5

PROCESSOR UNIT FUNCTIONS

Major functions of each principal logic element are listed below and described

in subsequent chapters. A block diagram on the following page shows the relation­

ship among the processor units.

Appending Unit

Controls data input/output to memory.

Performs memory selection and interlace.

Does address appending.

Controls fault recognition.

Does power on/off sequencing.

Associative Memory Unit

Consists of sixteen 60-bit registers. The registers are used to hold

pointers to most recently used segments or pages (descriptor segment

words or page table words). This unit relieves the need for possible

multiple memory accesses before obtaining an absolute memory address

of a word.

Control Unit

Performs all processor control functions.

Performs address modification.

Controls mode of operation (Master, Slave, Absolute).

Performs interrupt recognition.

Does operation decoding.

Does fractional and integer divisions and multiplications.

Performs automatic alignment of floating-point numbers for addition

and subtraction.

Performs inverted divisions on floating-point numbers.

Performs automatic normalization of floating-point resultants.

Does shifts.

Performs indicator register loading and storing.

Performs timer register loading and decrementing.

1-6

MAJOR UNITS OF THE PROCESSOR

The 645 processor consists of two standard 600 line cabinets which contain

power supplies, blowers for cooling, and the following four principal logic

elements:

Appending Unit
Associative Memory Unit
Control Unit
Operations Unit

...-_----,
Associative
Memory Uni t I

-' T Associative
ri- Memory
I''----r----.J
1- - l-"--r - ~.-­

" Append i n€1I1 Un_i_t_-'--_-.
I I

I
I Base

Unit
Register
Unit

Operations Unit

Arithmetic
Unit Mem~ Interface

ConL,- Uni t

LI~~=_==.=, =====~4U-_---" _,

I I

II~
~I~

I I ~
I I '---------'

I L - -- -- - ._h _.-.

Control I·--.. --------~----------------~ Unit .,

_I

I L ____ . .l Solid lines are lines of communIcation.

645 PROCESSOR

1-7

CHAPTER 2 645 MACHINE INSTRUCTIONS

For the description of the machine instructions that follow it is assumed that
the reader is familiar with the general structure of the processor, the repre­
sentation of information, the data formats, and the method of address modifi­
cations.

FORMAT OF INSTRUCTION DESCRIPTION

Each instruction in the repertoire is described in the following pages of this
chapter. The descriptions are presented in the standardized format shown below.

Mnemonic: Name of the Instruction: Op Code (Octal)
] ,

SUMMARY:

MODIFICATIONS:

INDICATORS:

~OTES:

Line 1:

~~

Mnemonic, Name of the Instruction, Op Code (Octal)

This line has three headings that appear over boxes containing the
following:

1. Mnemonic--The mnemonic code for the Operation field of the assembler
statement.

2. Name of the Ins"truction--The name of the machine instruction from
which the Mnemonic was derived.

3. Op Code (Octal)--The octal value of the op~ration code for the
instruction.

Line 2: SUMMARY

The change in the status of the information processing system effected
by the execution of the instruction1s pperations is described in a short
and generally symbolic form. If reference is made here to the status
of an indicator, then it is the status of this indicator before the
operation is executed.

Line 3: MODIFICATIONS

Those designators are listed explicitly that shall not be used with
this instruction either because they are not permitted with this in­
struction or because their effect cannot be predicted from the general
address modification procedure. (See Chapter 6.)

2-1

Line 4: INDICATORS

Only those indicators "are listed whose status can be changed by the execution
of this instruction. In most cases, a condition for setting ON as well as one
for setting OFF is stated. If only one of the two is stated, then this indicator
remains unchanged. Unless explicitly stated otherwise, the conditions refer to
the contents of registers, etc., as existing after the execution of the instruc­
tion's operation.

Line 5: NOTES

This part of the description exists only in those cases where the SUMMARY IS not
sufficient for an understanding of the operation.

Abbreviations and Symbols

A
ABRn

AM
AR
AQ
C

DBR
E

EA
EAQ

IC
(JCTC)

IR
PBR

Q
TBR

TR
Xn
Z

= Accumulator Register (36 bits)
= Address Base Register n (n=O, 1 ••. , 7) (24 bits)
= Associative Memory (16 registers of 60 bits per register)
= Associative Register (60 bits)
= Combined Accumulator-Quotient Register (72 bits)
= "contents of"
= Descriptor Segment Base Register (29 bits)
= Exponent Register (8 bits)
= Combined Exponent-Accumulator Register (8 + 36 bits)
= Combined Exponent-Accumulator-Quotient Register (8 + 72 bits)

= Instruction Counter (18 bits)
= Indicator Register (18 bits, 11 of which are used at this time)
= Procedure Base Register (18 bits)
= Quotient Register (36 bits)
= Temporary Base Register (18 bits)
= Timer Register (24 bits)
= Index Register n (n=O, 1 •.. , 7) (18 bits)
= Temporary Psuedo-result of a non-store comparative operation.

Absolute Address and Memory Locations

Y

V-pai r

= the absolute address (24 bits specifying the core location) in
memory.

= a symbol denoting that the absolute address V designates a pair
of memory locations with successive addresses, the smaller address
being even. When the absolute address is even, then it designates
the pair V(even), Y+1, and when it is odd, then the pair Y-1, Y(odd).
The memory location with the smaller (even) address contains the
most significant part of a double-precision number or the first of
a pair of instructions.

2-2

Reeister Postions and Contents:

("R" standing for any of the registers listed above as well as for a memory
location of a pair of memory locations.)

R.
1

the ith position of R
R. . the positions i through j of R
I· •• J

C(R) = the contents of the full reg i ster R
C(R) . the contents of the ith position of R

1

C(R). .=
1 ••• J the contents of the positions i through J of R

When the description of an instruction states a change for a part of a register
or memory location, then it is always understood that the part of the register
or memory location which is not mentioned remains unchanged.

Other Symbols:

=> = replaces

.. = compare with ..
AND = the Boolean connective AND

OR = the Boolean connective OR

~ = the Boolean connective NON-EQJJ I V ALEI\CE (or EXCLUSIVE OR)

P = pointer

Parity Indicator

The parity indicator IS turned on at the end of a memory access which has 1ncor­
rect parity.

Mnemonics

On the 635 an "effect i ve address" corresponds to an "offset" on the 645
(see Chapter 6). Although 635 instructions implemented on the 645
actually deal with offsets, the effective address mnemonics are retained here
for compatibility.

Arrangement of Instryctions

Instructions in this Chapter are presented in 27 functional categories. The
table on the following page identifies these and lists the first page in each
category.

All instructions are listed 1n alphabetical order 1n the index.

2-3

Instruction Cateeory

Data Movement Load

Data Movement Store

Base Register

Data Movement Shi ft

Fixed Point Addition

Fixed Point Subtract ion

Fixed Point Multiplication

Fixed Point Division

Fixed Point Negate

Float ing Point Load

Float i ng Point Store

Floa ting Point Addition

Float i ng Point Subtract ion

Float ing Point Multiplication

Floating Point Division

Floati ng Point Negate

Floating Point Normalize

Floating Point Compare

Boolean Operations AND

Boolean Operations OR

Boolean Operations Exclusive

Comparison Compare

Comparison Comparative AND
Comparison Comparative NOT

Transfer of Control Transfer

OR

Transfer of Control Conditional Transfer

Special

Startine Paee Number

2-5

2-12

2-20

2-25

2-30

2-38

2-45

2-47

2-49

2-50

2-51

2-54

2-57

2-59

2-61

2-65

2-66

2-67

2-72

2-75

2-78

2-81

2-88

2-90

2-92

2-98

2-103

Instryction Cateeories

2-4

DATA MOVEMENT LOAD

SUMMARY: Y => C(A)0_17; 00 •.. 0 => C(A)18_35

MODIFICATIONS: All except DU, DL

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

NOTE: This instruction, and the instructions EAQ and EAXn, facilitate inter­
register data movements; the data source is specified by the address
modification, and the data destination by the operation code of the
instruction.

Mnemonic: Name of the Instruction:

EAQ Effective Address to Q

SUMMARY: Y => C(Q)0-17; 00 ... 0 => C(Q)18-35

MOD I FI-CATIONS: All except DU, DL

INDICATORS: (Indicators not listed are not affec:ted)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

2-5

DATA MOVEMENT LOAD

Mnemonic: Name of the Instruction:
LDA Load A

SUMMARY: C(Y) => C(A)0_J5

MODIFICATIONS: All

INDICATORS: (Indicators not listed

Zero If C(A) = 0, then ON;

are not affected)

otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

I LDQ I Load Q

SUMMARY: C(Y) => C(Q)0-J5

MODIFICATIONS: All

Zero If C(Q) = 1, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

I LDAQ I Load AQ

SUMMARY: C(Y-pair) => C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

2-6

..

·r'.
DATA MOVEMENT LOAD

Mnemonic: Name of the Instruction:
LDT Load Timer Register

SUMMARY: C(Y)0-23 => C(TR)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS· (Indicators not listed are not affected) .
Zero If C(TR) = 0, then ON; otherwise OFF

Negative If C (TR)O = 1, then ON; otherwise OFF

NOTE: This instruction should be used In Master mode only. If its use
is attempted in the Slave mode, it generates a 635/645 Compatibility
Faul t.

Mnemonic: Name of the Instruction: Op Code (Octal)

I 22n I LDXn Load Xn (n = 0, 1, ... , 7)

SUMMARY: C(Y)0-17 => C(Xn)

MODIFICATIONS: All except CI, SC, SCR

I ND I CATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:
LXLn Load Xn from Lower (n = 0,1, .•. ,7)

SUMMARY: C(Y)18-35 => C(Xn)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)
Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

2-7

DATA MOVEMENT LOAD

Mnemonic:

LDI

SUMMARV: C(V)18-28 => C(IR)

(.Absolute mode indicator C(V)28 not affected)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Absolute Mode Not Affected

All other
indicators

If corresponding bit In C(V) IS ONE, then ON; otherwise OFF

NOTE: 1. The relation between bit positions of C(V) and the indicators IS
as follows:

Bit Position
18
19
20
21
22
23
24
25
26
27
28

Indicators
Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Par i ty Error
Par i ty Mask
Absolute Mode (not affected)

2. The parity indicator is turned on at the end of a memory access
which has incorrect parity.

3. The parity mask inhibits the parity fault, and IS turned on by
program control.

4. The Tally Runout indicator will ~eflect C(V)25 regardless of
what address modification is perf)rmed on the LDI instruction
(for Tally Operations).

2-8

-,

DAT A MOVEMENT LOAD

Mnemonic: Name of the Instruction:
LREG Load Registers-

SUMMARV: C(V)0-17, 18-35 => C(XO,X1)

C(V+1)O_17' 18-35 => C(X2,X3)

C(V+2)O-17, 18-35 => C(X4,X5)

C(V+3)O-17, 18-35 => C(X6,X7)

C(V+4)O-35 => C(A)

C(V+5)O-35 => C(Q)

C(V+6)0-7 => C(E)

C(V+7) => C(E)

where V must be ° modulo(8). (If V is not 0 modulo(8) the next,
smaller such address is used.)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

Mnemonic:

I LCA

Name of the Instruction:

ILoad Complement A

Op Code (Octal)

1.335 I
SUMMARV: - C(V) => C(A) if C(V) ~O; C(V) => C(A) if C(V) = 0

MODIFICATIONS: All

INnlr.ATORS· (Inrl;r-~-f:on:: not li!'::ted are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Overflow If range of A is ~xceeded, then ON; otherwise OFF

NOTE: This instruction changes the number to its negative (iflO) while
moving it from the memory to A. The operation is executed by
forming the two's complement of the string of 36 bits.

2-9

DATA MOVEMENT LOAD

of the Instruction: o Code (Octal)

Complement Q

3UMr\~ARY: -C (Y) => C (Q) for C (Y) ~ 0

MODIFICATIONS: All

C(Y) => C(Q) for C(Y) = 0

INDICATORS' {Indicators not listed are not affected}

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o =:1, then ON; otherwise OFF

Overflow If range of Q is ex~eeded, then ON

NOTE: This instruction changes the number to its negative (if~O) while mov­
i~g it from Y to Q. The operation is executed by forming the two's
complement of the string of 36 bits.

Mnemonic:
LCAQ

SUMMARY:

Name of the Instruction:
Load Complement AQ

- C(Y-pair) => C(AQ) if C(Y-pair) ~ 0
C(Y-pair) => C(AQ) if C(Y-pair) = 0

I\IlOD I F I C AT IONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: (Indicators not listed are not affectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negat i ve If C(AQ)O = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

o Code (Octal)

337

NOTE: This instruction changes the number to its negative (if F 0) while
moving it from V-pair to AQ. The operation is executed by formIng
the two's complement of the string of 72 bits~

2-10

..

DATA MOVEMENT LOAD

Mnemonic:

I LCXn

Name of the Instruciion;

I Load Complement XI')

S~MARV: -C(V)p-17 => C(Xn) for C(V) ~ 0

C(V)~17 => C(Xn) for C(V) = 0

MODIFICATIONS: All except CI, SC, SCR

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON

Op Code COda 1)

I 32n I

NOTE: This instruction changes the number to its negative (if#b) while mov­
ing It from VO-17 to Xn. The operation is executed by forming the
two's complement ot the string of 18 bits.

Mnemonic: Name of the Instruction:
EAXn Effective Address to Xn (n=1, 1, ••• , 7)

SUMMARV: V => C(Xn)

MODIFICATIONS: All except DU, DL

INDICATORS:

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

2-11

Mnemonic:

I STCD

SLJIJ1MARY:

DATA MOVEMENT STORE

Name at: the insl",cI jon; QP
1
r,od;5~Qcla!1

I Store Control Double

C(PBR) => C(Y)0-17' 00 .•• 0 -=> C(Y) 18-29' ITS Tag (100011)

=> C(Y)30-35;

C(ICTC) + 00 •.. 010 => C(Y+1)0_17;

C(IR) => C(Y+1) 18-28' 00 .•• 0 => C(Y+1)29_35

where Y is an even location.

MODIFICATIONS: All except DU, DL, CI, SC, SCR. The state of the Tally Runout
Indicator C(Y+1)25 is not changed regardless of what address
modification is performed on the STCD instruction for tally
operations.

INDICATORS: None affected.

NOTE: This instruction stores the C(PBR, ICTC + 2, IR) in an ITS word
pair. The relationship between the bit positions of C(Y+1) and
the indicators are as follows:

0

I

Bit Position

18
19
20
21
22
23
24
25
26
27
28

Indicators

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tall y Runout
Parity Error
Par i ty Mask
Absolute Mode

The format for the ITS word pair in memory IS as follows:

17 18 22 ,}O .2'2 0 17 18 28 22

P8R I Zeros I ITS I I I CTC+oO ••. 01 JI IR I Tag
'-_." ·r "'---------"-- -"-_."-

Y (even) Y + 1

2-12

12-
Zeros I

, -

DATA MOVEMENT STORE

Mnemonic; Name of the Instrl~tion;

STA Store A

SUMMARV: C{A) => C(V)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

Mnemonjc;

I STAC

Name of t he I nsirllC± jon·

I Store A Conditional

SUMMA~V: Test C(V) Then, 1. if C(V) = 0, C(A) => C(V} Zero indicator set ON
2. if C(V} i 0, Zero indicator set OFF

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: {Indicators not listed are not affected}

Zero If intial C(V) = 0 then ON; otherwise OFF

NOTE: If the initial C(V} is non-zero then C(V) is not changed by this
instruction. This instruction can be used for interlocking.

Mnemonic: Name of the Instruction:
STQ Store Q

SUMMARV: C(Q) = C(V)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

MnemonjCj

I STAQ

Name of the Ins±r\JC±joOj

I Store AQ

SU.AMARV: C(AQ} => C(V-pair)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

2-13

o

757 I

DATA MOVEMENT STO~E

(n = 0,1, ... ,7)

SUMMARY: C(Xn) => C(Y)O-17

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

Mnemonic: Name of the Instruction:

SXLn Store Xn in Lower (n = 0,1, ... ,7)

SUMMARY: C(Xn) = C(Y)18-35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

Mnemonic: Name of the Instruction:

. SREG Store Reg i sters

SUMMARY: C(XO) => C(Y)0-17

C(X1) => C(Y)18-35

C(X6) => C(Y+3)0-17

C(X7) => C(Y+3)18-35

C(X2) => C(Y+1)O-17 C(A) => C(Y+4)0-35

C(X3) => C(Y+1)18-35 C(Q) => C(Y+5)0-35

o Code (Octal)

44n

C(X4) => C(Y+2)0-17 C(E) => C(Y+6)0-7; 00 ... 0 => C(Y+6)8-35

C(X5) => C(Y+2)18-35 C(TR) => C(Y+7)0-23; 00 ... 0 => C(Y+7)24-35

where Y must be a 0 modulo(8) address. (If Y is not 0 modulo(8)
then the next lower such address is used.)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

2-14

•

..

DATA MOVEMENT STORE

al

SUMMARY: Characters of C(A) => corresponding characters of C(Y), the charac­
ter positions affected being specified in the tag field.

MODIFICATIONS: None

INDICATORS: None affected

NOTE: Binary ones in the tag field of this instruction specify the charac­
ter positions of A and Y that are affected by this instruction. The
control relation is shown in the diagram below.*

° Address
. 17 18 26 30 35

1 Op C d li)li 1 I T I structure of
1 0 e , I I ag this Instruction

_0'112' '4'5

---==~~7

Structure
ofAandYL-____ ~~ ____ ~ ______ ~ ______ ~ ______ ~ ____ ~

SUMMARY: Characters of C(Q) => corresponding characters of C(Y), the charac­
ter positions affected being specified by the tag field.

MODIFICATIONS: None

INDICATORS: None affected

NOTE: . Binary ones i~ the tag field of this instruction specify the 8harac­
ter positions of Q and Y that are affected by bis instruction. The
control relation is shown in the diagram below.*

*

°

Structure
of Q and

1 0 d !O 'OI 1 T I Structure of
Address , p Co e 1:1:: ag this Instruction

'l '3'4'5
Bit positions ~

within Tag field

17 18 26 30 35

Character positions in memory not stored into are left unchanged.

2-15

DATA MOVEMENT STORE

Bit)

SUMMARY: Characters of C(A) => corresponding characters of C(Y), the charac­
ter positions affected being specified in the tag field.

MODIFICATIONS: None

INDICATORS: None affected

NOTE: Binary ones in the tag field of this instruction specify the charac­
ter positions of A and Y that are affected by this il13truction. The
control relation is shown in the diagram below:*

, 0 l : ! i : I Structure of
Address ' Op Code :Oli l i Tag this Instruction

L-----------~~~----------~~--~~~0~'1~2~'3~'4~'5

17 18 26 30 35

Bit positions
within Tag field

Structure
of A and Y L.. ___ ..L.... __ --'I--__ --'-___ --'

Bit)

SUMMARY: Characters of C(Q) => corresponding characters of C(Y), the charac­
ter positions affected being specified in the tag field.

MODIFICATIONS: None

INDICATIORS: None affected

NOTE:

°

Binary ones in the tag field of this instruction specify th':l character
positions of Q and Y that are affected by this instruction. The con­
trol relation is shown in the diagram bclow:*

17 18 26 30 35

Address ! Op Code !ojil! Tag I ~~~:~~~~~u~tion
iii i i

~012345

Bit positions ______ ./ /
within Tag field

Structure Char. #0: Char. #1 : Char. #2 : Char. #3
of A and Y '--___ L-.. ___ ..L.... ___ ...L--___

Character positions in memory not stored into are left unchanged.

2-16

DATA MOVeMENT STORE

Mnemonic: Name of the Instruction: o Code (Octal
STI Store Indi~ator Register 754

SUMMARY: C(IR) => C(Y)18-28

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND !8ATORS: None affected

NOTES:

Mnemonic:

I STT

SUMMARY:

1. The indicators (bits 18 through 28) are:

Bit Pos i t ion

18
19
20
21
22
23
24
25
26
27
28

Indicators

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Undel-flow
Overflow Mask
Tally Runout
Parity Error
Parity rv1ask
Absolute Mode

2. The par i ty ind icator is t Jrned on at -the end of a memory access
which has incorrect parity.

3. The rn state corresponds to a one bit., the OFF state to a zero
bit.

4. The C(Y)2~ will contain the state of the Tally Runout indicator
prior to ~ddress modification of the STI instruction (for Tally
operations).

Name of the I nst nJd jon:

I Store Timer Register

Or Code (Ocia 1)

C(TR) => C(Y)0_23 00 ••• 0 => C(Y)24-35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

2-17

DATA fv10Vf:MENT STORE

Mnemonic:

STC1 plus 1

SUMMARY: C (I C) + 0 .•. 01 => C(Y)0_17

C (I R) => C (V) 18-28; 00 ••• 0 => C(Y)29-35

MODIFICATIONS: All except DU, DL, C I, SC, SCR

INDICATORS: None affected

NOTES:

Mnemonic:

STC2

I SUMMARY:

1. The indicators (bits 18 through 28) are:

2.

3.

4.

Bit Position

18
19
20
21
22
23
24
25
26
27
28

Indicator

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tall y Runout
Par i ty Error
Par i ty Mask
Absolute Mode

The ON state corresponds to a one bit, the OFF state to a zero
bit.

The C(Y)2 will contain the state of the Tally Runout indicator
prior to ~ddress modification of the STC1 instruction (for Tally
operat ions).

Note the difference between STC1 and STC2.

Name of the Instruction: o Code (Octal)

Store Instruction Counter plus 2 750

C(IC) + 0 ... 010 => C(Y)0-17 ; C(Y)18-35 are uncha~ged.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

(Revised October 15, 1970)

2-18

DATA MOVEMENT STORE

Mnemonic;

I STZ

Name of the Instruction;

I Store Zero

SUMMARY; 00 ••• 0 => C(Y)

MODIFICATIONS; All except DU, DL, CI, SC, SCR

IND!CATORS; None affected

2-19

OJ Cod~ (Octal)

450 I

BASE REG I STER

n (n = 0, 1, ••• , 7)

SUMMARY: Y :=> C (ABRn) 0-17; C (ABRn) 18-23 are unchanged, and any associ ated

external base designated by C(ABRn)18_20 is unchanged.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTE: This instruction may be executed in Master or Slave mode. If
attempted in Slave mode, an illegal procedure fault will occur unless
C(ABRn)22 = O.

(n = 0, 1, ••• , 7)

SUMMARY: 1. If C(ABRn)21 = 0, then EA => C(ABRn)0_17;

2. If C(ABRn)21 = 1, then P => C(ABArl)0_17

where n is the designated internal ABR (unless n designates an exter­
nal ABR), and m is the designated linked external ABR.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES: 1. When C(ABR1)21 = 0, the effective address EA replaces the contents
of the internal ABRn des ignated by the EAPn instruct ion, and the
pointer (P) generated as part of the address modification proce­
dure replaces the contents of the associated external ABArl. If
the base specified by the EAPn instruction is external, that is,
C(ABf1n)21 = 1, then P => C(ABRn)0_17'

2. This i;,struction may be executed in Master or Slave mode. If
attempted in Slave mode an illegal procedure fault is generated
unless C(ABRn,m)22 = O.

2-·20

."".--..

1"--",

BASE REG I ST-::R

(n = 0, 1, ... , 7)

SUM!.1IFW: C(Y)0_17 + C(ABRn)0_17 => C(ABRn)O_17

MODIFiCATIONS: All except CI, SC, SCR

INDICATORS: None affected

NOTE: This instruction may be executed i:l Master or Slave mode. If
attempted in Slave mode an illegal procedure fault is generated
unless C(ABRn)22 = o. The ABR specified by the ADBn instruction
may be an internal or external base (C(ABRn)21 = 0 or 1).

Mnemonic: Name of the Instruction: o Code (Octal)
LBRn Load Address Base Register n (n=0,1, ..• 7) 76n

SUMMARY: C(Y)0-23 => C(ABR)n

MODI FI CAT IONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: None affected

NOTE: If this instruction is attempted in Slave mode an illegal procedure
fault is generated unless C(ABRn)22 = O. The C(ABRn)22 is not
altered in Slave mode.

Mnemonic: Name of the Instruction:

LDB Load Bases

SUMMARY: C(Y,Y+1, ... ,Y+7)0-23 => C(ABRO •...• ABR7)
where Y must be 0 modulo(8) address. (If Y 1S not 0 modulo(8)
then the next lower such address is used.)

MOD I F I C AT IONS: All except DU, DL, CI, SC, SCR

None affected INDICATORS:

NOTE: The 8 ABR1s are loaded 1n sequence 1n double word loads. The contents
of the affected ABR may be altered in Master or Slave mode if
C(ABRn)2Q = O. However the ABR will not be affected and no fault will
occur while executing LDB in Slave mode if C(ABRn)22 = 1.

2-21

BASE REGISTER

Mnemonic: Name of the Instruction: o Code (Octal)

LDBR Load Descriptor Segment Base Register 232

SUMMARY: C(Y)O-28 => C(DBR)

MOD I F I CAT IONS: All except DU, DL·, C I, SC, SCR

INDICATORS: None affected

NOTE:

LDCF

This instruction may be executed only in Master mode. If attempted
in Slave mode an illegal procedure fault will occur, and C(DBR) will
remain unchanged. The associative memory is cleared (bit 54 of all
AR's set to zero) when LDBR is executed.

o Octal

SUMMARY: C(Y)6_11 => C(ABRn)18_23; C(Y)12-17 => C(ABRm)18_23 vyhere n is an
internal ABR specified by C(Y)O 2 and m is an associ~ted external
ABR specified by C(Y)3-5. -

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: None affected

NOTE: The C(Y)O-17 is interpreted as three 6-bit characters specifying two
ABR's a~d the corresponding new ABR control field information. This
instru~tion may be executed in Master or Slave mode. If attempted
in Slave mode an illegal procedure fault is generated unless
C(ABRn,m)22 = O. The C(ABRn,m)22 is not altered in Slave mode.

Format of C (Y) 1 S as follows:

0 2 '3 5_ 6 11 12 17 18

·~o ABR ABR Control Field Control Field
(18-23) (18-23) Not Used n m ABRn ABRm _.

t J L) " " T l' l'

Char 0 Char 1 Char 2

2-22

BASE REG I STER

(n = 0, 1, ••• , 7)

SUMMARY: C(ABRn) => C(Y)0_23; 00 ••• 0 => C(Y)24-35

where n may designate an internal or external ABR.

MODIFICATIONS: All except DU, DL, Cl, SC, SCR

INDICATORS: None affected

Mnemonic:

I STB

Name of the Instruct jon:

I St:Jre Bases
QJ Code (Octal)

254 1
SUMMARY: C(ABRO, ••• , ABR7) => CU, ••• , Y+7)0_21; 00 ••• 0 => C(Y, ••• , Y-:7)U-1'5

where Y must be 0 modulo(8) address~ (If Y is not 0 mo.dulo(8)
then the next lower such address is used.)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTE: The contents of the eight ABR's are stored In sequence in double word
stores.

Base Register

SUM.'v1ARY: C(DBR) => C(Y)0_28; 00 ••• 0 => C(Y)29-35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I\JDICATORS: None affected

NOTE: This instruction ~ay be executed In Master mode only or an illegal
procedure fault is generated.

2-23

BASE REGISTER

Mnemonic: Name of the Instruction: o Code (Octal)

STPn Store Pair n(n = 0, 1, .•. ,7) 250-253
650-653

SUMMARY:

1. If C(ABRn)21 = 0, then

C(ABRm) => C(Y)0-17;

00 ... 0 => C(Y)18-29' ITS Tag (100011) => C(Y)30-35;
C(ABRn) => C(Y+1)0-17, 00 ... 0 => C(Y+1)18-35;

2. If C(ABRn)21 = 1, then

C(ABRm) => C(Y)0-17,

00 ... 0 => C(Y)18-29, ITS Tag (100011) => C(Y)30-35;

00 ... 0 => C(Y+1)0-35

where n is the designated internal ABR
m is the designated linked ABR, and
Y is an even location.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTE:

1. = 0

2. = 1

This instruction stores the contents of the internal ABR designat­
ed by the STPn instruction and the linked external ABR as an ITS
word pair.
If an external base is designated by the STPn instruction, that is,
C(ABRn)21 = 1, then an odd word of all zeros will be stored. The
format of the word pair in memory is as follows:

17

1
18

Zeros
3

1
0 17 18 29 10 31)

ABRm Zeros ITS
TAG

r ABRn

Y(even) Y+1

35

I Zeros r ABRm

17 18 29 30 35 ;:;.0 ____________ ...:...;

I Zeros I ir~ II '---__
Y(even) Y+l

2-24

DATA MOVEMENT SHIFT

Mr;lemonic: Name of the Instruction: Op Code (Octal)

I A Right Logic I 771 I ARL

SUMMARY: Shift right C{A) the number of positions specified by the address
field of the instruction (Y11-17); fill vacated positions with
zeros.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: {Indicators not listed are not affected}

Zero If C{A) = 0, then ON; otherwise OFF

Negative If C{A)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Code (Octal

QRL Q Right Logic 772

SUMMARY: Shift right C(Q) the number of positions specified by the address
field of the instruction (Y11-17); fill vacated positions with
zeros.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:
LRL Long Right Logic

SUMMARY: Shift right C(AQ) the number of positions specified by the address·
field of the instruction (Y11-17); fill vacated positions with
zeros.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS· (Indicators not listed are not affected) .
Zero If C(AQ) = 0, then ON; otherwise OFF

Negative I f C (AQ)O = 1, then ON; otherwise OFF

2-25

DATA MOVEMENT SHIFT

Mnemon j c; NaG}'> Q f t he I nsf wd jon:

ALR A Left Rotate

SUMMARY: Rotate C(A) by Y11 - 17 positions; enter each bit leaving position 0
into position 35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

Zero If C(A) = 0, then ON; otherwise a~F

Negative If C(A)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Ins±rllC±jon:

QLR Q Left Rotate

SUMMARY: ~()tate C~Q~ by Y11 - 17 positions; enter each bit leaving position 0
Into POSItIon 35.

MODIFIC/HIONS: All except DU, DL, CI, SC, SCR

Z!~t-O If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q) = 1, then ON; otherwise OFF

Mnemon i c: Name of the I ns+rlld jon; Or Code (Oda 1)

777 I LLR Long Left Rotate

SUMMARY: Rotate the C(AQ) left by Y11 ,-17 positions; enter each bit leaving
AO into Q35.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

2-26

DATA MOVEMENT SHIFT

Mnemonic: Name of the Instruction: 0e Code (Octal)

ARS I A Right Shift I 731 I
SUMMARY: Shift right C(A) the number of positions spec"ified by the address

field of the instruction (Y11-17); fill vacated positions with
C(A)Oo

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

QRS I Q Right Shift I 732 I
SUMMARY: Shift right C(Q) the number of positions specified by the address

field of the instruction (Y11-17); fill vacated positions with
C (Q)Oo

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

2-27 .

D/\ fA MOVEMENT SH 1FT

Name of the Instruction: o Code (Octal)

Long Left Sh i ft 737

SUMMARY: Shift left C(AQ) the number of positions specified by the address
field of the instruction (Y11 - 17); fill vacated positions with
zeros.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND I CA TOf~S: (Indicators not listed are not affected)

Zei~o If C (.f\Q) = 0, then ON; otherw i se OFF

Negative If C(Al1)O ~= 1, then O~; otherwise OFF
----- ----.-----~-- ---

Carry If C(AQ)O ever change~
OFF

during the sh i ft, then ON; otherwise'

Mnemonic: Name of the Instruction: Op Code (Octal)

I QLS I Q Left Sh i ft I 736 I
SUMMARY: Shift left C(Q) the number of positions specified by the address

field of the instruction (Y11-17); fill vacated positions with
zeros.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C (Q) = 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

Carry If C(Q)O ever
OFF

changes during the shift, then ON; otherwise

2-28

DATA MOVEMENT SHIFT

Mnemonic: Name of the Instruction:

ALS A Left Shift

SUMMARY: Shift left C(A) the number of positions specified by the address
field of the instruction (Y11-17); fill vacated positions with
zeros.

MODIFICATIONS: All except DU, CL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C{A) = 0, then ON; otherwise OFF

Negative If C{A)O = 1, then ON; otherwise OFF

Carry
If C(A)O ever changes during the shift,
OFF

then ON; otherwise

Mnemonic: Name of the Instruction: Code (Octal)

LRS Long Right Shift 733

SUMMARY: 'Shift right C(AQ) the number of, p'ositions ppecified 9Y the address
field of the instruction (Y11-17); fill vacated positions with
C{A)O·

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS· (Indicators not listed are not affected) .
Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

2-29

FIXED-POINT ADDITION

Name of the Instruction: o
Add to A

SUMMARY: C(A) + C(Y) => C(A)

MODIFICATIONS: All

INDICATORS· (I nd i ~a+D!~S notli~ted are not affer.h:'!rl)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then OJ; otherwise OFF

Overflow If range of A is exceeded, then a~

Carry If a carry out of AO is generated, then ON; otherwise OFF

Name of the !n~truction:

Add to Q

SU!V1f1J1Ai~Y: C (Q) + C (Y) => C (Q)

MODIFICATIONS: All

INDI CATm~S: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If~(Q)O = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of QO is geqerated, then ON; otherwise OFF

2-30

FIXED-POINT ADDITION

Mceman j ,

I ADAQ.

Name of the I nsf wc+ jon·

I Add to AQ
Qp Fda (Ocia l)

077 I
SUMMARY: C(AQ) + C(Y-pair) => C(AQ)

WODIFICATIONS: All t3xcept DU, .11., CI, SC, SCR

INnlr.AT()R~. (Inr!;,..."'+n .. ~ nn+ 1 + .. r! "' nn+ ",~~.,.,...+ .. r!'

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative I f C (A:1) 0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Carry If a carry out of A~ is generated, F-en ON; otherwise OFF

Mnemonjc:

I ADXn

Name of the lostrqctjoo:

I Add to Xn (n = 0, 1, ••. ,7)
Op Code (Octal)

I 06n I
SUMMARY: C(Xn) + C(Y)0_17 => C(Xn)

WODIFICATIONS: All except C·I, SC, SCR

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn) = 1, then 01\1; ot he rw i se OFF

Overflow If range of Xn IS exceeded, then ON

Carry If a carry out of Xno is generated, then ON; otherwise OFF

2-31

FIXED-POINT ADDITION

I nstruct ion:
to A

SUMMARY: C(A) + C(Y) => C(Y) C(A) unchanged

MODIFICATIONS: All except DU, DL, Cl, SC, SCR

INDIr.ATORS· (I nn i (';dnrc:: nn+ 1 isted are not ~ffp.rh"n)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherw i se OFF

t ion:

SUMrv1,~ RY: C (Q) + C (Y) => C (Y) C(Q) unchanged

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I NDI r.ATORS· (Inni('~+nrc:: nn+ listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

2-.32

FIXED-POINT APDITION

ASXn I Add Stored to Xn

Name of the Instolction: Or Code (Oetal) Mnemonjc-

SUMMARY: C(Xn) + C(Y)0_17 => C(Y)0_17

MODIFICATIONS: All except DU, DL, CI, SC, SCR

Il\Inlf'.AT()RC:. (I ... ,.I;~...,.J.,.. ... ~ ,...J. , ;~.J.,..,.I ..., ... ~ ,...J. ...,.r.r~~.J.,..,.I'

Zero If C(Y)0-17 = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then a~; otherwise OFF

Overflow If range of YO-17 is ex~eeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

ADLA I Add Logic to A

Name of the I nsf wet ion: 0F2 Code (Octa 1)

I 035 I
Mnemonic:

SUMMARY: C(A) + C(Y) => C(A)

MODIFICATIONS: All

INnlr.ATORS· (Inrli,...",+nl"'''' not 1 '",+",,.1 "'I"'''' nn+ ",ff",,...+,,,r1)

Zero If C(A) = 0, then a~; otherwise OFF

Negative If C(A)O = 1, then o.~; otherwise OFF

Overflow Not Affected

Carry If a carry out of AO IS generated then ON; otherwise OFF

NOTE: This instruction is identical to the ADA instruction with the ex­
ception that the overflow indicator is not affected by this instruc­
tion. Operands and results are regarded as u~signed, positive binary
integers.

2-33

FIXED-POINT ADDITION

Mnemonic: Name of the Instruction: o Code (Octal)

ADLQ Add Logic to Q 036

SUMMARY: C(Q) + C(Y) => C(Q)

MODI F ICAT IONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow Not Affected

Carry

NOTE:

Mnemonic:

ADLAQ

If a carry out ot Qo IS generated then ON; otherwise OFF

This instruction is identical to the ADQ instruction with the ex­
ception that the overflow indicator is not affected by this instruc­
tion. Operands and results are regarded as unsigned, positive bi­
nary integers.

Name of the Instruction: o Code (Octal)

Add Logic to AQ 037

SUMMARY: C(AQ) + C(Y-pair) => C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C{AQ)O = 1, then ON; otherwise OFF

Overflow Not Affected

Carry

NOTE:

If a carry out of AQa IS generated, then ON; otherwise OFF

This instruction is identical to the ADAQ instruction with the ex­
ception that the overflow indicator is not affected by this instruc­
tion •. Operands and results are regarded as unsigned, positive bi­
nary Integers.

2-34

FIXED-POINT ADDITION

Mnemonic: Name of the Instruction:

ADLXn Add Logic to Xn (n = 0, 02n

SUMMARY: C(Xn) + C(Y)0-17 => C(Xn)

MODI FlCAT IONS: All except C I , SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON,; otherwise OFF

Overflow Not Affected

Carry If a carry out of XnO 1S generated, then ON; otherwise OFF

NOTE: This instruction is identical to the ADXn instruction with the ex­
ception that the overflow indicator is not affected by this instruc­
tion. Operands and results are regarded as unsigned, positive bi­
nary integers.

Mnemonic: Name of the Instruction:

AWCA Add with Carry to A

SUMMARY: Carry Indicator OFF: C (A) + C (Y) => C (A)
C(A) + C(Y) + 0 ••. 01 => C(A) Carry Indicator ON:

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative IfC(A)0=1, then ON; otherwise off

Overflow If range of A is exceeded, then ON

Carry If a carry out of AO is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the ADA instruction with the ex­
ception that, when the Carry indicator is ON at the beginning of the
instruction, then +1 is added to the least-significant position.

2-35

FIXED-POINT ADDITION

Name of the Instruction: Code (Octal)

Add wi th Carry to Q . 072

SUMMARV: Carry Indicator OFF: C(Q) + C(V) => C(Q)
C(Q) + C(V) + 0 ... 01 => C(Q) Carry Indicator ON:

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If carry out of Qo is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the ADQ instruction with the ex­
ception that, in case the Carry indicator is ON at. the beginning of
the instruction, then +1 is added to the least-significant position.

Name of the Instruction: 0 Code (Octal)

Add Low to AQ 033

SUMMARV: C(AQ) + C(V), sign extended, => C(AQ)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS' (Indicators not listed are not affected) .
Zero If C(AQ) = 0, then ON; otherwise OFF

Negat i ve IfC(AQ)O= 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Carry

NOTE:

If a carry out of AQa is generated, then ON; otherwise OFF

a 72-bit number is formed:
C(VO), C(VO), , C(VO), C(V).

'- 'V ../

36 bits
Its lower half (bits 36-71) is identical to C(V), and each of the bits
of its upper half (bits 0-35) is identical to the sign bit of C(V),
i.e., to C(VO).
This number is added to the contents of the combined AQ-register, ef­
fecting the addition of C(V) to the lower half of the combined AQ­
register with a possible carry out of the Q-part being passed on to
the A-pad.

2-36

FIXED-POINT ADDITION

Mnemonic: Name of the Instruction: Code (Octal)

AOS Add One to Storage 054

SUMMARV: C(V) + 0 •.• 01 => C(V)

MODIFICATIONS: All. except DU, DL, CI, SC, SCR

INDICATORS: (Indicators.not listed are not affected)
Zero If C (V} = 0, then ON; otherwise OFF

Negative If C(V)o = 1, then ON; otherwise OFF

Overflow If range of V is exceeded, then ON

Carry If a carry out of Vo is generated, then ON; otherwis~ OFF

2-37

FIXED-POINT SUBTRACTION

Mnemonic: Name of the Instruction: o Code (Octal)

SBA Subtract from A 175

SUMMARY: C(A) - C(Y) => C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of AO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

SBQ I Subtract from Q

SUMMARY: C(Q) = C(Y) => C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Op Code (Octal)

I 176 I

Carry If a carry out of ~ is generated, then ON; otherwise OFF

2-38

FIXED-POINT SUBTRACTION

Mnemonic: Name of the Instruction:
SBAQ Subtract from AQ

SUMMARY: G(AQ) - C(Y-pair) => C(AQ)

MODIFICATIONS: All except DU, Dl, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

o Code (Octal)

177

Overflow If range of AQ is exceeded, then ON; otherwise OFF

Carry If carry out of AQa is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

SBXn Subtract from Xn

SUMMARY: C(Xn) - C(Y)0_17 => C(Xn)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

N.egative If C(Xn)o = 1, then ON; otherwise OFF

Overflow If range of Xn IS exceeded, then ON

Carry If a carry out of Xno is generated, then ON; 'otherwise OFF

2-39

FIXED-POINT SUBTR~TION

Mnemonic: Name of the Instruction: o Code (Octal)

SSA Subtract Stored from A 155

SUMMARV: C(A) - C(V) => C(V)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(V) = 0, then ON; otherwise OFF

Negative If C(V)o = 1, then ON; otherwise OFF

Overflow If range of V is exceeded, then ON

Carry If a carry out of Vo is generated, then ON; otherwise OFF

SSQ I Subtract Stored from Q

. Op Code (Octal)

I 156 I
Mnemonic: Name of the Instruction:

SUMMARV: C(Q) - C(V) => C(V)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(V) = 0, then ON; otherwise OFF

Negative If C(V)o = 1, then ON; otherwise OFF

Overflow If range of V is exceeded, then ON

Carry If a carry out of Vo is generated, then ON; otherwise OFF

,~

FIXED-POINT SUBTRACTION

Mnemonic: Name of the Instruction:

SSXn Subtract Stored from Xn

SUMMARY: C(Xn) - C(Y)0-17 => C(Y)0-17

fv'ODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)0-17 = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

Overflow If range of YO-17 exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: o Code (Octal)

SBLA Subtract Logic from A 135

SUMMARY: C(A) - C(Y) => C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Overflow Not Affected

Carry If a carry out of AO IS generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBA instruction with the ex­
ception that the overflow indicator is not affected by this instruc­
tion. Operands and results are regarded as unsigned, positive bi­
nary integers_

2.-41

FIXED-POINT SUBTRACTION

Mnemonic: Name of the Instruction:

SBLQ I Subtract Logic from Q

Op Code (Octal)

I 136 I
SUMMARY: C(Q) - C(Y) => C(Q)

MODIFICATIONS: All

I ND I CATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwi se OFF·

Negative If C(Q)O = 1, then ON; otherwise OFF

Overflow Not Affected

Carry If a carry out of Qo IS generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBQ instruction with the ex­
ception that the overflow indicator is not affected by this instruc­
tion. Operands and results are regarded as unsigned, positive in­
tegers.

SUMMARY: C(AQ) - C(Y-pair) => C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Overflow Not affected

Carry I f a carry out of AQO is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBAQ instruction with the excep­
tion that the overflow indicator is not affected by this instruction.
Operands and results are regarded as unsigned, positive binary integers.

2-42

FIXED-POINT SUBTRACTION

Mnemonic: Name of the Instruction:
SWCA Subtract with Carry from A

SUMMARY: Carry Indicator ON:
Carry Indicator OFF:

C(A) - C(Y) => C(A)
C(A) - C(Y) - 0 •.• 01 => C(A)

MODIFICATIONS: All

INDICATORS· (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negat i ve If C(A)O = 1, then ON; otherwise OFF,

Overflow If range of A is exceeded, then ON

Carry

NOTES:

If a carry out of AO is generated, then ON; otherwise OFF

1. This instruction is identical to the SBA instruction with the
exception that, when the Carry indicator is OFF at the beginning
of the instruction, then +1 is subtracted from the least-signifi­
cant posi t ion.

2. This instruction is used for multiple-word precision arithmetic.

2-43

FIXED-POINT SUBTRACTION

Name of the Instruction:

Subtract with Carry from Q

SUMMARY: Carry Indicator ON: C(Q) - C(Y) => C(Q)
C(Q) - C(Y) - 0 ... 01 => C(Q)

MODIFICATIONS: All

INDICATORS· (I ndi cedars not 1 i sted are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)n = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Code (Octa I)

172

Carry If carry out of Qo is generated, then ON; otherwise OFF

NOTES: 1. This instruction is identical to the SDQ instruction with the ex­
ception that, in case the Carry indicator is OFF at the beginning
of the instruction, then +1 is subtracted from the least-signifi­
can position.

2. This instruction 1S used for multiple-word precision arithmetic.

o
Subtract Logic from Xn (n - 0,1, .•• ,7)

SUMMARY: C(Xn) - C(Y)0_17 => C(Xn)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (I n d i ca tors not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwi se OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

Overflow Not Affected

Carry I f a carry out of XnO IS generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBXn instruction with the excep­
tion that the overflow indicator is not affected by this instruction.
Operands and results are regarded as unsigned, positive binary integers.

2-44

FIXED-POINT MULTIPLICATION

Mnemonic: Name of the Instruction: 1

MPY Multiply Integer

SUMMARY: C(Q) x C(Y) => C(AQ), right-adjusted

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(A~)O = 1, then ON; otherwise OFF

NOTES: 1. Two 36-bit integer factors (including sign) are multiplied to
form a 71-bit integer product (including sign), which is stored
in AQ, right-adjusted. Bit position AQa is filled with an "ex­
tended sign bit".

=>

0 1 .2~ 0 1 :22

i± factor--- .. Ixr~ --- factor -I
Q-register Memory Location Y

0 1

~11 t~ -product -

Combined AQ-register

2. In the case of (_235) x (_235) = +270, the position AQ1 is used
to represent the product rather than as an extension of the sign.
No overflow can occur.

2-45

FIXED-POINT MULTIPLICATION

Mnemonic: Name of th

MPF Multiply Fraction

SUMMARY: C(A) x C(Y) => C(AQ), left justified

MODIFICATIONS: All except C I, SC, SCR

INDICATORS:

Zero

Negative

Overflow

NOTE:

(Indicators not listed are not aff~tad)

If C(AQ) = 0, then ON; otherwise OFF

IfC(AQ)O= 1, then ON; otherwise OFF

If range of AQ is exceeded, then ON

Two 36-bit fractional factors (including sign) are multiplied to
form a 71-bit fractional product (including sign), which is
stored left-justified in the AQ register; bit position AQ71
contains a zero. Overflow can occur only in the case of A and Y
containing all ones and the result exceeding the combined AQ
register.

~0~1~ _____________________________________ 2~5 ~0~1~ _____________________________________ 3~5

r ~ factor ------..... ! xr ,-:~:~~~ __ '_f_ac_t_o_r_-·~~~~~~_-_-·_..:II
A-register Memory Location Y

:: 71

Combined AQ-register

2-46

Mnemonic:

DIV

SUMMARY:

FIXED-POINT DIVISION

Name of the Instruction:

Divide Integer

C(Q) 7 C(Y); integer quotient => C(Q)
integer remainder => C(A)

MODIFICATIONS: All

I NDI CATORS: (Indicators not listed are not affectAd)
If division takes place: If no division takes place:

Zero If C(Q) =0, then ON; If divisor = 0, then ON;
otherwise OFF otherwise OFF

Negative If C(Q)O = 1~ then ON; If dividend < 0, then ON;
otherwise OF otherwise OFF

NOTES: 1. A 36-bit integer dividend (including sign) is divided by a 36-bit
integer divisor (including sign) to form a 36-bit integer quotient
(including sign) and a 36-bit fractional remainder (including
sign). The remainder sign IS equal to the dividend sign unless
the remainder is zero.

2.

0 1 ~ 0 1 ~5 t: . dividend ---- -=j 7 f+ divisor ;1
Q-register Memory Location Y

0 1 3T 1
35

F remainder quotient· ~I .. s':; ..,.
i I

A-register Q-register

If dividend = -235 and divisor = -1 or if divisor = 0, then the
division itself does not take place.

Instead, a Divide-Check fault trap occurs; the divisor C(Y) re­
mains unchanged, C(Q) contains the dividend magnitude in absolute,
and the negative indicator reflects the dividend sign.

2-47

FIXED-POINT DIVISION

Mnemonic: Name of the Instruction:

DVF I Divide Fraction

Op Code (Odal)

1 507 I
SUMMARY: C(AQ) ~ C(Y); fractional quotient => C(A)

remainder => C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affectedl
If division takes place: If no division takes place:

Zero If C(A) = OF then ON; If divisor = 0, then ON;
otherwise 0 F otherwise OFF

Negative If C(A)O = 1F then ON; If dividend < 0, then ON;
otherwise OF otherwise OFF

NOTES: 1. A 71-bit fractional dividend (including sign) is divided by a
36-bit fractional divisor (including sign) to form a 36-bit
fractional quotient (including sign) and a 36-bit remainder
(including sign), bit position 35 of the remainder is correspond­
ing to bit position 70 of the dividend. The remainder sign is
equal to the dividend sign 'unless the remainder is zero.

=>

2.

° 1 t+

70 71

-,dividend,.----------~ l
Not used J

In d i vis i on
Combined AQ-register

I~ : 1 .15
1 _,.------ d i visor ---..........

Memory Location Y

. quotient :Il:-~--, rema i ndei"---

A-register Q-register

I f I dividend I ~ I divisor I
itself does not take place.

or if divisor = 0, then the division

Instead, a Divide-Check fault trap occurs; the divisor C(Y)
remains unchanged, C(AQ) contains the dividend magnitude in ab­
solute, and the negative indicator reflects the dividend sign.

2-48

I

FIXED-POINT NEGATE

Mnemonic:

I
Name of the Instruction:

NEG Negate A

SUMMARY: -C(A) => C (A)

MODIFICATIONS: None

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 0, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

NOTE: This instruction changes the number in A to its negative (if ~ 0).
The operation is executed by forming the two's complement of the
string of 36 bits.

Mnemonic: Name of the Instruction:
NEGL Negate Long

SUMMARY: -C(AQ) => C(AQ)

MODIFICATIONS: None

INDICATORS: (Indir.atorc; not 1 ic;tRrl I1rR not l1£fBl':tarl)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

NOTE: This instruction changes the number in AQ to its negative (if ~ 0).
The operation is executed by forming the two's complement of the
string of 72 bits.

2-49

FLOATiNG POINT LOAD

Name of the Instruction: o

Floating Load

SUMMARY: C(Y)0-7 => C(E), C('Y)S-35 => C(AQ)0-27; 000.00 ~> C(AQ)2 P- 71

..
MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected) •

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: o Code (Octal)

DFLD Dou'::lle-Precision Floating Load 433

SUMMARY: C(Y-pair)0_7 => C(E), C(Y-pair)S_71 => C(AQ)0-63' 00 •.• 0 => C(AQ)64-71

MOD I FICA T IONS: All except DU, DL, CI, SC, SCR

INDICATORS: (I n d ica tor s not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: o Code (Octal)

LDE Load Exponent Register 411

SUMMARY: C(Y)0-7 => C(E)

MOD I FICA TI ONS: All except CI, SC, SCR

I NDI CATORS: (Indicators not listed are not affected)

ZERO Set OFF

Negative Set OFF."

2-50

FLOATING POINT STORE

Mnemonjc;

I FST

Name of the I nst wet j 00

I Float ing Store

Op Gode (Oetal)

I 4551

SUMMARY: C(E,A) => C(Y)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTE: This instruction is executed as follows:

C(E) => C(Y)O-7
C(A)O_27 => C(Y)8-35

Floating Store

SUMMARY: C(E,A,Q) => C(Y-pair)

MODIFICATIONS: All except DU, DL, Ci, SC, SCR

INDICATORS: None affected

NOTE: This instruction IS executed as follows:

C(E) => C(Y-pair)O_7
C(AQ)O_63 => C(Y-pair)8_71

2-51

FLOATING POINT STORE

Mnemonic: Name of the Instruction: Op Code (Octal)

FSTR I Floating Store Rounded I 470)

SUMMARY: [C(EAQ)] rounded => C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Exp. Overflo If exponent above +127, then ON

NOTES: 1. During single-precision floating point stores, this instruction
rounds the number (positive or negative) as it is stored.

2. The instruction is executed by adding a binary one to bit posi­
tion 28 of AQ, truncating, then storing the contents of AQ.
Steps in the execution may be conceived of as follows:

C(AQ)0-71 + 2-28 => C(AQ)0-27

00 ... 0 => C(AQ)28-71

C(E) => C(Y)0-7

C(A)0_27 => C(Y)8-35

Restore C(EAQ) to original values.

3. FSTR is a special type of store instruction, which is handled in
a different manner than are normal stores. In the execution of .
this instruction, the mantissa in the A-register is transfer~ed
to NO-35 and a one is added to bit 28, which in effect rounds the
mantissa to bits 0-27. The rounded mantissa and the exponent
from the E-register are stored in storage location Y as a normal
floating store. If the mantissa overflows when it is rounded, it
.is shifted one bit position right, and the exponent is increased
by one before it is stored. If increasing the exponent by one
causes it to overflow, the Exp. Overflow indicator will be set.
In no case will the contents of A or E be altered. If the mantir­
sa is rounded to all zeros, the zero indicator will not be set and
the exponent will not be forced to -128.

4. All registers remain unchanged.

5. An exponent overflow occurs only if C(E) = +127 and C(AQ)0_28 =
0.111 ... 111 before rounding.

2-5~

Mne~no'1 i c:::

FLOATING POINT STORE

(FSTR Instruction, Continued)

6. If the original operand is a negative number

[C(AQ)0_28 = 1.0111 ••• 111 and C(AQ)29-71 = 0], .
the number is rounded towards zero, not towards a more negative
value, and the result becomes unnormalized.

7. Normalization occurs only if the mantissa overflows when it is
rounded.

ruct ion:

STE_ Reg i ster

SUMMARY: C(E) => C(Y)O_7; 00 ••• 0 => C(Y)8_17

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: NO;1e affected

2-53

FLOATING POINT ADDITION

Mnemonic:

I FAD

Name of the Instryction

I Floating Add

Op Code (Octal)

I 475 I
[C(EAQ) + C(Y)]normaliztd => C(EAQ)

MOD I FICA T IONS: All except CI, SC, SCR

INDICATORS· (Inc:!ir.Rtorc; not 1 idp.c:! Flrp. not Rffp.r.tp.c:!)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If Exponent above + 127, then ON

Exp. UnderflOl If Exponent below - 1.28, then ON

Carry If a carry out of AQo is generated, then ON; otherwise OFF

Unnormalized Add

SUMMARY: [C(EAQ) + C(Y)] not normalized => C(EAQ)

MODIFICATIONS: All except CI, SC, SCR

I ND I CA TORS: (I nd ica tors not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If Exponent above + 127, then ON

Exp. Underflo If Exponent below - 128, then ON

Carry If a carry out of AQa IS generated, then ON; otherwise OFF

2-54

FLOATING POINT ADDITION

Mnemonic: Name of the Instruction:

DFAD Double-Precision Floating Add

SUMMARY: [C(EAQ) + C(Y-pair)] normalized => C(EAQ)

MODIFICATIONS: AI~ except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zaro If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Expo Overflow If exponent above +127, then ON

Expo Underflow If exponent below -128, then ON

Co~ (Octal)

477

Carry If a carry out of A~ is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

DUFA Double-Precision Unnormalized Floating Add

SUMMARY: [C(EAQ) + C(Y-pair)] not normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Expo Overflow If exponent ~bove +127, then ON

Expo Underflow If exponent below -128, then ON

Carry If a carry out of AQa is generated, then ON; otherwise OFF

2-55

FLOATING POINT ADDITION

Mnemonic: Name of the Instruction:

ADE Add to Exponent Register

SUMMARY: C(E) + C(Y)O-7 => C(E)

MODIFICATIONS: All except CI, SC, SCR

I ND I CATORS: (Indicators not listed are not affected)

Zero Set OFF

NeQative Set OFF

Expo Overflow If exponent above +127, then ON

Expo Underflow If exponent below -128, then ON

2-56

o Code (Octal)

415

FLOATING POINT SUBTRACTION

Mnemonic: Name of the Instruction:

FSB I Floating Subtract

Op Code (Octal)

I 575 r
SUMMARY: [C(EAQ) - C(Y)] normalized => C(EAQ)

MODI FICAT IONS: All except C I, SC, SCR

INDICATORS' (Indicators not listed are not affected) .
Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQa is generated, then ON; otherwise OFF

r--.. Mnemonic: Name of the Instruction: o Code (Octal
UFS Unnormalized Floating Subtract 535

SUMMARY: [C(EAQ) - C(Y)] not normalized => C(EAQ)

MOD I F I C AT IONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQa is generated, then ON; otherwise OFF

2-57

FLOATING POINT SUBTRACTION

Mnemonic: Name of the Instruction: o Code (Odal)

DFSB Double-Precision Floating Subtract 577

SUMMARY: [C(EAQ) - C(Y-pair)] normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Expo Overflow If exponent above +127, then ON

Expo Underflow If exponent below -128, then ON

Carry If a carry out of AQa is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Code (Octal)
DUFS Double-Precision Unnormalized Floating Subtract 537

SUMMARY: [C(EAQ) - C(Y-pair)] not normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C (AQ) = 0, then ON; otherwise OFF

Negat i ve If C(AQ)O = 1, then ON; otherwise OFF

Expo Overflow If exponent above +127, then ON

Expo Underflow If exponent below -128, then ON

Garry If a carry out of AQo is generated, then ON; otherwise OFF

2-58

FLOATING POINT MULTIPLICATION

Mnemonic: Name of the Instruction: o Code (Octal)

FMP Floating Multiply 461

SUMMARY: [C(EAQ) x C(Y)] normalized => C(EAQ)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTE: This multiplication is executed as follows:

C(E) + C(Y)0-7 => C(E)

C(AQ) x C(Y)8-35 results in a 98-bit product plus slgn, the
leading 71 bits plus sign of which => C(AQ)

C(EAQ) normalized => C(EAQ)

Mnemonic: Name of the Instruction: o Code (Octal)

UFM Unnormalized Floating Multiply 421

SUMMARY: [C(EAQ) x C(Y)] not normalized => C(EAQ)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTE: This multiplication is executed like the instruction FMP with the
exception that the final normalization is performed only in the
case of both factor mantissas being = -1.00 ••• 0.

2-59

FLOATING POINT MULTIPLICATION

Mnemonic: Name of the Instruction: o Code (Octal)

DFMP Double-Precision Floating Multiply 463

SUMMARY: [C(EAQ) x C(Y-pair)] normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTE: This multiplication is executed as follows:
C(E) + C(Y-pair)0_7 => C(E)

C(AQ) x C(Y-pair)8_71 results in a 134-bit product plus sIgn,
the leading 71 bits plus sign of which => C(AQ)
C(EAQ) normalized => C(EAQ)

Mnemonic: Name of the Instruction:

DUFM Double-Precision Unnormal Floating Multiply

SUMMARY: [C(EAQ) x C(Y-pair)] not normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp.

Exp.

NOTE:

Overflow If exponent above +127, then ON

Underflow If exponent below -128, then ON

This multiplication is executed like the instruction DFMP, with
the exception that the final normalization is performed only in
the case of both factor mantissas being = -1.00 ... 0.

2-60

FLOATING POINT DIVISION

Mnemonic: Name of the Instruction: Code (Octal)

FDV FI oa t i ng D i v i de

SUMMARV: C(EAQ) ~ C(V) => C(EA); 00 •.. 0 => C(Q)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(A) = 0, then ON; other- If divisor mantissa = 0, then
wise OFF ON; otherwise OFF

Negative If C(A)O = 1, then ON; other- If dividend < 0, then ON;

Exp.

Exp.

" NOTES:

wise OFF otherwise OFF

Overflow If exponent above +127, then" ON

Underflow If exponent below -128, then ON

1. This division is executed as follows:

The dividend mani~issa C(AQ) is shifted right and the dividend
exponent C(E) increased accordingly until

I C(AQ)0-27 I < I C(V)8-35 I ;
C(E) - C(V)0-7 => C(E);

C(AQ) 7 C(V)8-35 => C(A);

00 ... ° => C (Q) •

2. If mantissa of divisor = 0, then the division itself does not
take place. I nstead, a Di v ide-Check faul t trap occurs. The
divisor C(V) remains unchanged, C(AQ) contains the dividend
magnitude in absolute, and the negative indicator reflects the
dividend sign.

2-61

FLOATING POINT DIVISION

Mnemonic: Name of the Instruction:

FDI I Floating Divide Inverted

Op Code (Octal)

I 525 I
SUMMARY: C(Y) 7 C(EAQ) => C(EA); 00 ... 0 => C(Q)

MODI F ICAT IONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(A) = 0, then ON; other- If divisor mantissa = 0,
wise OFF then ON; otherwise OFF

Negat ive If C (A)O = 0, then ON; other If dividend < 0, then ON;

Exp.

Exp.

NOTES:

wise OFF otherwise OFF

Overflow If exponent above +127, then ON

Underflow If exponent below -128, then ON

1. This division is executed as follows:

The dividend mantissa C(Y)8-35 is shifted right and the dividend
eXfonent C(Y)0-7 increased accordingly until I C(Y)8-35j

.. < C (AQ)0-27 I ;
C(Y)0-7 - CeE) => C(E);

C(Y)8-35 7 C(AQ) => C(A);
00 ... a => C (Q) •

2. If mantissa of divisor = 0, then the division itself does not
take place. Instead, a Divide-Check fault trap occurs; and all
the registers remain unchanged.

2-62

... e· '.

FLOATING POINT DIVISION

Mnemonic: Name of the Instruction: o Code (Octal)

DFDV Double-Precision Floating Divide

SUMMARY: C(EAQ); C(Y-pair) => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND I C ATORS : (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(AQ) = 0, then ON; other- If divisor mantissa = 0,
wise OFF then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; If dividend < 0, then ON;

Exp.

Exp.

NOTES:

otherwise OFF otherwise OFF ...
Overflow If exponent above +127, then ON

Underflo\l If exponent below -128, then ON

1. This division is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend
exponent C(E) increased accordingly until I C(AQ)0-63 I

< I C (Y-pai r)8-71 I ;
C(E) - C(Y-pair)0_7 => C(E);

C(AQ) ~ C(Y-pair)8_71 => C(AQ)O-63;
00 .•• 0 => C(AQ)64-71

2. If mantissa of divisor = 0, then the division itself does not
take place. Instead, a Divide-Check fault trap occurs. The
divisor C(Y) remains unchanged, C(AQ) contains the dividend
magnitude in absolute, and the negative indicator reflects the
dividend sign.

2-63

FLOATING POINT DIVISION

Mnemonic: Name of the Instruction:

DFDI· Double-Precision Floating Divide Inverted.

SUMMARY: C(Y-pair): C(EAQ) => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS' (Indicators not I (sted are not affected) .
If division takes place: If no division takes place:

Zero If C(AQ) = 0, then ON; other· If divisor mantissa = 0,
wise OFF then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; If dividend < 0, then ON;

Exp.

Exp.

NOTES:

otherwise OFF otherwise OFF

Overflow If exponent above +127, then ON

Underflow If exponent below -128, then ON

1. This division is executed as follows:

The dividend mantissa C(Y-pair)8_71 is shifted right and the
dividend exponent C(Y-pair)0_7 increased accordingly until
I C(Y-pair)8_71 I < I C(AQ)0_63I ;

C(Y-pair)0_7 - C(E) => C(E);

C(Y-pair)8_71 7 C(AQ) => C(AQ)0-63;

00 ..• 0 => C(AQ)64-71

2. If mantissa of divisor = 0, then the division itself does not
take place. I nstead, a Divide-Check fault trap occurs; and all
the registers remain unchanged.

2-64

FLOATING POINT NEGATE

Mnemonic: Name of the Instruction: o Code (Octal)

FNEG Floating Negate 513

SUMMARY: - C{AQ) normalized => C{AQ)

MODIFICATIONS: None

INDICATORS: (Indicators not listed are not affected)

Zero If C{AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp.

Exp.

NOTES:

Overflow If exponent above +127, then ON

UnderfloVl If exponent below -128, then ON

1. This instruction changes the number in EAQ to its normalized
negative (if C{AQ) ~ 0). The operation is executed by first
forming the two's complement of C{AQ), and then normalizing
C (EAQ).

2. Even if originally C{EAQ) were normalized, an exponent overflow
can still occur, namely when originally C{AQ) = -1.00 •.. 0
and C (E) = +127.

2-65 .

FLOATING POINT NORMALIZE

Mnemonic: Name of the Instruction: o Code (Octal)

FNO Floating Normalize 573

SUMMARY: C(EAQ) normalized => C(EAQ)

MODIFICATIONS: None

INDICATORS: (Indicators not listed are not affected)

Zero If C (AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflo,," If exponent below -128, then ON

Overflow Set OFF

NOTES: 1. The instruction normalizes the number in EAQ. If the overflow
indicator is ON, then the number in EAQ is normalized one place
to the right; and then the sign bit C(AQ)O is inverted in order
to reconstitute the actual sign. Furthermore, the overflow
indicator is set OFF.

2. This instruction can be used to correct overflows that occurred
with fixed-point numbers.

2-66

.r'.
FLOATING POINT COMPARE

Mnemonic: Name of the Instruction: Code (Octal

FCMP Floating Compare 515

SUMMARV: Algebraic comparison C [(E)(AQa-27)] •. C(V)

MOD I F I C AT IONS: All except CI, SC, SCR

I ND I CATORS:

Q)

> .-
-+-'

0 ro
I... on
Q) Q)

N z

a a

1 a

a 1

NOTE:

(Indicators not listed are not affected)

Relation

C [(E)(AQa-27)] > C(V)

C [(E)(AOo-27)] = C(V)

C [(E)(AQa-27)] < c(v)

This comparison IS executed as follows:

Compare C(E) :: C(V)O_7, select the number with the lower ex­
ponent, and shift its mantissa right as many places as the
difference of the exponents.

Then compare the mantissas and set the indicators accordingly.

2-67

FLOATING POINT COMPARE

Mnemonic: Name of the Instruction: 0 Code (Octal)

FCMG Floating Compare Magnitude 425

SUMMARY: Algebraic comparison IC [(E) (AG.o-27)] .. IC(Y)j

MODIFICATIONS: All except C I, SC, SCR

INDICATORS:

OJ
> .-

-+-'
0 cO
L un
Q) Q)

N z

0 0

1 0

0 1

NOTE:

(Indicators not listed are not affected)

Relation

Ic [(E)(AQo-27)J I > I C (y) I
IC [(E)(AG.o-27)] I = I C (y) I
IC [(E)(AG.o-27)] I < I C (y) I

This comparison IS executed as follows:

Compare C(E) :: C(Y)O-7, select the number with the lower
exponent, and shift its mantissa right as many places as the
difference of the exponents.

Then compare the absolute value of the mantissas and set the
indicators accordingly.

2-68

FLOATING POINT COMPARE

Mnemonic: Name of the Instruction: o Code (Octal

DFCMP Double-Precision Floating Compare 517

SUMMARY: Algebraic comparIson C[(E){AQo-63)] C (Y-pai r)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS' (Indicators not listed are not affected) .

Q)

> .-
+'

0 ttl
!... OIl
Q) Q)

N z

0 0

1 0

0 1

NOTE:

Relation

C [(E)(AQo-63)] > C (Y-pai r)

C [(E)(AQo_63)] = C(Y-pair)

C [(E){AQo_63)] < C{Y-pair)

This comparIson IS executed as follows:

Compare C{E) .. C{Y)O-7, select the number with the lower
exponent, and shift its mantissa right as many places as the
difference of the exponents.

Then compare the mantissas and set the indicators accordingly.

2-69

FLOATING POINT COMPARE

Mnemonic: Name of the Instruction: Code (Octal

DFCMG Double-Precision Floating Compare Magnitude 427

SUMMARY: Algebraic compar1son I C [(E)(AQo-63)J I ::·1 C (Y -pa i r) I
MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: (Indicators not listed are not affected)

(l)

>
+'

0 ro
I- OIl
(l) (l)

Relation N z

a a Ic [(E)(AQa-6'3)J I > I C (Y -pa i r) I
1 a Ic [(E)(AQa-63)J I = I C(Y-pair) I
a 1 Ic [(E)(AQo_63)] I < I C(Y-pair) ;

NOTE: This comparison 1S executed as follows:

Compare C(E) :: C(Y)O-7' select the number with the lower
exponent, and shift its mantissa right as many places as the
difference of the exponents.

Then compare the absolute value of the mantissas and set the
indicators accordingly.

2-70

•

FLOATING POINT COMPARE

Mnemonic: Name of the Instruction:

FSZN Floating Set Zero and Negative Indicators from Memory

SUMMARV: Test the Number C(V)

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

ID
> .-
~

0 m
~ on
ID ID Relation ~ ~

a a Mantissa C(V)8_1~ > a
1 a Mantissa C(V)8-35 = a

a 1 Mantissa C(V)8-3S < a

2-71

BOQEAN OPERA T IONS AND

Mnemonic:

I ANA

Name of ±he Ins±ruc±ion:

I AND to A

012 Code (Octal)

l 375 I

SUMMARY: C(A)i AND C(Y)i => C(A)i for all = 0, 1, ••• , 35

MOD I F I CAT IONS: All

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise Off

Mnemonic:

I ANQ

Na:p'9 of ± he In s± wet i 00 :

I AND to Q

Qp ["de (Octal)

376 I

SUMMARY: C(Q)i AND C(Y)i => C(Q)i for all = 0, 1, ••• , 35

MODIFICATIONS: All

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

Ion: o

SUMMARY: C(AQ)i AN~ C(Y-pair)i => C(AQ)i for all = 0, 1, ••• , 71

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (I nd icators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negat i ve If C(AQ)O = 1, then On; otherwise OFF

2--72

•

800LEAN OPERA T I ONS AND

Mnemonic:

I ANXn

Name of the I a st wC± joa:

I AND to Xn (n : 0, 1, ••• , 7)

SUMMARY: C(Xn)i AND C(Y)i => C(Xn)i fo:- all i = 0, 1, ••• , 17

MODIFICATIONS: All except CI, SC, SCR

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)o = 1, then ON; otherwise OfF

Mnemonic:

I ANSA

Name of the Instruction:

I AND to Storage A

SUMMARY: C(A)i AND C(Y)i => C(Y)i for all = 0, 1, ••• , 35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) = 0, then ON; ·otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: o Octal
ANSQ AND to Storage Q

SUMMARY: C (Q) i AND C (Y) i => C (Y) i for all = 0, 1, ••• , 35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (I nd icators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

2-73

BOOLEAN OPERATIONS AND

(n = 0, 1, ••• , 7)

SUMMARY: C(Xn)i AND C(Y)i => C(Y)i fo~ all i = 0, 1, •.• , 17

MODIFICATIONS: All except DU, DL, CI, SC, SCR

Zero If C(Y)0-I7 = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

2-74

BOOLEAN OPERATIONS OR

Mnemonic:

I ORA.

Name of the I nsf wc+ ion:

I OR to A

SUMMARY: C(A)i OR C(Y)i => C(A)i

MODIFICATIONS: All

for all = 0, 1, ••• , 35

INDICATORS: (Indicators not listed are not affected)
Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: (Octal)

ORQ OR to Q.

SUMMARY: C(Q)i OR C(Y)i => C(Q)i

MOD I FICA T IONS: All

for all = 0, 1, ••• , 35

I NDI CATORS: (I nd icators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

I 277 I ORAQ I OR to AQ

SUMMARY: C(AQ)i OR C(Y-pair)i => C(AQ)i

MODIFICATIONS: All except DU, DL, CI, SC

f~r all = 0, 1, ••• , 71

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

2-75

BOOLEAN OPERATIONS OR

o Code (Octal)

OR;>~n (n = 0,1, ••• ,7) 26n

SUMMAR'!: C(Xn) i OR C(Y) i => C(Xn) i

MODIFICATIONS: All except C I, SC, SCR

for all i = 0, 1, ••. , 17

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

Mnemonic: Name of the In n:
ORSA OR to Storage A

SUMMARY: C(A)i OR C(Y)i => C(Y)i for all = 0, 1, ••• ,35

i'AOD I FICA T IONS: All except DU, DL, CI, SC, SCR

I :\lD i CA TORS:

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

Mnemoo i ,-; :

I ORSQ

Name of t he 10 s±r\Jd i 00 ;

I OR Lo Storage Q

Or Code (Oda 1)

l 256 I
SUMMARY: C(Q)i OR C(Y)i => C(Y)i for all = 0, 1, ••• , 35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators oat 1 isterl ar-e oot affer.ted)
Zero If C(Y) = 0, theo ON; otherwise OFF

Negative If C(Y)O = 1, then Of~; otherwise CfF

2-76

BOOLEAN OPERATIONS OR

(n = 0,

SUMMARY: C(Xn)i OR C(Y)i => C(Y)i for all i = 0, 1 ••• , 17

MODIFICATIONS: All except DU, DL, Cl, SC, SCR

Zero If C(Y)0-17 = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

2-77

BOOLEAN OPERATIONS EXCLUSIVE OR

ERA I EXCLUSIVE OR to A

Op Code (Octal)

I 675 I
Mnemonic: Name of the Instruction:

SUMMARY: C(A)i ~ C(Y)i => C(A)i for = 0, 1, ... ,35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1-, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

ERQ I EXCLUS I VE OR to Q

Op Code (Octal)

I 676 I
SUMMARY: C(Q)i ~ C(Y)i => C(Q)i for = 0, 1, ... 35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

ERAQ I EXCLUS I VE OR to AQ

Op Code (Octal)

I 677 I
SUMMARY: C(AQ)i ~ C(Y-pair)i => C(AQ)i for all = 0, 1, ... ,71

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C (AQ) = 0, then ON; otherwise OFF

Negative If C (AQ)O = 1, then ON; otherwise OFF

2-78

BOOLEAN OPERATIONS EXCLUSIVE OR

Mnemonic:· Name of the Instruction: o (Octal)

ERXn EXCLUSIVE OR to Xn (n = 0, 1, ... ,17)

for i = 0, 1, ... ,17

MODIFICATIONS: All except CI, SC, SCR

I ND IC ATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Code (Octal
ERSA EXCLUSIVE OR to Storage A 655

SUMMARY: C (A) i ~ C (Y) i => C (Y) i for = 0, 1, •.. ,35

MODIFICATIONS: All except DU, DL, CI ~ SC, SCR

I ND I CATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

2-79

BOOLEAN OPERATIONS EXCLUSIVE OR

Mnemonic: Name of the Instruction: o Code (Octal)

ERSQ EXCLUSIVE OR to Storage Q

SUMMARY: C(Q)i % C(Y)i => C(y)·
1

for = 0,1, ... ,35

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS' (Indicators not listed are not affected) .
Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: o Code (Octal)

ERSXn EXCLUSIVE OR to Storage Xn (n = 0,1, ... ,7) 64n

SUMMARY: C(Xn)i 1: C(Y)i => C(Y)i for = 0, 1, ... ,17

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)0-17 = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF - -

2-80

COMPARISON COMPARE

Mnemonic: Name of the Instruction: o Code (Octal)

CMPA Compare with A

SUMMARV: Comparison C(A) :: C(V)

MODIFICATIONS: All

115

INDICATORS: (Indicators not listed are not affected)

Q)

> .-
+' >.. Aleebraic (Signed Fixed-Point) CQm~arison 0 111 ~

~ OIl ~
Q) Q) 111

N Z u Relation Sign

0 0 0 C(A) > C(V) C(A)O = 0, C(V)O = 1

0 0 1 C(A) > C(V)

~ C(A)O = C(Y)O 1 0 1 C(A) = C(V)

0 1 0 C(A) < C(V)

0 1 1 C(A) < C(V) C(A)O = 1, C(V)O = 0

>.. LQgic (Unsigned Fixed-Point) Comparison 0 ~
~ ~
Q) 111

Relation N u

0 0 C(A) < C(V)

1 1 C(A)=C(V)

0 1 C(A) > C(V)

2-81

COMPARISON COMPARE

Mnemonic: Name of the Instruction:

CMPQ Compare with Q

SUMMARY: Comparison C(Q) .. C(Y)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Q)

> .-
+' >-. Algebraic (Signed Fixed-Point) Comparison a cO OIl ...

Q) Q) cO
Relation N z 0 Sign

0 0 0 C(Q) > C(Y) C(Q)O = 0, C(Y)O = 1

0 0 1 C(Q) > C(Y)

} C(Q)O = C(Y)O 1 0 1 C(Q)=C(Y)

0 1 0 C(Q) < C(Y)

0 1 1 C(Q) < C (y) C(Q)O = 1, C(Y)O = 0

>-.
(Unsigned Fixed-Point) Com~arison a ... Logic

Q) cO
N 0 Relation

0 0 C(Q) < C(Y)

1 1 C(Q) = C(Y)

0 1 C(Q) > C(Y)

2--82

COMPARISON COMPARE

Mnemonic: Name of the Instruction:

CMPAQ Compare with AQ

SUMMARY: Comparison C(AQ) :: C(Y-pair)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Q)

>, >. Aleebraic (S iened Fixed-Point) Com~arison 0 as !...
!... OIl !...
Q) Q) as Relation Sign N z 0

o Code (Octal)

117

0 0 0 C(AQ) > C(Y-pair) C(AQ)O = 0, C(Y-pair)o = 1

0 0 1 C(AQ) > C(Y-pair)

~ C(AQ)O = C(Y-pair)O 1 0 1 C(AQ) = C(Y-pair)

0 1 0 C(AQ) < C(Y-pair)

0 1 1 C(AQ) < C(Y-pair) C(AQ)O = 1, C(Y-pair)O = 0

>. Loe ic (Unsiened Fixed-Point) ComparisoQ 0 !...
!... !...
Q) as Relation N 0

0 0 C(AQ) < C(Y-pair)

1 1 C(AQ) = C(Y-pair)

0 1 C(AQ) > C(Y-pair)

2-83

COMPARISON COMPARE

Mnemonic: Name of the Instruction:

CMPXn Compare with Xn

SUMMARY: Comparison C(Xn) :: C(Y)0-17

MODIFICATIONS: All except CI, SC, SCR

(n = 0,1, ... ,7)

INDICATORS: (Indicators not listed are not affected)

Q)

>
+' >-. Algebraic (Signed Fixed-Pointl Comearison 0 !\l ~

~ Qj) ~
Q) Q) !\l

N Z c..:> Relation SiQn

Code (Octal)

10n

0 0 0 C(Xn) > C(Y)O-17 C(Xn)O = 0, C(Y)O = 1

0 0 1 C(Xn) > C(Y)0-17

} C(Xn)O = C(y)O 1 0 1 C(Xn) = C(Y)0-17

0 1 0 C(Xn) < C(Y)0-17

0 1 1 C(Xn) < C(Y)0-17 C(Xn)O = 1, C(Y)O = 0

>-.
Fi~~d-Pointl Com~ari~on 0 ~ LQgi~ ~Un~igD~g ~ ~

Q) !\l
N c..:> Relation

0 0 C (Xn) < C (y) 0-17

1 1 C(Xn) = C(Y)0-17

0 1 C(Xn) > C(Y)0-17

2-84

Mnemonic:

CWL

SUMMARY:

COMPARISON COMPARE

Name of the Instruction:

I Compare wi th Lim i ts

Algebraic comparison of C(Y) with
and also with the number C(Q)

Op Code (Octal)

I 111 I
the closed interval [C(A); C(Q)]

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
Zero If C(Y) is contained in the closed interval

[C(A); C(Q)J~ i.e.,
either C(A) ~ C(Y) ~ C(Q)
or C(A) ~ C(Y) = C(Q),
then ON; otherwise OFF

Q)

> .-
+' >-. Relation between Signs of ttl l-
on I- C (Q) and C (y) C (Q) and C (Y) Q) ttl

Z 0

0 0 C (Q) > C (Y) C(Q)O = 0, C(Y)O = 1

0 1 C(Q)f C(Y)
}C(Q)O = C(V)O

1 0 C(Q) ~ C(Y)

1 1 C(Q) < C(Y) C(Q)O = 1, C(Y)O = 0

2-85

CO!V1PARI SON COMPARE

Mnemonic:

I CWG

Name of the Indr'lC±iono

I Compare Magn i tude

Op rd. (Octall

405 I
SUMMARY: Algebraic comparison

MODIFICATION: All

<lJ
>

-+'
0 ro
I- OIl
<lJ <lJ

Relation N z

0 0 > IC(y)1

I 0

0 I

Mnemonic: Nam·? of the Instruction:

SZN Set Zero a,ld Negative Indicators from Memory

SUMMMW: Test the number C(Y)

MODIFICATION: All

INDICATORS: 'I nd i ca tors no± ~ i der! .<1 roe not .<1 f£9~±-",rl)

<lJ
> .-

-+'
0 ro
I- OIl
<lJ Q)

N Z Relation

0 0 Number C(Y) > 0

I 0 Number C(Y) = 0

a 1 '\lurnber C(Y) < 0

2-86

COMPARISON COMPARE

Mnemonic:
CMK

SUMMARY: for all = 0, 1, ••• , 35

MODIFICATIONS: All

INDICATORS:

Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

NOTES: 1. This instruction compares those corresponding bit positions of A
and Y for identity that are not masked by a 1 in the corresponding
bit position of Q.

2. The zero indicator is set ON, if the comparison is successful for
all bit positions; i.e., if for all i = 0, 1, ••• , 35 there is

either C(A)i = C(Y)i or C(Q)i = 1

(identical) (masked)

Otherwise Zero indicator is set OFF.

3. The negative indicator is set a~ if the comparison IS unsuccess­
ful for bit position 0, i.e., if

C(A)O ;t C(Y)O as well as C(Q)O = 0

(nonidentical) (nonmasked)

Otherwise negative indicator is set OFF.

(Revised February 26, 1971)

2-87

I

I

COMPARISON COMPARATIVE AND

Mnemonic: Name of the Instruction:

CANA Comparative AND with A

SUMMARY: Z i = C (A) i AND C (Y) i

MODIFICATIONS: All

INDICATORS: (Indicators not

Zero If Z = 0, then

for all = 0, 1, ... ,35

listed are not affected)

ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Code (Octal)

CANQ Comparative AND with Q 316

SUMMARY: Z i = C (Q) i AND C (y) i . for all = 0, 1, ... ,35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

2-88

COMPARISON COMPARATIVE AND

Mnemonic: Name of the Instruction: Op Code (Octal)

CANAQ I Comparative AND with AQ I 317 I
SUMMARY: Zi = C(AQ)i AND C(Y-pair)i for all = 0, 1, ••• ,71

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

C ANXn Compara t-i ve AND with Xn (n = 0, 1, .•. ,7)

SUMMARY: Zi = C(Xn)i AND C(Y)i for all i = 0, 1, .•. ,17

MODIFICATIONS: All except CI, SC, SCR

INDICATORS· (Indicators not listed are not affected) .
Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

2-89 .

COMPARISON COMPARATIVE NOT

Mnemonic: Name of the Instruction: o Code (Octal)

CNAA Comparative NOT with A 215

SUMMARY: Zi = C(A)i AND CTYTi for all = 0, 1, ... ,35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: o (Octal-)

CNAQ Comparative NOT with Q

SUMMARY: Z i = C (Q) i AND C (y) i for all = 0,1, ... ,35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

2-90 .

COMPARISON COMPARATIVE NOT

Mnemonic: Name of the Instruction:

CNAAQ Comparative NOT with AQ

SUMMARY: Zi = C(AQ)i AND C(Y-pair)i for all = 0, 1, •.. ,71

MODIFICATIONS: All except D~, DL, CI, SC, SCR

INDICATORS' (Indicators not listed are not affected) .
Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 'Code (Octal)

CNAXn Comparative NOT with Xn 20n

SUMMARY: Zi = C(Xn)i AND C(Y)i for all = 0, 1, •.. ,17

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If Z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

2-91

TRANSFER OF CONTROL TRANSFER

Mnemonic: Name of the Instruction: Code (Octal)

TRA Transfer Unconditionally 710

SUMMARY: EA => C(ICTC), C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES: 1. The new effective address replaces the C(ICTC), and the new
pointer in TBR formed during the appending process for the trans­
fer address replaces C(PBR). Pointers in TBR may come from the
following sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 1

c. C(ABRm) when designated by an ITB modifier in the indirect
word (m is an external ABR)

d. C(TBR) when brought in as a result of an ITS modifier in the
indirect word

2. All successful transfers depend upon normal access restrictions,
and are subject to linkage faults and directed faults.

2-02

TRANSFER OF CONTROL TRANSFER

Mnemonic: Name of the Instruction:

TSBn Transfer and Set Base n (n=O, 1, •.. ,7)

o Code (Octal
270-273
670-673

SUMMARY: C(ICTC) + 00 .•. 01 => C(ABRn)0_17; C(PBR) => C(ABRm)0_17;
EA => C(ICTC); P => C(PBR) where nand m are the designated in­
ternal and the linked external ABR's respectively.

MODI FICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES: 1. If the ABR SPECIFIED BY THE TSBn instruction is external, that is,
C(ABRn)21 = 1; then C(ICTC) + 00 ••. 01 => C(ABRn)0_17 does not take
place. The pointer formed during the appending process for the
transfer address replaces C(PBR). Pointers in TBR may come from
the following sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 0

c. C(ABRm) when designated by an ITB modifier in the direct word
(m is an external ABR) .

d. C(TBR) when brought in as a result of an ITS modifier in the
indirect word

2. This instruction may be executed in Master or Slave mode. If at­
tempted in Slave mode an illegal procedure fault will be generat­
ed unless C(ABRn,m)22 = o. The ABR's will be affected in the
following manner:

a. If C(ABRn)22 = 1, the fault is generated and ABRn, mare
not changed

b. If C(ABRn)22 = 0 and C(ABRm)22 = 1, then ABRn is loaded, and
the fault is generated for ABRm

3. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

2-93

TRANSFER OF CONTROL TRANSFER

Mnemonic: Name of the Instruction: o Code (Octal
TSXn Transfer and Set Index Register n n (n=O, 70n

SUMMARY: C(ICTC) + 0 ... 01 => C(Xn) EA => C(ICTC), C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS:

NOTES: 1.

None affected

The new effective address replaces the C(ICTC), and the new
pointer in TBR formed during the appending process for the trans­
fer address replaces C(PBR). Pointers in TBR may come from the
following sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 1 (m is an external
ABR)

c. C(ABRm) when designated by an ITB modifier in the indirect
word)

d. C(TBR) when brought in as a result of an ITS modifier in the
i n d i r e'ct wo r d

2. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

2-94

•

, -

TRANSFER OF CONTROL TRANSFER

Mnemonic: Name of the Instruction: Op Code (Octal)

I TSS I Transfer and Set Slave I 715 I
SUMMARY: EA => C(ICTC), C(TBR) => C(PBR), Reset Absolute indicator

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES: 1. The new effective address replaces the C(ICTC), and the new pointer
in TBR formed during the appending process for the transfer address
replaces C(PBR). Pointers in TBR may come from the following
sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 1

c. C(ABRm) when designated by an ITB modifier in the indirect word
(m is an external ABR)

d. C(TBR) when brought in as a result of an ITS modifier in the
indirect word

2. If this instruction is attempted in Slave mode a 635/645 compat­
ibility fault will occur. When this instruction is executed in
Master mode, the absolute indicator is reset just before the
fetch of the new (transferred) instruction unless bit 29 of TSS
is ON, or ITB or ITS indirection is specified. Therefore, it is
recommended that TSS not be used to get out of Absolute mode.

3. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

2-95

TRANSFER OF CONTROL TRANSFER

Mnemonic: Name of the Instruction:

RET I Return

Op Code (Odal)

I 630 I
SUMMARY: C(Y)0-17 => C(ICTC); C(Y)18_28 => C(IR); C(Y)29-35 are not used

MODI F ICAT IONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affeded)
Absolute Mode If corresponding bit in C(Y) is 1, and processor 1S 1n

Procedure-Master mode, then ON; otherwise OFF.
All other If corresponding bit in ClY) is 1, then ON; otherwise
Indicators OFF.

NOTES: 1. The contents of the location specified by Y replaces the contents
of the instruction counter and indicator register. A possible
change in status of the Absolute mode indicator takes place as
the last part of the instruction execution. The relationship
between C(Y)18-28 and the indicators is as follows:
Bit Position Indicator

18
19
20
21
22
23
24
25
26
27
28

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Par ity Error
Parity Mask
Absolute Mode

2. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

2-96

....

TRANSFER OF CONTROL TRANSFER

Mnemonic: Name of the Instruction: o Code (Octal)

RTCD Return Double 610

SUMMARY: C(Y)0-17 => C(PBR); C(Y)18-35 is ignored
C(Y+1)0-17 => CUCTC); C(Y+1)18-28 => C(lR); C(Y)29-35 are not
used

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Absolute Mode If corresponding bit in C(Y+1) is 1, and processor IS In
Procedure-Master modey then ON; otherwise OFF.

All other If corresponding bit in C(Y+1) is 1, then ON; otherwise
Indicators OFF.

NOTES: 1. The contents of the location specified by Y+1 replaces the contents
of the instruction counter and indicator register. A possible
change in status of the Absolute mode indicator takes place as
the last p'art of the instruction execution. The relationship
between C(Y+1)18-28 and the indicators is as follows:

Bit Position

18
19
20
21
22
23
24
25
26
27
28

Indicator

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Over fl ow Mask
Tall y Rl,mOU t
Par ity Error
Parity Mask
Absolute Mode

2. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

2-97

TRANSFER OF CONTROL CONDITIONAL TRANSFER

Mnemonic: Name of the Instruction: Op Code (Octal)

TZE I Transfer on Zero I 600 I
SUMMARY: If zero indicator ON, then EA => C(ICTC), C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES:

Mnemonic:

I TNZ

SUMMARY:

1. The new effective address replaces the C(ICTC), and the new
pointer in TBR formed during the appending process for the trans­
fer address replaces C(PBR). Pointers in TBR may come from the
fOllowing sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 1 (m is an external
ABR)

c. C(ABRm) when designated by an ITB modifier in the indirect
word (m is an external ABR)

d. C(TBR) when brought in as a result of an ITS modifier in the
i nd i rect word

2. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

Name of the Instruction: 00 Code (Octal

I Transfer on Not Zero 601

If zero indicator OFF, then EA => C(ICTC), C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND I CATORS : None affected
"

NOTES: Same as for TZE instruction, above.

Mnemonic: Name of the Instruction: Op Code (Octal)
TMI I 604 I I Transfer on Minus

SUMMARY: If negative indicator ON, then EA => C(ICTC), C(TBR) => C(PBR)

MOD IF ICAT IONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES: Same as for TZE instruction, above.

2-98

".

•

TRANSFER OF CONTROL CONDITIONAL TRANSFER

Mnemonic: Name of the Instruction: o Code (Octal)

TPLTransfer on Plus 605

SUMMARY: If negative indicator OFF, then EA => C(ICTC), C(TBR) => C(PBR)

MODI FICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES: 1. The new effective address replaces the C(ICTC), and the· new
pointer in TBR formed during the appending process for the trans­
fer address replaces C(PBR). Pointers in TBR may come from the
following sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 1 (m is an external
ABR)

c. C(ABRm) when designated by an ITB modifier in the indirect word
(m is an external ABR)

.d. C(TBR) when brought in as a result of an ITS modifier in the
indirect word

2. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

2-99

TRANSFER OF CONTROL CONDITIONAL TRANSFER

Mnemonic: Name of the Instruction: Op Code (Octal)

I 603 I T~ I Transfer on Carry

SUMMARY: If Carry indicator ON, then EA => C(ICTC), C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTE: Same as for the TPL instruction on page 2-99.

Mnemonic: Name of the Instruction: Op Code (Octal)

TNC I Transfer on No Carry I 602 I
SUMMARY: If Carry indicator OFF, then EA => C(ICTC), C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, ·CI, SC, SCR

INDICATORS: None affected

NOTE: Same as for the TPL instruction on page 2-99.

2-100

TRANSFER OF CONTROL CONDITIONAL TRANSFER

Mnemonic: Name of the Instruction: o Code (Octal

TOV Transfer on Overflow 617

SUMMARY: If overflow indicator ON, then EA => C(ICTC), C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected

Overflow Set OFF

NOTES: 1. The new effective address replaces the C(ICTC), and the new
pointer in TBR formed during the appending process for the trans­
fer address replaces C(PBR)'. Pointers in TBR may come from the
following sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 1 (m is an external
ABR)

c. C(ABRm) when designated by an ITB modifier in the indirect
word (m is an external ABR)

d. C(TBR) when brought in as a result of an ITS modifier in the
indirect word

2. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

Mnemonic: Name of the Instruction:
TEO Transfer on Exponent Overflow

SUMMARY: If exponent overflow indicator ON, then EA => C(ICTC);
C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: (Indicators not listed are not affected)
Exponent I
Over fl ow Set OFF

NOTES: Same as for the TOV instruction above.

2-101

TRANSFER OF CONTROL CONDITIONAL TRANSFER

Mnemonic: Name of the Instruction: Code (Octal)

TEU Transfer on Exponent Underflow

SUMMARY: If eXp'onent underflow indicator ON, then EA => C(ICTC);
C(TBR) => C(PBR)

MOD I F I C AT IONS:

I ND IC ATORS:
Exponent
Underflow

All except DU, DL, CI, SC, SCR

(Indicators not listed are not affected)

I Set OFF

NOTE: Same as for the TOV instruction on preceding page.

Mnemonic: Name of the Instru tion:

TTF Transfer on Tally Runout Indicator Off

SUMMARY: If Tally Runout indicator OFF, then EA => C(ICTC);
C(TBR) => C(PBR)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

615

I

tal

NOTES: 1. The new effective address replaces the C(ICTC), and the new
pointer in TBR formed during the appending process for the trans­
fer address replaces C(PBR). Pointers in TBR may come from the
following sources:

a. C(PBR) when bit 29 of instruction word = 0

b. C(ABRm) when bit 29 of instruction word = 1 (m is an external
ABR)

c. C(ABRm) when designated by an ITB modifier in the indirect
word (m is an external ABR)

d. C(TBR) when brought in as a result of an ITS modifier in the
indirect word

2. All successful transfers depend upon normal access restrictions
and are subject to linkage faults and directed faults.

2-102

SPECIAL

Mnemonic: Name of the Instruction: o Code (Octal)

BCD Binary to Binary-Coded-Decimal 505

SUMMARY: C(A) divided by C(Y) => 4-bit quotient and remainder. Shift C(Q)
left six positions; 4-bit quotient => C(Q)32-35 and remainder
=> C(A). Shift C(A) left three positions.

MODIFICATIONS: All except IT categor ies C I, SC, SCR

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON

Negat i ve If before execution C(A)O = 1, then ON; otherwise OFF

NOTES: 1. This instruction carries out one step in an algorithm for the
conversion of a number from the binary to the decimal system of
notation, which requires the repeated short division of the bi­
nary number or last remainder by certain constants.

Ci = 8 1 x 10n-1 (for i=1,2 ... 1
with n being defined by: 10n- ~ Inumberl ~ (10n) -1

2. The values in the table that follows are the conversion constants
to be used with the Binary to BCD instruction. Each vertical
column represents the set of constants to be used depending on
the initial value of the binary number to be converted to its
decimal equivalent. The instruction is executed once per digit,
using the constant appropriate to the conversion step wtth each
execution.

3. An alternate use of the table for conversion involves the use of
the constants in the row corresponding to conversion step 1. If
after each conversion, the contents of the accumulator are shifted
right 3 positions, the constants in the conversion step 1 row may
be used one at a time in order of decreasing value until the con­
verSIon is complete.

4. See diagram on the following page.

2-103

Example:

2 82xlO S

3 83x10 7

4 84x106

5 85x105

6 86x104

7 87x103

8 SSx102

9 89x10 1

10 810

01 LDX2

02 LDA

03 RPT

04 BCD

05 STQ

06TAB DEC

DEC

BINARY TO BCD CONVERSION CONSTANTS

S2x10 7 82x106 S2x105 82x104 S2x103 82x10 2 82x101 82

S3x106 83x105 S3x104 83x10 3 83x10 2 S3x10 1 83

S4x105 S4x104 S4x103 84x10 2 S4x10 1 84

85x104 85x103 S5x10 2 85x10 1 85

86x10 3 86x10 2 86x10 1 86

87x10 2 87x101 S7

88x10 1 S8

S9

O,DU PLACE ZEROS IN X2

X LOAD ACCUMULATOR WITH VALUE TO BE CONVERTED

6,1 REPEAT 6 TIMES, INCREMENT BY 1

TAB,2 DIVIDE BY TAB, TAB+1, ETC.

Y STORE CONVERTED NUMBER IN Y

800000, 640000, 512000, 409600, 327680

262144

5. Because there is a limit on range, a maXlmum of 10 digits may be
converted correctly.

SPECIAL

Mnemonic: Name of the Instruction: Code (Octal)

CAM Clear Associative Memory 532

SUMMARY: o => C(AR)54; usage value (0000-1111) => C(AR)56-59 for all 16 ARts

rv'OD I F I CAT IONS: None

I ND ICATORS: None affected

NOTE: Execution of the CAM instruction sets the empty/full bit in each
AR to zero; that is, empty, and initializes the usage value of
each AR by arb it.rar i I Y ass ign i ng a un i que number in the range
0-15 to each register. If this instruction is attempted in Slave
mode, an illegal procedure faul t wi 11 be generated.

Mnemonic: Name of the Instruction: Op Code (Octal)

GTB I Gray to Binary I 774 I
SUMMARY: C(A) converted from Gray Code to binary representation => C(A)

MODIFICATIONS: None

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

NOTE: This conversion is defined by the following algorithm where Ri
and Si denote the contents of bit positions i of the A~register
before and after conversion.

~O = RO Si = (Ri AND ~S-i--1~) OR (RT AND Si-1)
for 1 = 1,2, ... ,35.

2-105

Mnemonic:

C IOC

SUMMARY:

SPEC I AL

Name of the Instruction: o Code (Octal)

Connect I/O Channel 015

C(Y) are transferred from the memory module Via the memory module
port that is specified by C(Y).

MOD I F I C AT IONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: None affected

NOTES: 1 • The absolute address Y is used to access the memory location as
usual. However, the memory module does not transmit the contents
of this location to the processor that submitted the absolute ad­
dress; it uses C(Y)33-35 to select one of its eight ports,
sends a connect pulse to the unit on this port, and then trans­
mits C(Y). C(Y) must be a 0 modulo 8 to be independent of inter­
lace.

2. This instruction can be used in the Master mode only. If the
use of this instruction is attempted by a processor that is In
the Slave mode an illegal memory command fault will occur.

3. A connect command is sent out the processor port selected by the
24-bit absolute address formed by this instruction.

Mnemonic: Name of the Instruction:

DIS Delay Until Interrupt Signal

SUMMARY: No operation takes place, and the processor does not continue with
the next instruction but waits for a program interrupt signal.

MOD IF ICAT IONS:

INDICATORS

NOTES: 1 •

None

None affected

This instruction can be used in the Master mode only or a
635/645 compatibility fault will occur.

2. The inhibit bit (bit 28 of the instruction word) will not
inhibit interrupts for this instruction.

2-106

Mnemonic:

I DRL

SUMMARY:

SPEC I AL

Name of the Instruction: Op Code (Octal)

I 002 I I Derail

Causes a fault which obtains and executes in the Absolute mode the
two instruct ions stored at memory locations 4 + C and 5 + C decimal;
the constant C being set up in the maintenance panel FAULT VECTOR
switches.

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: The DRL instruction itself does not affect any indicator.
However, the execution of the two instructions from 4 + C and
5 + C may affect indicators; each one in turn will affect the
absolute mode indicator as follows:

Absolute
Mode

NOTES:

I f the instruction obtained actually results in a transfer
of control and is not the TSS instruction, then ON.

If the instruction obtained is either the RET or RTCD in­
struction with bit 29 = zero, or the TSS instruction, .then
OFF.

Execution of the DRL instruction implies the following conditions:

1. During the execution of this DRL instruction and the two instruc­
tions obtained, the processor is in the Absolute mode, in~epend­
ent of the value of its Absolute indicator. The p~ocessor will
stay in the Absolute mode if the Absolute indicator is ON after
the execution of these three instructions.

2. The instruction from 4 + C must not alter the memory location
5 + C, and must not be an XED instruction.

3. If the instruction from 4 + C alters the contents of the instruc­
tion counter, then this transfer of control is effective im­
mediately; and the instruction from 5 + C is not executed.

4. After the execution of the two instructions obtained from Y-pair,
4 + C and 5 + C, the next instruction to be executed is obtained
from C(ICTC) + 1. This is the instruction stored in the memory
right after this DRL instruction unless the contents of the in­
struction counter have been changed by the execution of the two
instructions obtained from 4 + C and 5 + C.

2-107

Mnemonic:

MME

SUMMARY:

SPECIAL

Name of the Instruction: Op Code (Octal)

Master Mode Entry 1 I 001 I
Causes a fault which obtains and executes in the Absolute mode the
two instructions stored at the memory locations 2 + C and 3 + C
decimal; the constant C is set up on the maintenance Panel FAULT
VECTOR switches.

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: The MME instruction itself does not affect any indicator.
However, the execution of the two instructions from 2 + C

Absolute
Mode

NOTES:

and 3 + C may affect indicators; each one in turn will affect
the Absolute mode indicator as shown.

If the instruction obtained actually results in a transfer
of control and is not the TSS instruction, then ON.

If the instruction obtained is either the RET or RTCD In­
struction with bit 29 = zero, or the TSS instruction, then
OFF.

Execution of the MME instruction implies the following conditions:

1. During the execution of this MME instruction and the two in­
structions obtained, the processor is in the Absolute mode in­
dependent of the value of its Absolute mode indicator. The pro­
cessor will stay in Absolute mode if the Absolute mode indicator
is set ON after the execution of thes~ three instructions.

2. The instruction from 2 + C must not alter the memory location
3 + C, and must not be an XED instruction.

3. If the instruction from 2 + C alters the contents of the instruc­
tion counter, then this transfer or control is effective im­
mediately and the instruction from 3 + C is not executed.

4. After the execution of the two instructions obtained from Y-pair,
2 + C and 3 + C, the next instruction to be executed is obtained
from C(ICTC)+1. This is the instruction stored in memory right
after this MME instruction unless the contents of the instruc­
tion counter have been changed by the execution of the two in­
structions obtained from 2 + C and 3 + C.

2-108

Mnemonic:

MME2

SUMMARY:

SPEC I AL

Name of the Instruction: o Octal

Master Mode Entry 2

Causes a fault which obtains and executes in the Absolute mode the
two instructions stored at the memory locations 8 + C and 9 + C
decimal; the constant C is set up on the maintenance panel FAULT
VECTOR switches.

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: The MME2 instruction itself does not affect any indicator.
However, the execution of the two instructions from 8 + C,
and 9 + C may affect indicators, particularly each one In
turn will affect the Absolute mode indicator as shown.

Absolute
Mode

NOTES:

If the instruction obtained actually results in a transfer
of control and is not the TSS inshuction, then ON.

If the instruction obtained is either the RET or RTCD In­
struction with bit 29 = zero, or the TSS instruction, then
OFF.

Execution of the MME2 instruction implies the following conditions:

1. During the execution of this MME2 inshuction and the two instruc­
tions obtained, the processor is in the Absolute mode independent
of the value of its Absolute mode indi~ator. The processor will
stay in Absolute mode if the absolute mode indicator is set ON
after the execution of these three instructions.

2. The instruction from 8 + C must not alter the memory location
9 + C, and must not be an XED instruction.

3. If the instruction from 8 + C alters the contents of the instruc­
tion counter, then this transfer of control is effective immedi­
ately and the instruction from 9 + C is not executed.

4. After the execution of the two instructions obtained from Y-pair,
8 + C and 9 + C, the next instruction to be executed is obtained
from C(ICTC)+1. This is the instruction stored In memory right
after this MME2 instruction unless the contents of thc instruc­
tior. counter have been changed by the execution of the two in­
structions obtained from 8 + C and 9 + C.

2-109

Mnemonic:

MMEJ

SUMMARY:

SPECIAL

Name of the Instruction: o Code (Octal

Master Mode Entry J 005

Causes a fault which obtains and executes in the Absolute mode the
two instructions stored at memory locations 10 + C and 11 + C dec­
mal; the constant C is set up on the maintenance panel FAULT
VECTOR switches.

MODIFICATIONS: All except CI, SC, SCR

INDICATORS: The MMEJ instruction itself does not affect any indicator.
However, the execution of the two instructions from 10 + C
and 11 + C may affect indicators; each one in turn will af­
fect the Absolute mode indicator as shown.

Absolute
Mode

If the instruction obtained actually results in a transfer
of control and is not the TSS instruction, then ON.

NOTES:

If the instruction obtained is either the RET or RTCD In­
struction with bit 29 = zero, or the TSS instruction, then
OFF.

Execution of the MMEJ instruction implies the following conditions:

1. During the execution of this MMEJ instruction and the two in­
structions obtained, the processor is in the Absolute mode in­
dependent of the value of its Absolute mode indicator. The pro­
cessor will stay in Absolute mode if the Absolute mode indicator
is set ON after the execution of these three instructions.

2. The instruction from 10 + C must not alter the memory location
11 + C and must not be an XED instruction.

3. If the instruction from 10 + C alters the contents of the in­
struction counter, then this transfer of control is effective
immediately and the instruction from 11 + C is not executed.

4. After the execution of the two instructions obtained from Y-pair,
10 + C and 11 + C, the next instruction to be executed is ob­
tained from C(ICTC)+1. This is the instruction stored in memory
right after this MMEJ instruction unless the contents of the in­
struction counter have been changed by the execution of the two
instructions obtained from 10 + C and 11 + C.

2-110

Mnemonic:
MME4

SUMMARY:

SPEC I AL

Name of the Instruction: tal

Master Mode Entry 4

Causes a fault which obtains and executes in the Master mode the
two instructions stored at the memory locations 14 +C and 15 + C
decimal; the constant C is set up on the maintenance panel FAULT
VECTOR sw itches.

MOD I F ICAT IONS: All Except CI, SC, SCR

INDICATORS: The MME4 instruction itself does not affect any indicator.
However, the execution of the two instructions from 14 + C
and 15 + C may affect indicators, each one in turn will af­
fect the Absolute mode indicator as shown.

Absolute
Mode

NOTES:

If the instruction obtained actually results in a transfer
of control and is not the TSS instruction, then ON.

If the instruction obtained is either the RET or RTCD In­
struction with bit 29 = zero, or the TSS instruction, then
OFF.

Execution of the MME4 instruction implies the following conditions:

1. During the execution of this MME4 instruction and the two in­
structions obtained, the processor is in the Absolute mode in­
dependent of the value of its Absolute mode indicator. The pro­
cessor will stay in Absolute mode if the Absolute mode indicator
is set ON after the execution of these three instructions.

2. The instruction from 14 + C must not alter the memory location
15 + C and must not be an XED instruction.

3. I f the instruction from 14 + C al ters the contents of the in­
struction counter, then this transfer of control is effective
immediately and the instruction from 15 + C is not executed.

4. After the execution of the two instructions obtained from Y-pair,
14 + C and 15 + C, the next instruction to be executed is obtain­
ed from C(ICTC) +1. This is the instruction stored in memory
right after this MME4 instruction unless the contents of the
instruction counter have been changed by the execution of the
two instructions obtained from 14 + C and 15 + ~

2-111

SPECIAL

Mnemonic: Name of the Instruction:

XEC I Execute

Op Code (Octal)

I 716 I
SUMMARY: Obtain and execute the instruction stored at the memory location Y

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: Indicators not listed are not affected

NOTES: 1. The XEC instruction itself does not affect any indicator. How­
ever, the execution of the instruction from Y may affect indi­
cators.

2. After the execution of the instruction obtained from location Y,
the next instruction to be executed is obtained from C(ICTC)+1;
the one stored in memory right after this XEC instruction, unless
the contents of the instruction counter have been changed by the
execution of the instruction obtained from memory location Y.

J. To Execute (XEC) a Repeat Double (RPD) instruction, the XEC in­
struction must be in an odd location.

2-112

Mnemonic:

XED

SUMMARY:

SPEC I AL

I Execute Double I 717 I
Obtain and execute the two instructions stored at the memory Y-pair
locations

MODI F ICAT IONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: Indicators not listed are not affected

NOTES: 1. The XED instruction itself does not affect any indicator. How­
ever, the execution of the two instructions from Y-pair may af­
fect indicators.

2. The first instruction obtained from Y-pair MUST NOT alter the
memory location from which the second instruction is obtained,
and ~ ilQi be another XED instruction.

3. If the first instruction obtained from Y-pair alters the contents
of the instruction Gounter, then this transfer of control is ef­
fective immediately; and the second instruction of the pair is
not executed.

4. After the execution of the two instructions obtained from Y-pair,
the next instruction to be executed is obtained from C(ICTC)+1.
This is the instruction stored in me~ory right after this XED in­
struction unless the contents of the instruction counter have
been changed by -the execution of the two instructions obtained
from the memory locations Y-pair.

5. To Execute Double (XED) a pair which has Repeat Double (RPD) as
the odd instruction of the pair, XED must be located at the odd
address.

6. If RPD is specified anywhere within a sequence of XED's, the ~­
inal and all subseguent XED's in the sequence must be in odd
locations.

2-113

SPEC I AL

Mnemonic: Name of the Instruction: "Op Code (Octal)
RrJCM Read Memory Controller Mask Register 233

SUMMARY: C(Memory Controller Interrupt Mask Register~
C(Memory Controller Access Mask Register) J/~
of Memory Unit Specified

=> C (AQ)

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: (Indicators not listed are not affected)
Zero If C (AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

NOTES: 1. The absolute address Y generated for this instruction is used in
selecting a processor port as with a normal memory access request.
However, the selected module does not transmit the contents of an
addressed memory location, but the contents of its Memory Control­
ler Interrupt Mask Register and Memory Controller Access Mask Reg­
ister.

Interrupt Mask

"'''; "f'~ Re~ister ~

10 :J1~
Register

I I Zeros I Zeros

:0 15: I I 31: : 4 I
I

il I 11 III I Jl I il : III I I I I I
I

I : I I

jo 15116 31i 32 35j36
51

1
52

67 168 711

! ! I
Combined AQ-register

2. When selecting a memory module; memory Size, instruction word ad­
dress field, PBR, TBR, internal and external ABR' s , and memory
interlace (if the final address is not ° mod 8) must be consider­
ed.

3. This instruction can be used in the Master mode only. If the use
of this instruction is attempted by a processor that is in the
Slave mode a 635/645 compatibility fault will occur.

4. The memory command actually sent out the processor port IS RMSK.

2-114

•

SPECIAL

Mnemonic: Name of the Instruction:

SMCM Set Memory Controller Mask Register

SUMMARY: fC(Memory Controller Interrupt Mask ~egister)
C(AQ) => C(Memory Controller Access Mask RegIster)

MODIFICATIONS:

INDICATORS:

jof Memory Unit specified
\..

All except DU, DL, CI, SC, SCR

None affected

NOTES: 1. The absolute address Y generated for this instruction is used in
selecting a processor port as with a normal memory access request.
However, the selected module does not store the data received in a
memory location but in its Memory Controller Interrupt Mask Regis­
ter.

k==------7.15~i--------~~~2~3~5!~36~----~5~J~----~~~8~7dJ
I II I I II 1 II I 1 II 1

~ 1 1..JJ..1.u. I I..(j..
1 1 I 1·1 1

,0 ._15_i _____ i_~~ 311 cj
Interrupt Mask~ _ ACt::s Mask
Register _______ Register

Combined AQ-register

.2. When selecting a memory module; memory size, instruction word ad­
dress field, PBR, TBR, internal and external ABR's, and memory in­
terlace (if the final address is not 0 mod 8) must be consider~d.

3. This instruction can be used in the Master mode only. If the use
of this instruction is attempted by a processor that is in the
Slave mode a 635/645 compatibility fault will occur.

4. The command actually sent out the processor port is SMSK.

2-115

SPECIAL

Mnemonic: Name of the Instruction: 0 Code (Octal)

SMIC Set Memory Controller Interrupt Cells 451

SUMMARY: C(A) is used to set selected Interrupt Cells ON In the System Con­
troller of the memory unit selected by YO-2

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

NOTES: 1. The absolute address Y generated for this instruction is used in
selecting a processor port as with a normal memory access request.
However, the selected module does not store the data received in
a memory location, but uses it to set selected Interrupt Cells
ON.

For i = 0, 1, ... , 15 AND C(A)35 = 0:
if C(A)i = 1, then set Interrupt Cell (i) ON

For i = 0, 1, ... ,15 AND C(A)35 = 1:
if C(A)i = 1, then set Interrupt Cell (16+i) ON.

2. When selecting a memory module; memory size, instruction word ad­
dress field, PBR, TBR, internal and external ABR's and memory in­
terlace (if the final address is not 0 modulo 8) must be consider­
ed.

3. This instruction can be used in the Master mode only or a 635/645
compatibility fault will occur.

4. The command actually sent out the processor port IS SXC.

2-116

Mnemonic:

RPT

SUMMARY:

SPECIAL

...
Name of the Instruction: o Code (Octal

Repeat 520

Execute the next instruction a specified number of times or until a
specified Terminate condition is met.

MODIFICATIONS: None

I ND I CATORS' .
Tally If termination because of Tally = 0, then ON
Runout If because Terminate condition IS met, then OFF

All other The RPT instruction itself does not affect any of the other
indicators indicators.

NOTES:

However, the execution of the repeated instruction may af-
fect indicators.

1. This RPT instruction has the following format:

1 18 o
Term.Cond. Code Delta

2. If C = 1, then bits 0-17 of the RPT instruction => XO. If C = 0,
then XO contains whatever was left from the previous instruction.

3. In any case, the Terminate condition and Tally from XO will con­
trol the repetition loop for the ins+ruction fOllowing this RPT
instruction; initial Tally = 0 will be interpreted as 256.

4. The repetition loop consists of the following steps:

a. Execute the repeated instruction,
b. C(XO)0_7 -1 => C(XO)0_7
c. If TermInation condition met then terminate,
d. If C(XO)O_7 =: 0, then set Tally Runout indicator ON and

terminate;
e. Go to 4a.

5. All instructions can be used as repeated instructions except the
following:

a. All control instructions
b. All special instruction operations except BCD
c. All general base i ns.truct ions--LBfim, EABm, ADBm, SBRm, LDBR,

(Cont i nued)

2-117

SPEC 1 AL

(RPT Instruction, Continued)

CAM, EAPm, LDCF, RTCD, STCD, STPm, ZAM, TSBm, SCU, RCU, LDB

6. Address modification for the repeated instruction:

For the repeated instruction, only the modifiers Rand RI are per­
mitted, and only the designators specifying X1, •.. ,X7. The ef­
fective address EA (in the case of R) or the address EA of the
indirect word to be referenced (in the case of RI) will be:

a. For the first execution of the repeated instruction:

Y + C(R) => EA, EA => C(R)

b. For any successive execution:

C(R) + Delta => EA, EA => C(R)

In the case of RI, only one indirect reference will be made per
repeated execution. The tag portion of the indirect word will
not be interpreted as usual but will be ignored; and instead the
modifier R and the designator R = N will be applied.

7. The Terminate conditions:

The possible terminate conditions are the same for all three re­
peat instructions -- RPT, RPD, RPL, except that RPL can terminate
on a link address = O.

The bit configuration in bit positions 11-17 of the RPT instruc­
tion defines the terminate conditions for which the repetition
loop will be terminated immediately. If more than one condition
is specified, the repeat will terminate if any of the specified
conditions are met.

Bit 17 = 0: any overflow is completely ignored, that is,
neither the respective overflow indicator is set ON, nor
an overflow trap occurs.

Bit

Bit

Bit

Bit

16

= 1: any overflow terminates the repetition loop, and it
is treated as usual; that is, the respective overflow 1n­
dicator is set ON, and if the Overflow Mask indicator 1S
OFF, then an overflow fault occurs.

= 1 : if Carry indicator 1S OFF, then terminate the repe-
tition loop.

15 = 1 : if Carry indicator is ON, then terminate the repe-
tition loop.

14 = 1: if negative indicator 1S OFF, then terminate the
repetition loop.

13 = 1 : if negati ve indicator 1S ON, then terminate the
repetition loop.

Bit 12 = 1: if zero indicator 1S OFF, then terminate the repe­
tition loop.

(Cont i nued)

2-118

SPECIAL

(RPT Instryction. Continyed)

Bit 11 = 1: if zero indicator is ON, then terminate the repe-
tition loop.

A "0" in both bit positions for one ind,icator will cause this in­
dicator to be ignored as a terminate condition; a "1" in both bit
positions will cause a termination afielr the first execution of
the repeated instruction.

8. At the time of termination:

XOO_7 will contain the Tally Residue; that is, the number of re-
peats remaining until a Tally Runout would have occurred.

If the RPT instruction is interrupted hefore termination, the
Tally Runout indicator will be OFF.
The Xn specified by the designator of the repeated instruction
will contain the effective address of the next operand or in­
direct word that would have been secured (this is because of the
overlap between an execution of the repeated instruction and the
address modification for the next execution of the repeated in­
struction).

2-119

SPEC I AL

Mnemonic: Name of the Instruction: o Code (Octal

RPD

SUMMARY:

Repeat Double 560

Execute the pair of instructions from the next location Y-pair a
specified number of times or until a specified terminate condition
is met.

MODIFICATIONS: None

I ND I CATORS:

Tally If termination of Tally = 0, then ON
Runout If terminate condition is met, then OFF

All other The RPD instruction itself does not affect any of the other
indicators indicators.

NOTES:

However, the execution of the repeated instructions may af-
fect indicators.

1. The RPD instruction must be stored in an odd memory location ex­
cept when accessed via the XEC instruction in which case the RPD
instruction can be either even or odd.

2. This RPD instruction has the following format:

o 11 1 18

Tally Term.Cond. Op Code

3. If C = 1, then bits 0-17 of the RPD instruction => XO. If C = 0,
then XO contains whatever was left from the previous instruction.

4. The terminate condition and Tally from XO will control the repe­
tition loop for the instruction following this RPD instruction;
initial Tally = 0 will be interpreted as 256.

5. The repetition cycle consists of the following steps:

a. Execute the pair of repeated instructions
b. C(XO)0_7-1 => C(XO)0_7
c. If termination condition met after termination of odd instruc­

tion then terminate.
d. If C(XO)0_7 = 0, then set Tally Runout indicator ON and ter­

minate.
e. Go to 5a.

(Continued)

2-120

6.

7.

8.

SPECIAL

(RPD Instruction. Continued)

Note that if an overflow fault occurs on the even instruction,
this precludes execution of the odd instruction.

All instructions can be used as repeated instructions except the
following:

a. All control instructions.
b. All special operations instructions except BCD.
c. All general base instructions--LBRm, EABm, ADBm, SBRm, LDBR,

SDBR, CAM, EAPm, LDCF, RTCD, STCD, STPm, lAM, TSBm, SCU, RCU,
LDB, STB, SAM.

Address Modification for the pair of repeated instructions:

For each of the two repeated instructions, only the modifiers R
and RI are permitted, and only the designators specifying
X1, ..• ,X7 .

The effective address EA (in the case of R) or the address EA of
the indirect word to be referenced (in the case of RI) will be:

a. For the first execution of each of the two repeated instruc­
tions

Y + C(R) => EA, EA => C(R)

b. For any successive execution of

The first of the two repeated instructions

if A=1, then C(R) + Delta => EA, EA => C(R) or
if A=1, then C(R) => EA

The second of the two repeated instructions

if 8=1, then C(R) + Delta => EA, EA => C(R) or
if B=O, then C(R) => EA

(A and B are the contents of bit positions 8 and 9 of the RPD
instruction)

In the case of RI, only one indirect reference will be made
per repeated execution. The tag portion of the indirect word
will not be interpreted as usual, but will be ignored; and in­
stead the modifier R and the designator R=N will be applied.

9. The terminate conditions:

The possible terminate conditions are the same for all three re­
peat instructions - RPT, RPD, RPL except that RPL may be termi­
nated on a link address = O.

The bit configuration .in bit positions 11-17 of the RPD instruc­
tion defines the terminate conditions for which the repetition
~oop will be terminated upon completion of the odd instruction.
If more than one condition is specified, the repeat will termi­
nate if any of the specified conditions are met.

(Continued)

2-121

10.

SPEC I AL

(RPD In$truction. Continued)

Bit 17 = 0: any overflow is completely ignored; that is, neither
the respective overflow indicator is set ON, nor an over­
flow fault occurs.

= 1: any overflow terminates the repetition loop, and it
is treated as usual; that is, the respective overflow
indicator is set ON, and if the overflow mask is OFF,
then also an overflow fault occurs on the even instruc­
tion, the odd instruction is not executed.

Bit 16 = 1: if Carry indicator IS OFF, then terminate the repe-
ti t ion loop.

Bit 15 = 1: if Carry indicator IS ON, then terminate the repe-
t it ion loop.

Bit 14 = 1 : if negative indicator IS OFF, then terminate the
repetition loop.

Bit 13 = 1 : if negative indicator IS ON, then terminate the
repetition loop.

Bit 12 = 1 : if zero indicator IS OFF, then terminate the repe-
t i ti on loop.

Bit 11 = 1 : if zero indicator IS ON, then terminate the repe-
ti t ion loop.

At the time of termination:

XOO-7 will contain the Tally Residue, that is, the number of re­
peats remaining until a Tally Runout would have occurred.

If the RPD instruction is interrupted before termination, the
Tally Runout indicator will be OFF in any case.

The Xn specified by the designator of each two repeated instruc­
tions will contain the effective address of the next operand or
indirect word that would have been secured.

2-122

*

SPEC I AL

Mnemonic: Name of the Instruction: Op Code (Octal)

RPL I Repeat Link I 500 I
SUMMARY: Execute the next instruction a specified number of times, until a

specified terminate condition is met or a link address = 0 is
found.

MODIFICATIONS: None

INDICATORS' .
Tally o or link address =
Runout

If termination because of Tally =
then ON.

0,

If because terminate condition 1S me:\:, then OFF.

All other The RPL instruction the other
indicators indicators.

itself does not affect any of

However, the execution of the repeated instruction may af-
fect indicators.

NOTES: 1. This RPL instruction has the

1 1 8 o
Term.Cond. Ope Code

2. If C = 1, then bits 0-17 of the RPL instruction => XO. If C = 0,
the XO contains whatever was left from the previous instruction.

3. The terminate condition and Tally XO will control the repetition
loop for the instruction following this RPL instruction; initial
Tally = 0 will be interpreted as 256.

4. The repetition loop consists of the following steps:

a. Execute the repeated instruction
b. C(XO)0-7 -1 => C(XO)0-7
c. If termination condition met then set Tally Runout indicator

OFF and terminate
d. If the Tally C(Xn)0-17 = 0 or the link address C(Y)0-17 = 0,

then set Tally Runout indicator ON and terminate

If first address is zero, termination will result upon
completion of the first operation.

e. Go to 4a.

5· All instructions can be used as repeated instructions except the

(Continued)

?-123

SPECIAL

(RPL Instruction. Continued)

followi ng:

a. Instructions that could alter the Link Address C(Y)0-17
b. EAA, EAQ, EAX, NEG, NEGL
c. All special operations instructions
d. All shift instructions
e. All control instructions
f. All general base instructions--LBRn, EABn, ADBn, SBRn, LDBR,

SDBR, CAM, EAPn, LDCF, RTCD, STCD, STPn, lAM, TSBn, SCU, RCU,
LDB, STB, SAM.

6. Address modification for the repeated instruction:

For the repeated instruction, only the modifier R IS permitted,
and only the designators specifying R = X1, •.. X7.

The effective address EA will be

a. For the first execution of the repeated instruction

Y + C(R) = EA; Y of word fetches => C(R)

b. For any successive execution of the repeated instruction
C(R) => EA; Y of word fetches => C(R)

The effective address EA is the address of the next list word.

The upper half of the list word contains the Link Address, that
is, the address of the next successive list word, and thus the
effective address for the next successive execution of the re­
peated instruction.

The lower half of this list word contains the operand to be used
for this execution of the repeated instruction:

C(Y)18-35
For double-precision
operand is

instructions that are being repeated, the

C(Y)0-17 = 00 ... 0 •.
'-"y--'-'

18 times

7. The terminate conditions:

The possible terminate conditions are the same for all three re­
peat instructions - RPT, RPD, RPL except that RPL can terminate
on a Link Address = O.

The bit configuration in bit positions 11-17 of the RPL instruc­
tion defines the terminate conditions for which the repetition
loop will be terminated immediately. If more than one condition
is specified, the repeat will terminate if any of the specified
conditions are met.

Bit 17 = 0: any overflow is completely ignored; that is,
neither the respective overflow indicator is set ON,

(Cont i nued)

2-124·

..

SPEC I AL
(RPL Ingtruction. Continued)

nor an overflow trap occurs;

Bit 17 = 1: any overflow terminates the repetition loop, and it
is treated as usual; that is, the respective overflow In­
dicator is set ON, and if the Overflow Mask indicator IS
OFF, then also an overflow fault trap occurs.

Bit 16 = 1: if Carry indicator IS OFF, then "terminate the repe­
tition loop.

Bit 15 = 1: if Carry indicator IS OFF, then terminate the repe­
tition loop.

Bit 14 = 1: if negative indicator IS OFF, then terminate the
repetition loop.

Bit 13 = 1 : if negative indicator IS ON, then terminate the
repetition loop.

Bit 12 = 1 : if zero indicator IS OFF, then terminate the repe-
ti bon loop.

Bi t 11 1 : if zero indicator IS ON, then terminate the repe-
tition loop.

8. At the time of termination:

XDD .• 7 will contain the Tally residue, that is, the number of
repeats remaining until a Tally runout would have occurred. If
the RPL instruction is interrupted before termination, the Tally
Runout indicator will be OFF in any case.

The Xn specified by the designator of this repeated instruction
will contain the address of the list word that contains

In its upper half:

In its lower half:

the address of the next list word

the operand used in the last execution of
the repeated instruction, for single-preci-
sion instructions. For double-precision in­
structions, this half word and the next full
word are the operand last used.

(This is because there is no overlap between an execution of the
repeated instruction and the address modification for the next
execution of the repeated instruction.)

2-125

SPEC I AL

Mnemonic: Name of the Instruction:
RSW Read Switches

SUMMARY: C(Data Switches on maintenance panel) => C(A)0-35

MODIFICATIONS: All types except DU, DL, CI, SC, SCR are allowed but none af­
fect the operation of RSW.

INDICATORS: (Indicators not listed are not affected)
Zero if C(A) = 0, then ON; otherwise OFF

Negative if C(A)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

NOP I No Operat ion

Op Code (Octal)

I 011 I
SUMMARY: No operation takes place

MODIFICATIONS: Generally the modification N, DU or DL should be used.*

INDICATORS: None affected

NOTE: No operation takes place but address modification may take place.
If modification other than DU or DL is used, the effective ad­
dress will be used in a memory access request which could lead
to memory faults. The use of IT modification categories ID, DI,
IDC, DIC causes the respective changes in the address and tally.

* This reminder that address formation will be performed should also serve as
a warnlng.

2~126

..

•

SPEC I AL

Mnemonic: Name of the Instruction:

LACL Load Alarm Clock

SUMMARY: C(AQ)20-65 => C(Alarm Clock) 51-6

MODIFICATIONS: All except DU, DL, CI, SC, SCR

I ND I CATORS: None affected

NOTES: 1. The absolute address generated by this instruction is used in
selecting a processor port as with a normal memory access request
but execution requires only an address for port selection since
this instruction involves a non-core memory command like the ~CL,
RMCM, and SMIC instructions.

2. When selecting a memory module; memory SIze, instruction word ad­
dress field, PBR, TBR, internal and external ABR's, and memory
interlace (if the final address is not 0 modulo 8) must be con­
sidered •

.3. This instruction may be executed in Master mode only or an illegal
procedure fault is generated.

4. The command actually sent out the processor port IS SAC.

5. Refer to figure.

Combined
AQ
Register

~ ____ ~_20 ______ ~ ______ 6-L-6~

1 6
ACR

6. Note that, in contras-t to normal system terminology (in which
the most significant bit is bit 0), in the terminology used
with the alarm clock bit 51 is the most significant bit.

(Revised March 19, 1971)

2-127

SPECIAL

Mnemonic: Name of the Instruction: OR Code (Octal)

RCCl Read Calendar Clock I 633 I
SUMMARY: 0 ... 0 => C(AQ)0-19; C(Calendar Clock)51_0=> C(AQ)20_71

MODIFICATIONS: All except DU, Dl, CI, SC, SCR

INDICATORS: None affected

NOTES:

Combined
AQ
Register

1. The absolute address generated for this instruction is used in
selecting a processor port as with a normal memory access request
but execution requires only an address for port selection, since
this instruction involves a non-core memory command like the lACl,
RMCM, SMCM and SMIC instructions.

2. When selecting a memory module; memory size, instruction word ad­
dress field, PBR, TBR, internal and external ABR's, and memory
interlace (if the final address is not 0 modulo 8) must be con­
sidered.

3. The command actually sent out the processor port IS RCC.

4. Refer to figure.

0 19 20

I I
71

J
--

L CCR
o

Note that, in contrast to normal system terminology (in which
the most significant bit .is bit 0), in the terminology used with
the calendar clock bit 51 is the most significant bit.

(Revised March 19, 1971)

2-128

SPEC I AL

Mnemonic: Name of the Instruction: Code (Octal)

LAM Load Associative Memory 257

SUMMARY: C(Y, .•. Y+31) => C(AM)

MODI F ICATIONS: All except DU, DL, CI, SC, SCR

I ND I CATORS : None affected

NOTES:

o·

1. The contents of even-odd word palrs are loaded into the associa­
tive memory as follows:

(Y, Y+1)0-53 => AR (Usage = 0) r
(Y+2, Y+3)0-53 => AR (Usage = 1)

(Y+30,Y+31)0-53 => AR (Usage = 15)

17 8 19 26 27 31)
Address r Mod 64 1024 Size Descriptor

l Base Bit
(1-SDW; O-PTW)

Even

Pointer Not Loaded

.. -------~
Odd

2. Unless the associative memory is first cleared with a CAM, the
registers will be loaded in the order of the usage counts. If it
is first cleared with a CAM instructions, the registers will be
loaded "A" first on through US".

3. Bit 54 through 59, while not loaded, will be set to a specific
state as follows:

Bit 54 set to 1
Bit 55 set to 0
Bit 56-59 remain the same as they were before the LAM In­
struction was executed.

4. This instruction may be executed in Master mode only or an il­
legal procedure fault will occur.

2-129.

o

l

SPECIAL

Mnemonic: Name of the Instruction:

SAM Store Associative Memory

SUMMARY: C(AR)0-15 => C(Y, ••• ,Y+31)
where Y must be 0 modulo 32.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS: None affected

o Code (Octal)

557

NOTE: The contents of the associative memory (16 words) are stored in
sequence as even-odd word pairs in double-word stores. The in­
itial value is assigned by the hardware (that is, associative
memory register 0 stored in first word pair .•• associative memory
register 15 stored in 16th word pair). If this instruction is at­
tempted in Slave mode an illegal procedure fault will be generat­
ed. The format of the word pair stored follows:

1
Address
Mod 64/1024 Descriptor

b se bit
("1 "-SDW; "O"-PTW)

o

Pointer Zeros

Adjust Usage
Empty7FuII

'-- ... _-- -'- -.---'v-------- L --,- "-', ---------
Y(even) Y+1

Mnemonic: Name of the Instruction: Code (Octal
ZAM Store Associative Memory Zero 157

SUMMARY: C(AR) => C(Y,Y+1)
where C(AR)56-59 = 0 and Y is an eVen location.

MODIFICATIONS: All except DU, DL, CI, SC, SCR

INDICATORS:

NOTE:

None affected

This instruction stores the C(AR) that has a current zero usage
value into an even-odd word pair. The format is the same as that
of the SAM instruction. If this instruction is attempted In
Slave mode an illegal procedure fault is generated.

2-130

SPEC I AL

Mnemonic: Name of the Instruction: Op Code (Octal)

I 657 I SCU I Store Control Uni t

SUMMARY: C(TBR) => C(Y)O-17' Appending Unit Status =:> C(Y)18-35

Computed Address => C(Y+1)O_17' Control Unit Status => C(Y+1)18-35,

C(PBR) => C(Y+2)O-17, Fault Data => C(Y+2)18-35

C(ICTC) => C(Y+3)O-17' C(IR) => C(Y+3)18-28

Control ~nit Status => C(Y+3)30-35;

Even Instruction => C(Y+4)O-35

Odd Instruction => C(Y+5)O-35

MOD I F I C AT IONS: All except DU, DL, CI, SC, SCR, F1, F2, F3

None Affected INDICATORS:

NOTES: 1. Detection of a fault or external interrupt condition will cause
the taking of a snapshot of the CU status, storing it in tempo­
rary buffer registers, aborting the current sequence, and forc­
ing an XED instruction pointing to an entry in a vector table
corresponding to the particular fault or interrupt.

2. The SCU instruction is used specifically to store the buffered
snapshot of the Control Unit immediately following interrupts o~
faults where eventual return to an exact point in the sequence IS

expected. Therefore, SCU must be used as the even instruction of
an Execute Interrupt- or Fault Vector-pair.

3. If an attempt is made to issue SCU as a part of an instruction
sequence, rather than in a vector following a "snapshot", the
results described will not be obtained.

4. The first double word is stored directly from the data out regis­
ter and contains whatever the last STORE+READ-ALTER-REWRITE cycle
left there. The second double word stores the PBR, ICTC and IR.
The third double word stores the instruction buffer registers and
it may contain the next pair of instructions in the sequence, or
any pair of instructions.

5. If external interrupts are honored during address preparation
cycles for SCU, the current "snapshot" wi 11 be destroyed. There­
fore, it is required that bit 28 of SCU be set to 1.

6. SCU is a privileged instruction to be executed in Master mode
only or an illegal procedure fault will occur.

7. The effective address of an SCU instruction must be 0 modulo 8.

(Cont i nued)

2-131

SFECIAL

(SCU Instruction. Continued)

8. The execution of the SCU instruction involves the following
actions:

a. C(TBR) => C(V)0-17
The contents of the temporary base register, whose snapshot
now resides in the data out register (bits 0-17), stored in
the upper half of V. .

b. Appending Unit Status => C(V)18-35
The appending unit status, whose snapshot now resides in the
data out register (bits 18-35), is stored in the lower half of
V as follows:

Bit
Position

18-21
22-25
26
27
28
29
30

31
32
33
34
35

OSTRO_3
ESTRO_3
ITS
ITB

PEO
ITR

DS PTW
SDW
PTW

Definition

Odd Segment Tag Register and Use Flag
Even Segment Tag Register and Use Flag
ITS Tag
ITB Tag
Zero (Not Used)
Parity Error, Operand
Indirect Tally Not Equal to Tally Runout
Indicator
Zero (Not Used)
Zero (Not Used)
Descriptor Segment PTW Fetch
Segment Descriptor Word Fetch
Page Table Word Fetch

c. Computed Address => C(V+1)0-17
The address, generated during the address preparation cycle,
and whose snapshot is in the data out register (bits 36-53), is
stored in the upper half of V+1.

This may be the address of an operand, indirect word, or an In­
struction. Applicable registers (index, external base) are In­
cluded.

(Continued)
2-132

•

SPECIAL

(SCU Instruction. Continyed)

d. Control unit status => C(Y+1)18-35
The control unit status whose snap~hot now resides in the
data out register (bits 54-71), is stored in the lower half of
Y+1 as follows:

Bit
Position Definition
18 PI Instruction

tions (0)
Fetch (1) Address Modifica-

19 PN Indirect Address-Forced (no address
modification)

20 Not Used
21 XDE Execute Double Even
22 XDO Execute Double Odd
23 IC Even (0) or Odd (1) Instruction
24 MASF Temporary Absolute Mode
25 EA Operand (1) Indiirect Fetch (0)
26 Mis Master (1) Slave' (0)
27 PA Initial Address Preparation
28 PZ I ndi rect Address, Preparat ion (I R+RI)
29 PT Indirect Address Preparation (IT)
30-35 CTO-5 Control Tag

e. C(PBR) => C(Y+2)0-17
The procedure base register is stored in the upper half of
Y+2.

f. Fault Data => C(Y+2)18-35
Information on the fault is stored in the lower half of Y+2 as
follows:

Bit
Position ~

18-20
21
22
23
24
25
26-30
31-35

Processor Number (000-111)
Illegal Procedure type 1
Illegal Procedure type 2
Illegal Procedure type 3
Illegal Procedure type 4
Illegal Procedure type 5
Fault Code (00000-11111)
Zero (Not Used)

2-133

[See Chapter 7
on FaUlts]

(Cont i nued)

SPEC I AL

. (SCU Instruction. Continued)

g. C(ICTC) => C(Y+3)0-17
The instruction counter IS stored in the upper half or Y+3.

In the case of an interrupt during an operand, or an indirect
word address preparation, the ICTC specifies the location of
the active instruction. In the case of an interrupt prior to
an instruction fetch, the ICTC specifies the address of the
last successfully executed instruction.

It should be noted that in the case of a fault on ~n XEC'ed or
XED'ed instruction, the ICTC points to the location of the
original XEC or XED instruction, rather than the location of
the faulting instruction.

h. C(IR) => C(Y+3)18-28, 0 -> C(Y+3)29
The contents of the indicator register will be stored In Y+3
as follows:

Bit Position
18
19
20
21
22
23
24
25
26
27
28

Indicators
Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Absolute Mode

The C(Y+3)25 will contain the state of the Tally Runout indica­
tor ~ to address modification of the instruction (for tally
opera t ions).

1. Control unit status => C(Y+3)30-33, 00 => C(Y+3)34,35
Control unit status will be stored in Y+3 as follows:

Bit Position
30

31
32
33

J. EVEN Instruction => C(Y+4)0-35

k. ODD Instruction => C(Y+5)0-35

Definition
Initial Repeated Instruc­
tion
Repeat
Repeat Link
Repeat Double

The active pair of instructions IS stored In Y+4 and Y+5.

(Cont i nued)

2-134

•

SPEC I AL

,""'- (SCU Instruction. Continued)

9. If the interrupt occurred prior to an instruction fetch (PI cycle),
then these instructions have already been executed. If the inter­
rupt occurred during address preparation for an indirect word or
an operand, then if Ie = 0 the faulting instruction is the even
one, or if IC = 1 lhe faulting instruction islhe odd.

10. The address field of the faulting instruction, C(Y+4)0-17, con­
tains the address field of the instructions, or the last indirect
word, or the last indirect word minus one or delta. The tag
field of the faulting instruction, C(Y+4 or 5)0-35' contains the
tag of the original instruction or the last indirect word.

2-135

SPEC I AL

RCU I Restore Control Un i t

Op Code (Oc tal)

I 613 I
Mnemonic: Name of the Instruction:

SUMMARY: C(Y)0-17 => C(TBR), C(Y)18-35 => Appending Unit Status
C(Y+1)18-35 => Control Unit Status

C(Y+2)0-17 => C(PBR)

C(Y+3)8-17 => C(ICTC), C(Y+3)18-28 => C(IR), C(Y+3)30-35 =>
ontrol Unit Status

C(Y+4) => Even Instruction

C(Y+5) => Odd Instruction

MODIFICATIONS: All types except DU, DL, CI, SC, SCR, F1, F2,
and F3, are recognized by the hardware but defeat the pur­
pose of the RCU.

INDICATORS: The RCU instruction of itself does not affect the indicators;
however, the contents of Y+3 bits 0-28 will be placed in the
indicator register.

NOTES: 1. This instruction can only be used in Master mode. If attempted
in Slave mode an illegal procedure fault will occur.

2. The execution of the RCU instruction involves the following
actions:

a. C(Y)0-17 => C(TBR)
The contents of the upper half of Y replaces the contents of
the temporary base register.

b. C(Y)18-35 => Appending Unit Status
The contents of the lower half of Y will affect the appending
unit registers and flags as follows:

Bit Po~i±iQn Act ion
18-21 Replaces the contents of OSTR
22-25 Replaces the contents of ESTR
26 If "1" set I TS Flag, if "0", reset

I TS Flag
27 If "1" set ITB Flag, if "0", reset ITB

Flag
28-29 No effect
30 If "1 11 set ITR, if "0", reset Tally

Runout.
31-35 No effed

(Continued)

2-136.

•

SPEC IAL
(~U Instruction. Continued)

c. C(Y+1)18-35 => Control Unit Status
The contents of the lower half of Y+1 will affect the control
unit registers and flags as follows:

Bit Position

18
19
20
21
22
23
24
25
26
27
28
29
30

d. C(Y+2)0-17 => C(PBR)

Action

If "1" set PI, if "0" reset PI
If "1" set PN, if "0" reset PN
No effect
If "1" set XDE, if "0" reset XDE
If "111 set)(00, if "0" reset XIX)
If "1" set IC, if "0" reset IC
If "1" set MASF, if "0" reset MASF
If "1" set SA, if "0" reset EA
If "1" set MS, if "0" reset MS
If "1" set PA, if "011 reset PA
If "1" set PZ, if "0" reset PZ
If "1" set PT, if "0" reset PT
Replaces the contents ofCTO_5

The contents of the upper half of Y+2 replaces the contents of
the procedure base register.

e. C(Y+3)0-17 => C(ICTC)
The contents of the upper half of Y+3 replaces the contents of
the instruction counter.

f. C(Y+3)18-28 => C (I R)
The contents of bits 18-28 of Y+3 affect the indicator register
as follows:

Bi± PQlijitign

18
19

20
21

22

23

24

25

26

27

28

Action

If "1" set Zero, if "0" reset Zero
If "1" set Negative, If "0" reset
Negative
If "1" set Carry, if "0" reset Carry
If "1" set Overflow, if "0" reset
Overflow
If "1" set Exponent Overflow, if "0"
reset Exponent Overflow
If "1" set Exponent Underflow, if "olt
reset Exponent Underflow
If "1" set Overflow Mask, if "0" reset
Overflow Mask
If "1." set Tally Runout, if "0" reset
Tally Runout
If "1" set Parity Error, if "0" reset
Parity Error
If "1" set Parity Mask, If "0" reset
Par i ty Mask
If "1" set Absolute Mode, if "0" reset
Absolute Mode

(Cont i nued)
2-137

SPECIAL

(RCU Instruction. Continued)

g. C(Y+3)30-35 => Control Unit Status
The contents of Y+3, bits 30-35 affect the Control Unit
Status as follows:

Bit Position Agt ion

30 If fl1 fI set RF, if "0" reset RF
31 If "1" set FT, if "0" reset FT
32 If " 111 set FL, if "0" reset FL
33 If "1" set FD, if "0" reset FD
34 No effect
35 No effect

h. C(Y+4)0-35 => Even Instruction
The contents of Y+4 replaces the contents of the Even I nstruc-
tion.

1 • C(Y+5)0-35 => Odd Instruction
The contents of Y+5 replaces the contents of the Odd I nstruc-
tion.

2-138

•

CHAPTER 3 DATA REPRESEN~ATION

INFORMATION REPRESENTATION

The 645 processor is organized to deal with "36-bit groupings of information.

In addition, 6-bit, 9-bit, and 19-bit groups plus 72-bit double precision groups

can be manipulated via the instruction set. These bit groupings are used by the

hardware and software to represent a variety of forms of information. All nota­

tion used throughout the processor is in binary. The way information is

represented for instruction, indirect, appending and associative memory words IS

included In these paragraphs.

POSITION NUMBERING

The numbering of bit positions, character positions, words, etc., increases in

the direction of conventional reading and writing: from the most- to the least­

significant digit of a number, and from left to right in conventional alpha­

numer ic text.

Graphical presentations In this manual show registers and data with position

numbers increasing from left to right.

NUMBER SYSTEM

With the binary system of notation used throughout the processor, many of the

instructions (mainly additions, subtractions, and comparisons) can be used in

two ways: either operands and results are regarded as signed binary numbers in

the two's complement form (the "arithmetic" case), or they are regarded as un­

signed positive binary numbers (the "logic" case). Hardware actions within the

processor are the same in either case; interpretation of the data by the pro­

grammer is the only difference. The zero and negative indicators facilitate the

general interpretation of the results in the arithmetic case; the zero and carry

indicators in the logic case. The overflow indicator reflects the occurrence

of overflow for instructions involving the "arithmetic" and "logic" cases, i.e.,

logical add, logical subtract, arithmetic add and arithmetic subtract. The in­

struction set contains_"add logic" instructions which particularly facilitate

arithmetic of the logic type with half-word, single-word, and double-word pre-

clslon.

Subtractions are carried out internally by adding the two's complement of the

3-1

subtrahend. (Note that when the subtrahend IS zero the algorithm for forming

the two1s complement is still carried out. Thus, each bit of the subtrahend

is complemented and a 111" is added into the least-significant bit position of

the parallel adder, yielding zeros). It is a characteristic feature of the two1s

complement representation that a II no borrow ll condition in the case of true sub­

traction corresponds to a IIcarryll condition in the case of the two1s complement

and vice versa.

A statement on the assumed location of the binary point has significance only

for multiplications and divisions. These two operations are implemented for

integer arithmetic as well as for fractional arithmetic with numbers in two1s

complement form. IIlntegerll means that the position of the binary point may be

assumed to the right of the least-significant bit position (that is, to the

right of bit position 35 or 71, depending on the precision of the respective

numbed and IIfractional ll means that the position of the binary point may be

assumed to the left of the most-significant bit position (that is, between the

bit positions 0 and 1).

PROCESSOR MACHINE WORD

The machine word consists of 36 bits arranged as shown in the following figure.

t
0 1:Z 118 3)
I

I ,
I
I

Upper Half Lower Half
Word Word

One Machine Word

Numbering of bit positions and character positions within the machine word in­

creases from left to right. In a single word the bit positions are numbered

from 0 to 35; if two machine words make a double word, positions are numbered

from 0 to 71, where 0 is the leftmost bit and 71 the rightmost bit.

Data transfers between processor and memory are word oriented; 36 bits are

transferred at a time for single-precision data and two successive 36-bit words

are transferred for double-precision data. Parity on words transferred to, or

3-2

..

read from the memory module are handled completely within that module. The

processor is notified only if a parity error exists. The memory module adds a

parity bit to each 36-bit word before storing it. When words are requested from

memory, the memory verifies the parity bit read from the memory and removes it,

from the word transferred prior to sending each word to the'processor.

The processor has features for transferring and proc¢ssing pairs of words. In

transferring a pair of words to or from memory, a pair of memory locations IS

accessed; these addresses are an even and the next-higher odd number as shown

in the following figure:

I
0 ~2J~6 Z1

I
I

I I
I

Even Address
I

I Odd Address

A Pair of MachiD~ Words

In addressing such a pair of memory locations In an instruction that IS intended

for handling pairs of machine words, either of the two addresses may be used

as the absolute address (Y) except as noted under the instruction descriptions.

Thus, if Y is even, the pair of locations (Y, Y+1) is accessed. If Y is odd,

the pair of locations (Y-1, y) is accessed. The term "Y-pair" is used for each

such pair of addresses.

REPRESENTATION OF DATA

Data is represented in two forms: alphanumeric or numerIC. Both forms may be

handled by the hardware as indicated by the instruction repertoire.

Aighanumeric Data

Alphanumeric data are represented by 6-bit or 9-bit characters. A machine word

contains either six of four characters as shown on the next page:

3-3

Character Positions a y 11112 12
1
18 221~ 22

1
20

11 within a word I a 1 2 3 4 5

6-bit

Character Positions 0 S 9 17 1S 26 27 32
within a word

I a
1

1

1
2

1
3

I
9-bit

Bit positions within
a character

1 0 I
1 2 1314 15 I

6-bit

1 a 11 I 2 I 3] 4. I 51 6 \.7\ S j
9-bit

Numeric Data

Numeric data is represented in two forms; binary fixed-point, or binary floating­

point. Decimal data is handled by software.

3-4

•

Binary Fixed-point Nymbers

The instruction set comprises instructions for binary fixed-point arithmetic

with half-word, single-word, and double-word precision as shown in the following

figure.

PRECISION REPRESENT AT I ON

Half Word { I.
------]

upper half ° 17

lower half r - - - - - - - -:1~8~ _____ """3",,,5

~-- _____ ~I ____ ~I
Single Word ° 35

Double Word

o 35 36 71

I L ______ E_v_e_n __ A_d_d_r_e_ss ____________ ~I ___________ 0_d_d_A_d_d_r_e_s_s __________ ~~

Instructions can be divided into two groups according to the way in which the

operand is interpreted: the "logic" group and the "algebraic" group.

For the "logic" group, operands and results are regarded as unsigned, positive

binary numbers. In the case of addition and subtraction, the occurrence of any

overflow is reflected by the carry out of the most-significant (leftmost) bit

posi tion.

Addition - If the carry out of the leftmost bit position equals 0, then the

result IS below the range.

Subtraction - If the carry out of the leftmost bit position equals 0,

then the result is below the range.

In the case of comparIsons, the Zero and Carry indicators show the relation •

.3-5

For the "algebraic" group, operands and results are regarded as signed, binary

numbers, the leftmost bit being used as a sign bit, (a 0 being plus and 1 minus).

When the sign is positive all the bits represent the absolute value of the number;

and when the sign is negative, the bits represent the two's complement of the

absolute value of the number.

In the case of addition and subtraction the occurrence of an overflow IS reflect­

ed by the carries into and out of the leftmost bit position (the sign position).

If the carry into the leftmost bit position does not equal the carry out of that

position, then overflow has occurred. If the overflow has been detected and if

the sign bit equals 0, the resultant is below range; if with overflow, the sign

bit equals 1, the resultant is above range.

An explicit statement about the assumed location of the binary point is necessary

only for multiplication and division. When performing addition, subtraction, and

comparison it is sufficient to assume that the binary points are "lined up". In

the 645 processor, multiplication and division are implemented in two forms for

two's complement numbers: integer and fractional.

1. In integer arithmetic, the location of the binary point is assumed to the

right of the least-significant bit position, that is, depending on the

precision, to the right of bit position 35 or 71. The general representa­

tion of a fixed-point integer is then:

2n 2n- 1 2n-2 21 0 - an + an-1 + an-2 + .•. + a1 + a02
/\ binary point

where an is the sign bit.

2. In fractional arithmetic, the location of the binary point is assumed to

the left of the most-significant bit position, that is, to the left of bit

position 1. The general representation of a fixed-point fraction is then:

- a020 + a12-1 + a22-2 + ... + an_12-(n-1) + an2- n

1\ b' . t Inary pOln

3-6

The number ranges for the varIOUS cases of interpretation, precIsIon, and

arithmetic are listed in the table below.

Precision

Interpretation Arithmetic I Single-Word Hal f -Word Double-Word
(Xn, YO-17) I (A,Q,Y) (AQ,Y-pair)

!

i
Algebraic Integral _217<N«217_1)1_235~N~(235_1) -- I

_271~~(271_1)

!

Fractional -1 ~N~ (1_2-1 ?) -1~N~('1-2-35) -1~N~(1-2-71)

Logic Integral os.N~(218_1) : os.N~(436_1) os.N~(272_1)

Fractional O~N~(1_2-18) O~N~(1-2-36) os.N~ (1_2-72)

Ranges of Fixed-Pojnt Nllmbers

Binary Floating-point Numbers

The instruction set contains instructions for binary floating-point arithmetic

with numbers of single-word and double-word precision. The upper 8 bits repre­

sent the integral exponent E in two's complement form, and the lower 28 or 64

bits represent the fractional mantissa M in two's complement form. The notation

for a floating-point number Z is:

Single-Word
Precision

Double-Word
Precision

a 1 7 8 9

~ ...
Exponent

~'­
Exponent

--:7YM t' an Issa

71

J
Mantissa

3-7

COMPARISON RELATIONS

In the case of comparisons, the Zero and Negative and Carry indicators show the

relative results of the comparison.

ALGEBRAIC (SIGNED FIXED-POINT COMPARISON)

I NDI CATORS RELATION SIGNS

w
> -
I- >-

0 <C a::
ffi CI, a:: C(R), C(V) w <C
N Z Co)

0 0 0 C(R) > C(V) + -
0 0 1 C'(R) > C(V) + -
1 ,0 1 C(R) = C(V) + +

0 1 0 C(R) < C(V) + +

0 1 1 C(R) < C(V) + -

LOGIC (UNSIGNED) FIXED POINT

INDICATORS RELATION

>-
0 a:: a:: a:: w <C
N Co)

0 0 C(R) < C(V)
1 1 C(R) = C(V)
0 1 C(R) > C(V)

FLOATING POINT COMPARE

INDICATORS RELATION

ZERO NEGATIVE

0 0
j" . C(R) > C(V)

1 0 C(R) = C(V)
0 1 C(R) < C(V)

3-8

Alignment and Representation

Before doing floating-point additions or subtractions, the processor aligns

the number which has the smaller positive exponent. To maintain accuracy, the

lowest permissible exponent of -128 together with the mantissa equal to

0000 .•• 0 shall be defined as the machine representation of· the number zero

(which has no unique floating-point representation). Whenever a floating-point

operation yields a result whose untruncated mantissa is equal to zero (71 bits

plus sign because of extended precision), the exponent is automatically set to

-128. The general representation of the exponent for single and double precision

is:

-e727 + e626 + ... + e121 + 9020

where e7 1S the sign.

The general representations of single- and double-precision mantissas are:

Single Precision: -m020 + m12-1 + m22-2 + + m262-26 + m272-27

Double Precision: -m020 + m12-1 + m22-2 + + m622-62 + m632-63

where mO is the sign in both cases.

Normalized Floatine-point Numbers

For normalized floating-point numbers, the binary point is placed at the most­

significant bit of the mantissa (to the right of the sign bit). Numbers are

normalized by shifting the mantissa (and correspondingly adjusting the exponent)

until no leading zeros are present in the mantissa for positive numbers, or until

no leading ones are present for the negative numbers.. Zeros fill in the vacated

bit positions. With the exception of the number zero (represented as 0 x 2-128),

all normalized floating-point numbers will contain a binary 1 in the most­

significant bit position for positive numbers and a binary 0 in the most­

significant bit position for negative numbers. Some examples are:

Unnormalized positive number

Same number normalized

Unnormalized negative number

Same number normalized

3-9

(0 0001101)x27
S

(0 1101000)x24
S

(1 11010111)x2-4
S

(1 01011100)x2-6
S

Number RanlZes

The number ranges resulting from the various cases of precIsIon normalization,

and sign are listed in the table below:

, Sign Single Precision Double Preci s i on

Normalized Positive 2-129~N~(1_2-27)2-127 2-129~N~(1_2-63)2127

Negative _(1+2-26)2-129~N~_2127 _(1+2-62)2-129~N~_2127

Unnormalized Positive 2-155~N~(1_2-27)2127 2-191~N~(1_2-63)2127

Negative _2-155~N~_2127 _2-191~N~_2127

Number Ranges in the 645

Note: The floating-point number zero is not included In the table.

3-10

•

CHAPTER 4 PROGRAM ACCESSI§LE REGISTERS

There are a number of processor registers. Some are explicitly referenced by

. particular instructions.* Others are implicitly referenced during the course of I
execution of instructions. Still others are used in both ways. These registers

are listed in the table below. See Chapter 2 for a discussion of each instruc­

tion to determine the way in which registers are used.

*

Name Mnemonic
Bit

Quant i ty Lenath

Accumulator Register A 36 1
Quotient Register Q 36 1
Exponent Register E 8 1
Accumulator Quotient Register** AQ 72 1
Exponent Accumulator Quotient Register**" EAQ 72*** 1
Address Base Registers ABRn 24 8
Descriptor Base Register DBR 29 1
Instruction Counter IC or ICTC 18 1
Index Register Xn 18 8
Procedure Base Register PBR 18 1
Timer Register TR 24 1
Indicator Register IR 18 1
Associative Memory Register AR7 60 16

Processor Registers

There are two external registers which are also explicitly referenced by
particular instructions. These two registers are part of the Calendar
Clock and are called the Calendar Clock Register and the Alarm Clock
register. The Calendar Clock register provides the calendar time upon
request and the Alarm Clock register provides program interrupts at pre­
determined times. The Calendar Clock is a 52-bit register which incre­
ments each 1.0 microsecond. The Alarm Clock is a 0 mod 128 register which
initiates a program interrupt when the calendar time becomes equal to or
greate~ than the time stored in the Alarm Clock register.

** The AQ and EAQ registers are not separate registers. They are a logical
combination of the A and Q registers; and the E, A, and Q registers.

*** The exponent register is used instead of the least significant 8 bits of
the AQ register.

(Revised March 19, 1971)

4-1

I

ACCUMULATOR (A), QUOTIENT (Q), AND ACCUMULATOR-QUOTIENT (AQ) REGISTERS

Formats:
AQ

r ,..
----'\

A Q

-'" r '\ ,/ ")

0 j 0

:J b 12 ;18 b I
12 ~18

\)'-- J '-----I ; '-- __ y __ .-.-J
'f ,

AU AL QU QL

Funct ion:

In floating-point operations, the AQ register serves as a mantissa register for

single- and double-precision.

In fixed-point double-precision operations, the AQ serves as an operand register.

In fixed-point single-precision operations, the A register and Q register are in­

dependent of each other and serve as accumulator and quotient registers. Each

register holds an operand. - The description of each instruction explains how

these registers are used.

In address modification, each half of the A register and each half of the Q

register holds an index value. The halves of the registers are designated as
follows:

AO - 17 A upper (AU)

A18 - 35 A lower (AL)

~ - 17 Q upper (QU)

Q18 - 35 Q lower (QL)

4-2

..,

.

(

EXPONENT (E) AND EXPONENT ACCUMULATOR QUOTIENT (EAQ) REGISTERS

Format: EAQ
/'

, --.--~-.. ------- ,

E A Q
I- '" "-'; , (" '\ (" 0

:1: j C
21 22 2'1

bl1 6Jloo~
'--v-" .. > -#

Exponent Mantissa

Function:

The E register supplements the AQ register in floating-point operations, serving

as exponent register for the floating-point number.

Bit position 0 indicates whether the sign of the exponent IS plus (0) or mInus
(1) .

Bit positions 1-7 contain a number (from 0 to 127) representing the exponent of
a flo~ting-point number residing In the AQ register.

Bit positions 8-71 of the EAQ (0 to 63 of the AQ) hold the mantissa. When the

floating-point number is loaded from Y-pa;r locations, the last eight bit posi­
tions (72-79) of the EAQ register are reset to zero.

When the floating-point number is placed in store, only bit positions 0-71 of

the EAQ register are transferred. However, 72 bits of mantissa precision are
maintained internal to the processor before storing~

4-3

ADDRESS BASE REGISTERS (ABBa to AB~l

Format:

Function:

o
Segment Number

or Offset

1 2
Control

An address base register contains the segment number or offset of a parti­

cular segment and the control information required during the address ap­

pending process. The registers are used for operand fetches, indirect word

fetches, and for transfers. ABR's can be used either singly or in pairs.

An internal ABR contains an offset relative to the base of a segment and

is "linked" by its control field to another ABR containing a segment numb&r,

whose control field indicates that it is an external ABR. When the inter­

nal ABR is addressed by an instruction the CPU directs the operation called

for to the segment defined by the "I inked" external register at the location

specified by the sum of tm internal register's offset field and the instru­

tion address field. If the external ABR is addressed directly, the opera­

tion is directed to the segment defined in the register at the location

specified by the instruction address field. Use of the ABR's is described

in greater detail in Chapter 6.

Segment Number

Offset

Control

-A segment number is an 18-bit number used to specify a
segment.

-An offset is 3n 18-bit number used to specify a location
relative to the beginning of a segment.

-Bits 18-20 designate the second ABA of a pair when the
ABA is internal. The bits are not used when the ABR is
external.

Bit 21 nesignates internal and external ABR's:

o = an. i nterna 1 ABR
1 = an external ABR

Bit 22 designates whether the ABA can be changed In Slave
mode:

o = can be changed
1 = cannot be changed

Bit 23 IS unassigned

4-4

DESCRIPTOR BASE REGISTER (DBR)

Format:

o 17 18 19 26 27 28
Address I I Size I I I

f
Not Used

Funct ion:

The descriptor base register contains the absolute address of the descriptor

segment and the control information required during the address appending

process.

Address

Size

Page Size

Paged/Nonpaged

- bits 0-17 hold the high-order 18 bits of the 24-bit absolute

address of the descriptor segment (or the descriptor segment

page table if the descriptor segment is paged). The address

is 0 modulo(64).

- bits 19 to 26 contain a value that indicates the number of

64- or 1024-word pages or blocks in the descriptor segment.

- bit 27 indicates whether the descriptor segment contains

64-word or 1024-word pages:

o = 1024 words

1 = 64 words

bit 28 indicates whether the descriptor segment IS paged or

not:

o = paged

1 = nonpaged

4-5

PROCEDURE BASE REGISTER (PBR)

Format:

o 1

Segment Number

Function:

The procedure base register contains the segment number of the procedure

segment currently in execution when the processor is not in Absolute mode.

INSTRUCTION COUNTER (IC or ICTC)

Format:

o 17

I Offset

Function:

The instruction counter contains the offset relative to the beginning of the

segment containing the instruction being processed by the control unit whenever

the processor is in Append mode. When in Absolute mode, the IC or ICTC contains

the absolute address of the instruction being executed by the control unit. When

used in address modification the IC or ICTC contains an index value.

(Note that IC is used here as equivalent to ICTC, which is used In Appendix D.)

TIMER REGISTER (TR)

Format:

o 23

Time

Function:

The timer register provides a program interrupt at the end of a variable item;

the maximum total elapsed time is four minutes.

The contents of the timer register is decremented by one either upon each memory

access or every 15.625 microseconds; the setting, under control of a manual

switch, controls which way this register is decremented.

In Slave mode, a timer runout fault occurs when the count reaches zero. When

the processor is in Master mode, no fault occurs and the counter starts decre­

menting from a maximum count after zero is reached. When the processor IS

returned to Slave mode after zero has been reached in Master mode, the timer

runout fault occurs.

INDEX REGISTERS (Xc

Format:

o 17

Index Value

Function:

When used for address modification, these registers contain index values.

In fixed-point operations, the index registers may be used as operand re­

gisters.

4-7

INDICATOR REGISTER (IR)

Format:

o 17

Indicators

Function:

The indicator register contains all program accessible processor indicators

which show the processor's states.

Each indicator occupies a specific bit position, where 1 .- indicator ON and

o = indicator OFF.

These indicators are set by the processor, either as the primary result of

execution of instructions that set indicators, or as the secondary re­

sult of instructions that produce other results.

Bit Indicator

o Zero

1 Negative

2 Carry

3 Overflow

Astion

Set ON when contents of a processor register (A, Q,

AQ, X , IR, TR), or an adder involved in arithmetic n
operation or a comparison is set to all O's.

Set ON when contents of bit position 0 of a pro­

cessor register (A, Q, AQ, Xn), or an adder after

an arithmetic operation or comparison is set to 1.

Set ON when a carry is generated out of bit posi­

tion 0 as a result of a left shift, addition,

subtraction or comparison.

Set ON when overflow occurs after execution of an

arithmetic instruction other than logical add,

logical subtract, compare, or add to base n

instruction.

4-8

t

· I ND I CATOR REG I STER (I R) Cont i nued

4 Exponent
Overflow

5 Exponent
Underflow

6 Overflow Mask

7 Tally Runout

Set ON if there is overflow from the exponent

register (exponent> +127) resulting from floating­

point ar i thmetic operation. Indicator remalOS ON

until turned OFF by an LDI, RET, RTCD, RCU, or TEO.

Set ON when there is underflow from the exponent

register (exponent < -128) from a floating-point

arithmetic operation. Indicator remains ON until

turned OFF by one of the fOllowing: LDI, RET, RTCD,

RCU, or TEU.

Set ON to prevent occurrence of an overflow fault

when there is an overflow, exponent overflow, or

exponent underflow (bit 3, 4, or 5 ON). When the

overflow mask is cleared to 0 (unmasked), no fault

is generated from previously set overflow or under­

flow indicators. The status of the overflow mask

indicator does not affect the setting, testing, or

storing of the overflow or underflow indicators.

The overflow mask indicator is turned ON or OFF by

the following: LDI, RCU, RET, or RTCD.

Indicator shows whether a repeat instruction termi­

nated because a specified termination condition was

met or whether a tally count reached o. The in­

dicator is set ON by:

1. A repeat APT or repeat double RPD instruc­

tion terminating because a tally count

reached o.

2. A repeat link RPL instruction terminating

when a 0 link address or a zero tally

is encountered.

4-9

INDICATOR REGISTER (IR) (Continued)

8 Parity Error

9 Parity Mask

10 Absolute Mode

11-17

3. A tally count reaching 0 in an indirect

and tally address modification (DI, DIC,

ID, IDC, AD, SD, SC, SCR). The indicator

is not affected by an indirect-to-segment,
indirect-to-base, or fault modification.

The indicator is set OFF when a specified termina­

tion condition is met in a APT, RPD, or APL instruc­

tion.

Set ON when a parity error is detected during ac­

cess of one or both memory locations of a V-pair.
Indicator is turned OFF by: LDI, RET, RTCD, or RCU.

Set ON to prevent occurrence of a parity error fault

trap (bit 8 ON). The indicator is turned ON or OFF

by: LDI, RCU, RET, or RTCD. When the parity mask

indicator is cleared to 0 (unmasked), no fault is

generated from previously set parity error indicators.

The status of the parity mask indicator does not

affect the setting, testing, or storing of the

parity error indicator.

Set ON when the processor is in Absolute (Direct)

mode of addressing and in Master mode of execution.

The indicator is set to 0 (OFF) when the processor

is in Append mode of addressing and either Master
or Slave mode of execution.

Unused.

4-10

,

ASSOCIATIVE MEMORY REGISTERS CAR)

Format: (for each register)

o 26 2

Address
Mod 1024/64

Size in
Number of
Blocks or
P es

Descriptor

base bit~ if PTW this is page number
not number of pages

Function:

Pointer Usage
Count

A t usage count I adjustment

empty/full

The 16 associative memory registers constitute high-speed storage for recent­

ly referenced segment or page locations. Use of the associative memory re­

gisters precludes the need to access regular memory during repeated accesses

to the same segment or page. Contents of the associative memory register

~ differ--either the segment descriptor word (SDW) or the page table word (PTW).

SDW I N REG I STER

High order 18 bits of absolute

address of segment or its page
table if paged

0-17

Bi t 18 = 1 18

Number of blocks In unpaged seg- 19-26
ment or number of pages in paged

segment (taken from size field of
SDW). Maximum = 256.

Control bits (from SDW) 27-35

o - 1024; 1 = 64 word block or page 27

4-11

PTW I N REG I STER

High order 18 bits of abso­

lute address of page

Bi t 18 = 0

Page number; the increment

added to the origin (bits 0-
17) to locate the PTW. Maxi­
mum = 256.

Control bits (from SDW and
control field of PTW)

o = 1024; 1 = 64 word page

ASSOCI AT I VE MEIVORY REGI STERS (AR) (Cont i nued)

SDW IN REGISTER BITS

o = paged; 1 = unpaged

not used

Bit positions of the PTW and cor­
responding positions of the asso­
ciated segment descriptor word are
combined in positions 30-35 to re­
flect the most restrictive access
and class control bits.

o = not written in Slave;
1 = can be written in Slave

28

29

30-35

o = access in Master; 1 = access 31
in Master or in Slave mode

Not used 32

An alternate use of bits 30-32 is as 30-32
one of the codes for a directed fault
(see Fau 1 ts).

Class bits:

000 - directed fault in 30-32
001 - data segment
010 - procedure - Slave
011 - procedure - execute only
100 = procedure - Master

Segment number of the segment

o = contents no longer valid
(a CAM places a 0 in this
bit position)

1 = contents still valid (full)

o = usage count current;
1 = usage count needs adjustment

Usage count; see below.

33-35

36-53

54

55

56-59

o = PTW in associative store

o = page written into;
1 = page not written.

Same as SDW.

Same as SDW.

Same as SDW.

Same as SDW.

Same as SDW.

Usage count; see below.

The usage count is a number from 0 to 15, showing relative use of each regis­
ter. When a new word is brought into associative memory, it is given a usage
count of 15 and it replaces the word that has count O. Hardware decrements by

4-12

t

ASSOCIATIVE MEMORY REGISTERS (AR) (Continued)

1 the count in the other 15 registers. Each time a word already in an associative
memory register is referenced, its usage count increases to 15 and all bypassed
registers are decremented by 1. In this way, the most recently referenced asso­
ciative memory word has the largest usage count and all worQs below it are in
order depending upon use.

4-13

•

CHAPTER 5 ADDRESSING -- SEGMENTATION AND PAGING

INTRODUCTION

The 645 processor generates an effective address (EA) for the instruction

which it is executing, the operand it is dealing with, or the indirect word

it IS fetching. The various means of effective address formation are explained

In Chapter 6.

An effective address consists of a segment number and an offset within that

segment. (A segment may be defi ned as an array of words, each of which is di r­

ectly addressable by the processor). The processor uses the EA to compute an

absolute memory address. The computation of this absolute memory address can

be done in one of two ways, depending on whether the processor is in Absolute

or Append mode. The processor then uses the computed absolute memory address

to access the information required to perform the particular operation requested.

SEGMENTATION

Any address In the 645 consists of a pair of integers (segoo,offset). The

~, range of seeno and offset is 0 to 218_1. seeno is called the segment number;

offset, the offset within the segment. Word(seeno,offset) is accessed through

a hardW3re register which IS the seeno'th word in a table called a descriptor

segment. The address of the descriptor segment is recorded in a processor

register called a descriptor segment base register (DBR). Each word of a

descriptor segment is called a segment descriptor word (SDW).

The following is-<l simplified description of the appending process for the case

in which segments are not paged.

The DBR contains the following values:

1. the absolute memory address of the descriptor segment

2. the length of the descriptor segment

The detailed format of the DBR is described in Chapter 4.

The SDW for a gIven segment seeno contains the following values:

1. the absolute memory address of segment seeno

2. the length of the segment seeno

3. class bits which indicate the type of a segment, or which indicate a

directed fault.

5-1

The detailed format of an SDW IS given In Appendix E.

The algorithm used by the processor for referencing word(se~no.offset) is as

follows:

1. I f the length of the descriptor segment is less than se~no, generate

an illegal procedure faul t.

2. Access SDW(se~no) at the absolute address of the descriptor segment

plus seeno.

3. I f the class bi ts indicate a di rected fault, generate a di rected

fault (used by the software to signify a IImissing segment").

4. If the length of segment se~no is less than offset generate an illegal

procedure faul t.

5. I f the class bi ts of segment se~no are i ncompat i ble wi th the reference,

generate a fault.

6. Reference the word at the absolute address of the segment se~no plus

offset.

The following figure depicts information used to reference word(se~no,offset)

in segment se~no.

se~no

offset{

SEGMENT seeno

{
<'

E-- A L C

DESCRI PTOR
SEGMENT

~ORD(seeno,offset)

I address jlength j

--- Dffi

SDW (se~no)

KEY: A
L
C

address
length
class

Hardware Segmentation In the 645

5-2

•

•

,/'""'. PAGING

A bit in an SDW indicates whether the corresponding segment is paged or not

paged. Another bit in the SDW indicates whether the page size is 64 or 1024

words. Analogous bits in the DBA serve the same purpose for the descriptor seg­

ment.

An element of a paged segment is the ~th word of the ~th page of the segment,

where ~ and ~ are defined as:

~ offset modulo(pa~e size)

~ (offset - ~)/pa~e size

Since pa~e size is either 1024(210) or 64(26), the processor can compute ~
and ~ from the 18-bit binary representation by merely dividing offset into two

parts. The right-hand part, which consists of 10 (for 1024 word pages) or 6

(for 64 word pages) least significant bits of offset, represents the binary

value of~. The left-hand pad, which consi sts of the 8 (for 1024 word pages)

or 12 (for 64 word pages) most significant bits of offset, represents the binary

value of~. The fOllowing figure illustrates the division of offset.

0 1'1 0 1'"i

offset offset

0 I. 7 8 I 17 0 • 11 12 , 1~

~ ~ ~ ~

1024 WORD PAGE 64 WORD PAGE

Hardware Interpretation of the Word Number

The page table of a segment is an array of physically contiguous words In core

memory. Each element of this array is called a ~age table word (PTW).

A given page table word contains the following items:

1. the absolute memory address of a page

2. class bits which indicate the type of segment to which the page be­

longs, or indicate a directed fault.

5-3

The detailed format of a PTW is gIven In Appendix E.

With pagIng, the address field in the DBR contains the absolute address of the

page table of the descriptor segment; the address field in the SDW contains the

absolute address of the page table of a segment.

The full algorithm used by the processor to access word(seeno,offset) is as

follows: (Referring to the figure following this algorithm will be helpful.)

1. I f the length of the descriptor segment is less than seeno, generate

an illegal procedure fault.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Split seeno into seeno and seeno such that:
x y

seeno = see no modulo(paee size) and y
see no = (seeno - seeno)/paee size.

x y
(This corresponds to the division of an offset into fields ~ and ~

described above.)

Access PTW(seeno). at the absolute address of the descriptor segment

page table plus seeno .
x

If the class bits of PTW(seeno) indicate a directed fault, generate
x

a directed fault (used by the software to signify a "missing page" of

a descriptor segment).

Access SDW(seeno) at the absolute address defined by the absolute

address in PTW(seeno) plus seeno . x y
If the class bits of SDW(seeno) indicate a directed fault, generate

a directed fault (used by the software to signify a "missing segment").

If the length of segment seeno is less than offset, generate an

illegal procedure fault~

Split offset into offset and offset such that:
x y

offset = offset modulo(paee size) and
y

offset = (offset - offset) /paee size.
x y

Access PTW(offset) at the absolute address of the page table for
x

segment seeno plus offset •
x

If the class bits of PTW(offset) indicate a directed fault, generate x
a directed fault (used by the software to signify a "missing page").

Combine the class bits of PTW(offset) with the class bits of SDW(seeno)
x

5-4

•

12.

to produce the most restrictive access. If the resulting access

rights are incompatible with the reference, generate a fault.

Reference the word at the absolute address contained in PTW(offset) x
plus offset •

y

See Appendix F for a detailed interpretation of "class bits".

The following illustration depicts the ference to a word(seeno,offset)in

segment seeno. Both the descriptor segment and the referenced segment are

paged.

offsetx

PTW(offset)
x

offse\ {r-----t
WORD
(~(fr-----t
offset)

PAGE OF
SEGMENT

address ~ength , Dffi

seenox f
I...

s~noy .[..------.4-­
SDW(~) .~t------,.......,~

A I C ~PTW(seeno) x

A

C

PAGE .TA~E
OF DESCR I PTOR
SEGMENT

DESCRIPTOR
PAGE TABLE SEGMENT
OF SEGMENT ~

KEY: A
L

C

address

length

class

Hardware Segmentation and Paging In the 645

5-5

MODE OF ADDRESSING (ABSOLUTE/APPEND)

In the Absolute mode, the effective address becomes the absolute core memory

address. The appending mechanism is bypassed. Addresses are limited to the

lower 256K of memory. Absolute addressing may be conceptualized as the creation

of a segment with a base address of all zeroes where all effective addresses are

offsets to the base of this segment. The intersegment fetch of indirect words

and operands is optional through the use of bit 29 of the instruction word, or

ITB, or ITS modifiers. In other words, indirect words and operands may be ad­

dressed in Absolute mode or via the appending mechanism.

In Append mode, the appending mechanism is employed for all instructions, in­

direct words, and operand fetches. In the Append mode, the processor generates

an effective address which consists of a segment (or page) number and a word

number (offset) within the segment (or page). The 18-bit effective address is

either added to a base address (unpaged), or the word number field of the EA is

concatenated to the base address (paged). More complete details of how the pro­

cessor performs appending have already been discussed in the sections titled

"SEGMENTATION" and "PAGING".

CHANGING ADDRESS MODES

The control unit IS normally In the Append mode but the Absolute mode is entered

temporarily when an XED instruction pointing to a fault or interrupt vector is

"forced". The mode becomes Absolute if either instruction is a satisfied trans­

fer, other than TSS, without bit 29 = 1, or ITB, or ITS indirection. The control

unit remaIns In Absolute until TSS is executed or until a transfer with bit

29 = 1 takes place.

The Absolute mode may also be entered or exited if In Master mode one of the

following instructions brings In a different state In the bit position correspond­

ing to the absolute indicator (bit 10 of the Indicator register): RET, RTCD, RCU.

5-6

•

,

CHAPTER 6 EFFECTIVE ADDRESS FORMATION

I NTRODU CT I ON

The effect i ve address on the 645 consi sts of two parts, a segment number and

an offset. During the formation of an effective address these two portions are

stored in temporary registers used as working registers by the processor. A

tentative segment number is stored In the temporary base register (TBR); a temp­

orary offset within the indicated segment is stored In a computed address reg­

ister (CAR). When each effective address computation has been completed, the

contents of the TBR and CAR are presented to the appending unit of the processor

for conversion to an absolute address (see Chapter 5).

In this chapter the description of effective address formation IS divided into

two parts. The first part describes the type of effective address formation

inVOlving only the offset, that is, the contents of the CAR. The contents of

the TBR remain constant and are obtained at the beginning of the effective address

formation by copying the contents of the PBR into the TBR. In this type of

effective address formation, references remain local to the segment specified

by the constant value contained in the TBR.

The second part of this chapter describes the type of effective address formation

for which the contents of the TBR can be modified as well as the contents of the

CAR. This feature is necessary i.n order to permit intersegment referencing on

the 645.

The first type of effective address formation is analogous to the type of address

modification on the 635 and does not make explicit use of segment numbers. The

second type of effective address formation is unique to the 645 and makes

use of segment numbers stored either in word pairs in core memory or in address

base registers (ABR's).

In actual practice the two types of effective address formation can be inter­

mixed. Note that in cases where effective address calculations are chained to­

gether via registers or indirect words, the processor must convert intermediate

effective addresses to absolute addresses in order to fetch the next item in the

cha in.

6-1

EFFECTIVE ADDRESS FORMATION INVOLVING SEGMENT OFFSET ONLY

For the following types of effective address formation, the segment number is

assumed to remain constant.

Modifier Field of an Instruction Word

Bits 30-35 of an instruction or indirect word constitute the modifier field for

address modification. If bits 30-35 are all zeros (no modification), the left­

most 18 bits of the instruction word constitute the offset portion of the

effective address and are loaded into the CAR.

If bits 30-35 of an instruction or indirect word are not all zeros, then one of

four possible address modification types is specified. Bits 0-17, possibly

subject to further modification, form a tentative offset in the CAR. Then

depending on the type of modification, the contents of the CAR specify the offset

of either the operand or an indirect word.

The modifier field has the format:

Modifier
Designator Md

31 32

Register (or Tally)
Designator Rd or Td

The modifier designator (Md) portion of the modifier field specifies the type of

modification and the register designator (Rd) portion specifies the variation

within the specified type.

6-2

General Ty~es of Modification

There are four general types of modification: Register, Register Then Indirect,
Indirect Then Register, and Indirect Then Tally:

TYPE

Register
R

Register
Then In­
di rect
RI

Indirect
Then
Register
IR

I ndi red
Then Tally
IT

tvUDI FI ER

00

01

11

10

WDIFICATION

Index according to the register designator
Rd·

Index according to register designator Rd.
The result of the register modification IS
the offset of an indirect word or pair of
words. The indirect word is retrieved and
modification continues as specified by the
indirect word. I f the indirect word or pair
specifies indirection, the indirect sequence
continues.

The indirect word or pair is first retrieved.
If address modification is specified by the
indirect word or pair, it is carried out. If
the modification is again IR, retrieval and
modification continue until an R, IT, or RI
modification is encountered. The safe-stored
contents of the register are then added and
modification is concluded in the code of an R
or IT. Modification continues in accordance
with the indirect word in the case of an RI.

The address and modifier fields of the indir­
ect word are substituted according to Rd,
which is used as the tally designator. There
are 13 var iat ions of I T modi ficat ion. IT
modification allows both indirect addressing
and register modification and permits auto­
matic incrementin~ and decrementing of the
fields of the indIrect word. .

6-3

Re~ister, Re~ister Then Indirect, and Indirect Then Re~ister

Bits 32-35 are used as a register designator Rd when bits 30 and 31 specify

Register, Register Then Indirect, or Indirect Then Register (R, RI, IR)

modification:

REGI STER BITS MNEMONIC NODIFICATION
32-35 y = address field of instruction word

none 0000 N y becomes the offset.

I XO 1000 0 Y + C(X) becomes the offset.
N X1 1001 1 n

D · . .
E · . .
X X7 1111 7

A A 0001 AU y + C(A) 0-17 becomes the offset.
C I (upper)
C
U A 0101 AL y + C(A) 18-35 becomes the offset.
M (lower)
·
Q Q 0010 QU y + C(Q)0_17 becomes the offset.
U (upper)
o J

T Q 0110 QL y + C(Q)18-35 becomes the offset. · (lower)

I C IC 0100 IC y + C(IC) becomes the offset.
N N
S T
T R
· ·
D none 0011 DU y, 00 ... 0 becomes the operand it-
I self. (DU means direct upper.
R Contents of the address field -
E followed by 18 zeros become the
C

I
operand.) See note below.

T I
none 0111 DL 00 ... 0, Y becomes the operand it-

O self. (DL means direct lower. 18
p zeros followed by the address field

· become the operand.) See note below

Note: There is a contradiction between the DU and DL variations and the RI mod­
ification. DU and DL specify use of the instruction address field without
modification and the RI modification. specifies modification of the address field.
If used together, the results are unreliable.

6-4

Indirect Word

The format of the indirect word used with Register, Register Then Indirect, or

Indirect Then Register modifiers is:

Address

o 17 30 35

~ Re~ister Modification (R)

The registers that can be used in R modification are the DU, DL, AU, AL, QU, QL,

Ie, and eight index registers (XO-X7). Register modification can be indicated

in the instruction word or in an indirect word. Wherever it is indicated, R

modification terminates the address modification sequence.

Exampl e:

I nstruct ion Word

x OP

o 17 18 26 30 35

The contents of index register X1 are added
to X in order to reference the operand.

Re~:fster Then Indirect Modification (RI)

In RI modification, the following sequence of events occurs:

1. A register modification of any variation except DU or DL is performed.

(This step is not performed when the instruction or indirect word

specifies "no modification" by having N in t.he modifier field. This

permits an indirect word to be retrieved without performing a register

modification.)

6-5

Re~ister Then Indirect Modification (RI), Continued

2. The indirect word is retrieved from memory, uS1ng the tentative address

resulting from the R modification.

3. The processor examines Md and Rd of the retrieved word and if a modifi­

cation is specified therein, it is performed on the indirect word's

address field.

4. Modification continues from one indirect word to the next as long as

RI, IR, or certain variations of IT modification are spooified.

5. When an indirect word specifying R modification or certain variations

of IT modification is found, the modification is performed on the l~st

indirect word retrieved. The result forms the offset portion of the

effective address, and the indirect sequence is terminated.

Example:

I nstruct ion Word

x OP QU

o 17 18 26 30 35

Indirect Word at X + QU

B N

o 17 30 35

The operand at B 1S referenced.

Indirect Then Re~ister Modification (IR)

The sequence of steps in IR modification 1S:

1. The modifier field of the instruction word or preceding indirect word

is saved for use in making the final modification.

6-6

-
"

J-

..

Indirect Then Re~ister Modification (IR), Continued

2.

3.

An indirect word is obtained from memory using: a) the address field

of the instruction word, or b) the address field of the preceding in­

direct word as the offset of the indirect word to be retrieved.

Any modification specified in the modifier field of the first indirect

word retrieved is treated as follows:

a. If the modification is another IR, the modifier field of this In­
direct word is saved (replacing the modifier field previously
saved). Another indirect word is obtained, using the address field
of the current indirect word. As long as IR modification continues,
each saved modifier field replaces the modifier previously saved
until a modification other than IR is encountered.

b. If the modification is RI, then RI is performed as it
ignoring the fact that it follows an IR modification.
modifier field of the IR instruction word or indirect
used and it is not destroyed.

always is,
The saved

word is not

c. If a series of modifications has IR modification followed by RI
modification and then returns to more IR modification, the follow­
Ing occurs:

(1) The modifier field of the first IR modification is saved and
each new modifier field replaces the saved modifier field.

(2) The modification of the RI type proceeds as usual, having no
effect on the saved modifier.

(3) The return to the IR type of modification causes the modifier
field to again replace the modifier previously saved (before
the RI modification).

4. The chain of modifications is terminated as follows: I f the indirect

word is an R or certain variations of IT modification, the saved modi-

fier is used to obtain the effective operand address. The contents of

the register speci fied by the saved modifier are added to the address

field of the current R or IT indirect word to obtain the offset portion

of the effective address.

It is possible for the last saved modifier to have an N variation. In this case

the address field of the current R or IT indirect word is used without modifi­

cation.

6-7

Indirect Then Re~ister Modification (IR), Continued

Example of IR Modification:

Instruction Word

X OP ~IR iX11
o 17 18 26 30 35

I ndi rect Word at X

B ~ IR' I
o 17 30

Indirect Word at B

D "IR! o 17

The modification "(X1) of the instruction word IS

saved and X is retrieved. Modification field of
X (AU) replaces the instruction word modification
field and B is retrieved. The operand at D and
the saved register (AU) is referenced.

Indirect Then Tally Modification (IT)

30

AU I
35

N

35

When bits 30-31 specify IT modification, bits 18-29 of the indirect word hold

the tally count. The tally count indicates how many times the access field is

to be used for access. A maximum of 4096 accesses can be made. The tally count

is always decremented or incremented by 1. Bits 32-35 indicate the 13 possible
variations of IT modification that can occur.

6-8

..

Indirect Then Tally Modification (IT), Continued

MNENONIC BITS

I

ID

DI

AD

SD

DIC

IDC

SC

SCR

CI

ITS

ITB

FT1
FT2

FT3

Tally Word

32-35

1001

1110

1100

1011

0100

1101

1111

1010

0101

1000

0011

0001

0000

0110

0111

VARIATION

Indirect only.

Increment address, Decrement tally.

Decrement address, Increment tally.

Add Delta to address field.

Subtract Helta from address field.

Decrement address, Increment tally and Continue.

Increment address, Decrement tally and Continue.

Sequence Character.

Sequence Character Reversed.

Character from Indirect.

Indirect To Segment. ITS recognized only if it appears
in an indirect word of an RI or IR modification series
and only if the referring offset is even.

Indirect To &:Jse. ITB recognized only if it appears
in an indirect word of an RI or IR modification series
and only if the referring offset is even.

Fault Tag 1

Faul t Tag 2

Faul t Tag 3

The format of tally words used In I, ID, DI, AD, SD, DIC, IDC, SC, SCR, and

CI modification is:

Address Tally Controll
o 17 18 29 30 35

The meaning of control field depends upon the specific type of modification.

6-9

Indirect Only (I)

The processor retrieves only one indirect word, which contains the effective

address in bits 0-17. The tally and control fields are not used.

Example:

I nstruct ion Word

x OP ~ ITi
0 17 18 26 30 35

Indirect Word at X

B

0 17 35

The operand at B is referenced.

Increment Address, Decrement Tally (ID)

The indirect word contains a tally count. Each time the instruction is exe­

cuted, the tally is decremented and the address field of the indirect word is

incremented, causing consecutive memory locations to be accessed. In each

case, the operand is referenced before the tally and address fields are alter­

ed.

6-10

Increment Address, Decrement Tally (lD), Continued

Example: (4 instruction execut ions)

I nstruction Word

X OP ~'Ti 10 1
0 17 18 26 30 35

Indirect Word at X'

B 4 ~
0 17 18 2930 35

Indirect Word at X

1
B + 1 3 ~

0 17 18 2930 35

r"'
I ndi rect Word at X

B + 2 2 -0 17 18 2930 35

Indirect Word at X

B + .3 1 ~
0 17 18 2930 35

Indirect Word at X

B + 4 0 -0 17 18 29 30 35

Operand at B is referenced; tally goes to 3.
Operand at B+1 is referenced; tally goes to 2.
Operand at 8+2 is referenced; tally goes to 1.
Operand at B+3 is referenced; tally goes to 0
and sequence ends.

6-11

Decrement Address. Increment Tally CDI)

The indirect word contains a tally count and an address field. The control

field is unused. Each time the instruction is executed, the tally is incre­

mented and the address field of the indirect word is decremented, causing con­

secutive memory locations to be accessed. In each case, the tally and address

field are altered before the operand is referenced.

Example: (2 instruction executions)

Instruction Word

X OP ~iT! DI

o 17 18 26 30

Indirect Word at

B

o 17 18

I ndi rect Word at

B - 1

o 17 18

Indirect Word at

B-2

o 17 18

The tally at X is incremented and the operand
at B-1 is referenced. The tally is incremented
and B-2 is referenced. The tally goes to 0
and the sequence ends.

6-12

35

X

4094

X

4095

X

o

2930 35

2930 35

2930 35

•

Add Delta to Address (AD)

The indirect word contains an address field, a tally count and a control field

specifying the delta value to be added to the offset for each access. Each

time the instruction is executed the operand is referenced .before the tally IS

decremented.

Example: (2 instruct ion executions)

I nstruct ion Word

X OP ~ IT; ADI
o 17 18 26 30

Indirect Word at

B

o 17 18

Indirect Word at

B + 2

o 17 18

Indirect Word

B + 4

o 17 18

Operand at B is referenced; tally goes to 2.
Operand at B + 2 is referenced; tally goes
to 1. Operand at B + 4 is referenced and
sequence ends.

6-13

at

35

X

3
2.9 30 35

X

2

29 30 35

X

1 2

29 30 35

Subtract Delta from Address (SD)

The indirect word contains an address field, a tally count and a control field

specifying the delta value to be subtracted from the offset for each access.

I n each case, the ta 11 y is incremented before the operand is referenced.

Exampl e: (2 instruction executions)

I nst ruct ion Word

X OP ~ IT!
0 17 18 26 30

Indirect Word at

B

0 17 18

Indirect Word at

B - 4

0 17 18

I nd i rect Word at

B - 8

o 17 18

Tally is incremented and the operand at
B - 4 is referenced. Tally is incremented
and B - 8 is referenced and sequence ends.

SD I
35

X

4094

X

4095

X

o

Character Handl i ne in the SC, SCR, and CI Var iat ions

4

29 30 35

4

29 30 35

4

29 30 35

Following is a summary of character handling in the SC, SCR, and CI variations

of the IT modification.

1. Each time a load instruction is executed an operand is taken from

memory and loaded as a single word with the specified character right­

justified in the register and the remaining character positions zero

fi lled. In 6-bi t operat ions, the character is in posi t ion 5. In 9-bit

6-14

Character Handlin2 in the SC, sm, and CI Variations, Continued

character operations it is in position 3 as shown:

6-bit Characters 9-bit Characters

x x I x C xl xl Memory Location x I x C I x
0 1 2 3 4 5 0 1 2 3

~ Register '" 10 I 0 0 0 0 CI 0 0 0 I c
0 1 2 3 4 5 0 1 2 3

2. When an operation places a result in memory, the right-justified

character in the register replaces the specified character in the

memory location of the operand. Other characters in the memory loca­

t ion rema in unchanged. In 6-bi t character operat ions, character 5 of

the result replaces the specified character in the memory location.

In 9-bit character operations, character 3 replaces the character in

the memory location as shown:

6-bit Characters 9-bit Characters

I xl x I x I x xl C Register x I x x c
o 1 2 345 o 1 2 3

/ /
I x I x I x Memory Location x I x C I x

1 2 345 o 1 2 3 o
3. Character operations can only be used in operations involving the A­

register or Q-register.

4. Tallying involves incrementing and decrementing of the character count

as well as the tally count. The tally counts characters; that is, the

number of character references. Address field modification takes place

only after the character count goes to 3 or 5 for tally decrementing or

goes to 0 for tally incrementing.

6-15

Deaement Address. Increment Tally. and Continue (DIC)

The DIC variation is similar to the DI variation except that the control field

of the indirect word further modifies the offset. The modifier can be of any

type as long as no index modification is involved, since the indexing adder IS

used by the tally pha~e of the modification. This means that when an R or RI

modification is in the indirect word, the variation must be N (no index modification).

Example: (4 instruction executions)

Instruction Word

x
o 17 18 26 30 35

Indirect Word at X

B

o 17 18 29 30 35

Indirect Word at X

~ _____ B __ -___ 1 ______ ~~ ___ 4_0_93 ____ ~_IT~!~_I~1 "
o 17 18 29 30 35 ~

Indirect Word at B-1

C

o 17 18 35

Indirect Word at X

B-2 4094
o 17 18 29 30

Indirect Word at B-2

D

o 17 18 . 35

(The example is continued on the next.eage.)

6-16

Decrement Address. Increment Tally. and Continue (DIC), Continued

Example: Continued

Indirect Word at X

B - 3 4095 ITI
I

0 17 18 29 30

Indirect Word at B - 3

E

0

Indirect Word at

B - 4

0 17 18

Indirect

F

0

B is decremented; the tally goes to 4093
and operand at C is referenced, etc.

17 18

X

0 lTi
29 30

Word at B - 4

17 18

Increment Address. Decrement Tally. and Continue (IDC)

II~
35

I I ~ 35

35

35

The IDC variation is similar to the ID variation except that the control field

of the indirect word further modifies the offset. The modifier can be of any

type as long as no index modification is involved, since the indexing adder is

used by the tally phase of the modification. This means that when an R or RI

modification is in the indirect word, the variation must be N (no index modifi­

cation) .

6-17

Increment Address. Decrement Tally. and Continue (IDC), Contin~ed

Example: (3 instruction executions)

Instruction Word

x OP

o 17 18 26 30 35

Indirect Word at X

B 3

o 17 18

Indirect Word at

C

o 0 17 18

Indirect Word at X

B + 1 2

lIT; I I ~
30 35 ""

B

IT; I I "" ~0------------------~17~1~8----------~~30~--~35 '"

Indirect Word at B + 1

D

o 17 18

Indirect Word at X

B + 2 1

o 17 18 30 35
liT! II~

Indirect Word at B + 2

E

o

Indirect Word at X

B + 3

o 17 18
The operand at C is referenced; the tally goes
to 2; the operand at D is referenced, etc.

6-18

17 18

o

30 35

35

35

35

Sequence Character eSC)

The SC variation permits operations to be performed on 6-bit or 9-bit charac­

ters in sequential locations In memory. The operations involve only the A­
register or Q-register. The indirect word contains an address field, a tally

field and a flag in position 30 (0 for 6-bit and 1 for 9-bit). Bits 33-35

indicate which character position is being referenced (0-5 for 6-bit and 0-3

for 9-bit). Each time the instruction is executed the tally field is decre­

mented and the character field is incremented after the operand is referenced.

Each time the last character of the current word is referenced the address

field is incremented and the character field is reset to zero.

Example: (3 instruction executions)

Beginning at the last character of a word of 9-bit bytes:

Instruction Word

X OP ~'Ti SC

o 1718 26 30 35

Indirect Word at X

B 3 11~ 3 I
17 18 29 30 33-35

Indirect Word at X

B + 1 2 11~ a I
o 17 18 29 30 33-35

Indirect Word at X

B + 1 1 11~ 1 I
o 17 18 2j 30 33-35

(Example IS continued on the next page.)

6-19

Sequence Character (SC), Continued

Example: Continued
Indirect Word at X

B + 1

o 17 18

Character #3 at B is referenced, then character
#0 of B + 1, character #1 of B + 1, and then the
sequence ends as the tally goes to o.

Sequence Character Reversed (SCR)

o
29 30 33-35

The SCR variation permits operations to be performed on 6-bit or 9-bit charac­

ters in sequential locations in memory. The operations involve only the A­
register or Q-register. The indirect word contains an address field and a tally

field and a flag in position 30 (0 for 6-bit and 1 for 9-bit). Bits 33-35 1n­

dicate which character position 1S being referenced (0-5 for 6-bit and 0-3 for

for 9-bit). Each time the instruction is executed the tally field is increment­

ed and the character field is decremented before the operand is referenced. Each

time the first character (character 0) of the current word is referenced the

address field is decremented and the character field is set to the number of the

last character (character 3 or 5).

Example: (3 instruction executions)

Beginning at the second character of a word of 9-bit bytes:

Instruction Word

X OP ~ IT!SCR!
o 17 18 26 30 35

Indirect Word at X

B

o 17 18

6-20
(Example is continued on the next page.)

4093
29 30 33-35

Sequence Character Reversed (SCR), Continued

Example: Continued

Indirect Word at X

B
1

4094
17 18 o

I ndi red Word at X

l B - 1
1

4095
17 18

I ndi red Word at X

B - 1
o 17 18

The tally field of indirect X is incremented
and the address and character fields decremented;
character #0 of B is referenced, then character
#.3 of B-1, then character #2 of B-1, and then the
sequence ends.

Character From Indirect (CI)

0

H~Jo 1
29 .30 .3.3-.35

H:~3 1
29 .30 .3.3-.35

11 ~ 2 1
29.30 .3.3-.35

The CI variation permits repeated references to a single 6-bit or 9-bit charac­

ter In memory. The operation involves only the A-register and Q-register. The

indirect word contains an address field, a flag in position .30 (0 for 6-bit and

1 for 9-bit), and bits .33-.35 indicate which character position is being refer­

enced (0-5 for 6-bit and 0-.3 for 9-bit). Each time the instruction is executed

the tally field is decremented as the character is referenced. The address and

character fields remain unchanged.

6-21

Character From Indirect (CI), Continued

Example: (3 execut ions)

Beginning with the fourth character of a word of 6-bit characters:

I nstruct ion Word

X OP ~ITi CII
o 17 18 26 30 35

Indirect Word at X

B 3

o 17 18

Indirect Word at X

B

o 17 18

Indirect Word

B

o 17 18

Indirect Word

B

o 17 18

Character #3 of B is referenced and tally
goes to 2; character #3 of B is referenced
and tally goes to 1; character #3 of B is
referenced and sequence ends.

6-22

2

at X

1

at X

o

2930 33-35

29 30 33-35

2930 33-35

2930 33-35

Other Types of IT modification

There are five types of IT modification which are different from the types of

IT modification described previously. Two of these, Indirect To Segment (ITS)

and Indirect To Base (ITB) involve selection of a segment number as well as an

offset and are described in the following section of this chapter. The other

three, Fault Tag 1, Fault Tag 2 and Fault Tag 3, do not produce effective

addresses. These fault tags cause the processor to take a fault whenever they

are used as address modifiers.

Fault Tae Modification

When bits 30-35 indicate one of the three fault tags (FT1, FT2, FT3) in the

instruction word, the processor traps to the appropriate fault vector (see

Chapter 7). The modifier field of an indirect word may also contain a fault

tag. In thi s case, the processor stops the effect i ve address format ion and

traps to the appropriate fault vector.

EFFECTIVE ADDRESS FORMATION INVOLVING OOTH SEGMENT NUlv1BER AND SEGEMENT OFFSET

The segment number can be changed for effective address formation using ITS or

ITB modification, or using bit 29 of the instruction to specify the use of one

of eight address base registers (ABR's) as part of the effective address.

For the form of indirect addressing using ITS or ITB modification, a word pair

is used to specify an intersegment reference. The segment to be referenced can

be indicated in one of two ways. In ITS modification the segment number IS In

the fi rst word of the word pa i r. I n I TB mod i ficat ion the segment number I s con­

tained In an address base register (ABR) which is specified by the first word

of the pair. Both ITS and ITB modification contain an offset in the second word

of the word pair. They can specify further modification by means of the modifier

field in the word pair uSIng anyone of the previously described modifications

except for DU and DL. A special restriction requires that the first word of

these word pairs occupy an even memory location.

6-23

Indirect To Se~ment (ITS)

ITS modification must appear In the indirect word referenced via RI or IR

modification (not in the instruction word). The offset in the referring word

must be even.

Example:

Instruction Word

x OP ~ Rli N

0 17 18 26 30 35

Even/Odd Indirect Word Pair at X and X + 1

segment number ITS

offset IIfOD

o 35

1. The effective address referring to the indirect word indicates an even word

and the next word.

2. The modifier field of the even indirect word is an ITS designator, I.e., bits

30-35 contain 100011.

3. The segment number field of the even word (bi t posi tions 0-17) replaces the

. contents of the temporary oose r egi ster (Tffi).

4. The offset field of the odd word (bit positions 0-17) and any modification

indicated in bit positions 30-35 of the odd word are used to compute a new

offset which replaces the contents of the computed address register (CAR).

I ndi rect To Base (I TB)

The ITB modification must appear in the indirect word referenced via RI or Hi

modification (not in an instruction word). The offset in the referring word must

be even.

6-24

Indirect To fuse (ITS), Q:>ntinued

Example:

Instruction Word

.,- x
o 17 18 26 30 35

Even/Odd Indirect Word Pair at X and X + 1

Affi# ITS

offset NOD

o 30 35

1. The effective address referring to the indirect word indicates an even word

~ and the next word.

2. The offset field of the odd word (bit positions 0-17) and any modification

indicated in bit positions 30-35 of the odd word are used to compute a new

offset which replaces the contents of the CAR.

3. Sit positions 0-2 of the even indirect word select an address base register

(Affi) •

4. If bit position 21 of the selected Affi is 1, the Affi is external, and the

contents of bit positions 0-17 area segment number and are loaded into the

TBR.

5. If bit position 21 of the selected ABR is 0, the Affi is internal. In this
case, a pair of Affi's is used, one "internal", the other "external". The

offset field (bit positions 0-17) of the selected Affi (internal) is added

to the offset already contained in the CAR and the result replaces the con­

tents of the CAR to form a new offset. Then bits 18-20 of the internal Affi

are used to select another Affi (external). The segment number portion of the

~. external Affi (bit positions 0-17) are loaded into the TBR to form a new

tentative segment number.

6-25

Use of Bit 29 to S~ecify an Address Base Register (ABR)

The final type of address modification involving both an offset and segment

number uses bit 29 to indicate the use of one or a pair of eight address base

registers (ABR's). For this type of modification bits 0-2 of the address

field of the instruction specify which ABR to use.

If the designated ABR is external (i.e., b-jt number 21 = 1) the segment number
field (bits 0-17) are loaded into the TBR. The remaining 15 bits of the

instruction (bits 3-17) are used to produce an 18-bit offset. The offset is

created by copying bits 3-17 of the instruction word into the rightmost 15 bits

and extending bit position.3 to the left. This 18-bit offset, possibly subject

to further modification, is loaded into the CAR.

If the designated ABR is internal (i.e., bit number 21 =1) then bits 0-17 contain
an offset. Bits 18-20 specify another Affi whose control field indicates it is

external. Bit positions 0-17 of this external ABR contain a segment number which

is loaded into the Tffi. The offset from the instruction field, extended as

above, is added to the offset of the internal ABR. This tentative offset,

possibly subject to further modification, is loaded into the CAR.

The following examples illustrate the use of address appending, with bit 29

ON, both for paired and unpaired Affi's.

3 A OP ~11 N instruction

0 2 3 17 18 26 2930 35
\.)

y

15 bi t-offset

B Affi 3

o 17 18 21

The operand at offset A in segment B is referenced.

Address Appending: Bit 29 ON. Unpaired ABR (External)

6-26

.,.,---.

Use of Bit 29 to Specify an Address Base Reeister (ABR), Continued

3 A OP ~11 ·N instruct i on

0 2 3 17 18 26 29 30 35
l J

I'

15-bi t offset

4 I 01 ABR 3

17 18 20 21

C X I 1 1 Affi 4

17 18 20 21

The operand at offset A + B In Segment C IS referenced.

Address Af)f)endine:" Bit ,?9 ON. Paired ABR

(Internal and External)

6-27

CHAPTER 7 FAULTS AND INTERRUPTS

Both faults and interrupts result In an interruption of normal processing, but

there is a difference in how faults and interrupts originate. Generally, faults

are caused by conditions which are internal to the processor; interrupts are

caused by devices which are external to the processor. Faults and interrupts en­

able the 645 system to respond promptly when conditions occur that require

system attention. A unique pair of locations which contain two instruction words

is set aside to service each fault and interrupt condition. These instructions

are in protected memory. The instruction words associated with faults are

called the fault vector; there is a fault vector table for each processor port.

The instruction words associated with interrupts are cLllled the interrupt vector;

similarly, there is an interrupt vector table for each processor port.

FAULTS

The 645 processor recognizes 32 types of faults. Many of the fault conditions

are deliberately or inadvertently caused by the software and do not necessarily

involve error conditions.·

When a faul t is detected, the processor forces the execution of the instructions

in the fault vector. If it is desired to save machine conditions at the time of

the fault, the first instruction of the fault vector should be SCU; otherwise,

the machine conditions will not be saved. The second instruction of a fault

vector should be a transfer to a routine to handle the fault. If the second

instruction of the fault vector is not a transfer, execution will resume with

the instruction immediately following that instruction which caused the fault.

The 32 faults are classified into six priority groups so that priorities can be

established when two or mQre faults exist concurrently. The overlap of instruc­

tion execution and address preparation allows the simultaneous occurrence of

faults. Group 1 has the highest priority and group 6 has the lowest. Only one

fault within a group is allowed to be active at anyone time. The fault which

occurs first through the normal program sequence within a group is the one

which is serviced. Only within group 6 are the other (nonserviced concurrent)

faults saved by the hardware for eventual recognition. The faults not serviced

and not saved can be handled only when and if they recur. There is one exception

to the handling of the priority groups. When a group 3 fault (overflow or divide

check) is caused by an operand having a parity error, the fault will be handled

7-1

as a group 4 parity fault.

The table on this page and the description on the succeeding pages gIve

details on the 32 faults.

Fault Fault Name Priority Fault Category
Pode Group

11110 Startup 1 Manually generated
11011 Execute 1 Manually generated
11111 Trouble 2 Hardware generated
11101 Op Not Completed 2 Hardware or program generated
11010 Divide Check 3 Software generated
11001 Overflow 3 Software generated
01100 Par i ty 4 Hardware generated
01101 Illegal Memory Command 4 Hardware or program generated
11100 Lockup 4 Hardware or program generated
01011 Illegal Descriptor 5 Software generated
01010 Illegal Procedure 5 Software generated
01001 635 Compatibility 5 Software generated
11000 ! 635/645 Compatibility 5 Software generated
00001 , Master Mode Entry 1 5 Software generated i 00100 I Master Mode Entry 2 5 Software generated

! 00101 ! Master Mode Entry 3 5 Software generated
00111

I
Master Mode Entry 4 5 Software generated

00010 Dera i 1 5 Software generated
01000 I Fault Tag 1 5 Software generated
01110 I Fault Tag 2 5 Software generated
01111 ! Fault Tag 3 5 Software generated
10000 I Directed Fault 0 5 Software generated
10001 i Di rected Faul t 1 5 Software generated
10010 i Di rected Faul t 2 5 Software generated I
10011 1 Di rected Fault 3 5 Software generated ! 10100 i Di rected Faul t 4 5 Software generated
10101 I Directed Fault 5 5 Software generated
10110 I Di rected Faul t 6 5 Software generated
10111 I Directed Fault 7 5 Software generated i

00110 . Connect i 6 Software generated ! I 00011 I Timer Runout 6 Software generated I I 1

I
00000 I Shutdown 6 Manually generated

I

Directed Fault Descriptions

7-2

;

-

Priority 1 Faults (Startup and Execute)

Priority 1 faults cause the processor to initialize and enter the fault rou­

tine unconditionally. The faults cause processor operations to abort when the

fault occurs, and the snapshot of the processor status is of no value. If both

faults occur simultaneously, the startup fault has priority~

Startup

The fault IS recognized when the POWER ON button IS pressed. Power IS

turned on and the processor is initialized.

Execute

The fault IS recognized when the EXECUTE pushbutton is depressed or an

external frequency is substi tuted for the EXECUTE· pushbutton (e.g., 'scope

gate) .

Priority 2 Faults (Trouble and Operation not Completed)

Priority 2 faults cause processor operations to abort when the fault IS recog­

nized. When the trouble fault occurs, the snapshot of the processor IS the

status of the original instruction which caused the fault. When the operation

not completed fault occurs, the snapshot is of little value except for PBR and

IC. If both faults occur simultaneously, the trouble fault has priority.

Trouble

The fault occurs during the execution of an execute double instruction

(XED) forced by a fault or external interrupt. The fault also occurs

during the execution of a store control unit instruction (SCU) which is

the first instruction of an XED. The fault can be generated by the hard­

ware; for example, it can be generated as a result of an operation not

complete or by a parity error. The fault can also be generated by the

operating system; for example, it can ge generated when a page containing

the address generated by the SCU instruction is missing.

This fault is caused by faulty communication between the processor and the

system controller as described in the paragraphs that follow.

7-3

1. The processor addresses a system controller to which it IS not

attached.

2. A system controller fails to acknowledge the processor that ad­

dressed it.

3. The processor fails to generate a store access request or direct
o

operand request within 1 to 2 milliseconds and is not in a DIS

state (delay until interrupt signal).

4. The system controller closed out a double precIsIon store or a

read-alter-rewrite cycle (RAR) without receiving data from the

processor.

5. The system controller fails to acknowledge the data from the pro­

cessor; this can occur during a double-precision store or a read­

alter-rewrite cycle (RAR).

6. Certain programming rules for the 645 were violated causing

the processor to hang up. This can occur as the result of user

misprogramming; for example, if DU or DL modifiers are used with

store or RAR instructions.

7. Attempts to do a double precision indirect operation from an odd

location or an attempt to execute a direct operation with a

double precision op-code.

Priority 3 Faults (Diyide Check and Overflow)

Priority 3 faults are detected during execution of the instruction causIng the

fault. The processor halts immediately when the fault is detected. The snap­

shot of the processor contains the contents of the processor base register (PBR)

and the instruction counter (ICTC). These registers respectively contain the

$egment number and offset of the faulting instruction. Faults in priority 3 do

not occur simultaneously. A parity error fault (priority 4) will have priority

over a priority 3 fault occurring simultaneously if the parity error occurs in an

operand.

Diyide Check

The fault occurs when division cannot be carried out. The individual

divide instructions list the cases in which division cannot be carried

out.

7-4

',-

Overflow

The fault occurs when there is arithmetic overflow, exponent overflow,

or exponent underflow. If the overflow mask is set on, occurrence of

overflow will cause the setting, testing, and storing of indicators but

will not generate the fault while the mask is on. The overflow fault IS

not saved. If the mask is removed, the overflow fault will not be

trapped by any instruction which set the overflow indicators while the

mask was in effect. Pinpointing of the type of overflow condition that

caused the fault is done by the routine servicing the fault.

Priority 4 Faylts (Parity. Lockyp. and Illegal Memory Command)

A priority 4 fault IS detected after the address preparation cycle that gener­

ated it is completed. When a lockup or illegal memory command fault occurs,

the snapshot of the processor contains the contents of the processor base reg­

ister (PBR) 'and the instruction counter from which the segment number and off­

set of the faulting instruction can be determined. When a lockup fault occurs,

the control unit constructs a complete snapshot of processor conditions at the

time of the fault. Priority 4 faults cause the processor operation to halt

after completion of operations already in execution; that is, the faults must

wait for the system controller to acknowledge the last access request before the

processor switches to the fault pair. Faults in priority 4 do not occur simul­

taneously.

Parity

The fault IS generated when a parity error exists in a word which IS ~

from a core location:

1 • Single precision read: C(Y) IS requested. C(Y, Y+1) IS retr iev-

ed if Y is even; C(Y-1,Y) IS retr ieved if Y is odd. System

controller will not report a parity error if it occurs in C(Y+1)

or C(Y-1). The pair IS restored with parity bits unchanged.

2. Double precision read: C(Y,Y+1) is requested and retrieved from

core. System controller will report a parity error in either Y

or Y+1 but does not indicate which word contains the error. The

pair is restored with parity bits unchanged.

7-5

3. RAR: If a parity error exists in an indirect then tally (IT

modification) word that is to be altered and rewritten or in an

operand of a "to storage" instruction (e.g., ASA, ANSA, etc.),

the alteration is carried out and the word is rewritten in store

with a correctly computed parity bit.

If a parity error occurs on an instruction or an indirect word, the word

IS not used any further and the fault routine IS entered. If the parity

error occurs on an operand, the processor operation is completed with the

faulty operand before the fault routine is entered.

If the parity mask is set on~ occurrence of parity will cause the setting,

testing, and storing of indicators but will not generate the fault while

the mask IS on or after the mask has been removed (i.e., the fault is not

saved). If a parity error occurs on a segment descriptor word (SDW) or

on a page table word (PTW), however, the fault routine IS entered regard­

less of the state of the parity mask indicator.

Illegal Memory Command

The fault occurs when the processor Issues a Connect (ClOG) to a channel

that is masked off by a program or switch. For details of masking off

channels see the description of the SMCM, SMIC and cloe instructions

in Chapter 2. The system controller does not execute the illegal memory

command, but sends the applicable illegal action code to the processor.

The two illegal action codes are: 100 if the processor is not the control

processor and 011 for a store parity error. Another instance in which

this fault occurs is when an ReCl instruction is issued to a memory that

does not have a clock. Other situations that might cause the illegal

memory command fault cause a 635 or 635/645 compatibility fault instead.

Locku~

The fault occurs when the processor is in a program lockup which inhibits

recognition of an external interrupt or interrupt type fault for 1 or 2

milliseconds. An example is the continuous use of the inhibit bit In

master mode. This is a recoverable fault, since the snapshot is valid.

The one to two millisecond time refers to absolute elapsed time rather

7-6

than processor execution time or memory cycle time. It includes any time

during which the processor might have to wait for memory access (due to

simultaneous request from the GIOC or associated store).

The lockup fault is deactivated during the time that a DIS (delay until

interrupt signal) instruction is in effect and is deactivated also during

the DIS state (no operation taking place) after the POWER ON pushbutton

is pressed or after the STOP switch is activated during maintenance.

Priority 5 Faults

A priority 5 fault IS detected during the address preparation cycle of an In­

struction. The faults must wait for the system controller to acknowledge the

last access request before initiating the abort routine. Priority 5 faults do

not occur simultaneously. Most of the faults are classified as priority 5.

Illeeal Descri~tor

This fault occurs when the class bits (33-35) of the page table word (PTW)

or the segment descriptor word (SDW) contain an undefined configuration.

There are five legal configurations; four configurations indicate modes

of instruction execution and modes of address and the fifth configuration

indicates a directed fault. (See the description of the SDW in Appendix~.

Illeeal Procedure

The fault usually occurs when a programmIng violation is detected where

one user may adversely affect another user or the operating system. The

fault occurs under the following conditions:

1. Attempt to execute certain privileged instructions In Slave

mode-- LDBR, SDBR, SAM, lAM, LAM, CAM, SC, RCU and LACL.

2. Attempt to execute certain instructions in Slave mode when the

address base register bit 22 is o. These instructions are-­

EAPn, EABn, TSBn, LDCF, ADBn, and LBRn.

4.

Operation codes are detected that are not defined by the 645

instruction repertoire, including the all-zero operation code.

An effective address is outside of the segment boundary or a

pointer is outside of the descriptor segment boundary.

7-7

5. The effective address is not to be accessed because of the access

bit, write permit bit, or class conventions.

635 CgmRatibility

The fault occurs when an instruction is detected that is in the 635

repertoire but not in the 645 rep~rtoire. These instructions are LBAR

and SBAR. The operating system determines the course of action to be taken.

635/645 CgmRatibi]ity

The fault occurs when an attempt is made to execute instructions that are

privileged in both 635 and 645 repertoires. These instructions are

SMIC, RMCM, SMCM, ClOG, LDT, DIS, and TSS. The last two are not privileged

instructions in the 635 but are pointleis in Slave mode. The operating

system determines whether the fault was caused by a 635 or a 645

program and determines the course of action.

Master Mode Entry 1-4

These faults occur when one of the following instructions is encountered:

MME, MME2, MME3, MME4. See the individual descriptions in Chapter 2 of

instructions for more information.

Dera i 1

The fault occurs when the DRL instruction is encountered. See the instruc­

tion descriptions for further information.

Fault T a,es 1-3

These faults occur when a tally designator of FT1, FT2, or FT3 is encountered

in an IT address modifier field. The indirect word is not obtained and

the operation is not completed. Fault Tags 1, 2, and 3 are also recogniz-

ed in an IT word brought in by IR modification cycle. Fault Tag 1 is

reserved for 635 programs. Fault Tag 2 is the standard linkage fault

when it occurs in a linkage section. Fault Tag 3 is available for 645

programmers.

Directed Faults 0-7

These faults occur when one of eight faults are encountered in bit

7-8

positions 30-35 of the modifier field of the segment descriptor word or

page table word. The fault number is indicated in bit positions 30-32

and zeros are In bit positions 33-35. The operating system determines

what each of the eight faults shall be. It inserts the fault code into

the segment descriptor wor~ (SDW) and page table word (PTW) to prevent

access to a segment or page at the current time. After the hardware builds

the address of the related fault vector, the operating system services the

fault by using the two words it has placed in the fault vector. In most

cases these words will be an SCU instruction and a transfer instruction.

Directed faults 0-7 are detected in SDW's and PTW's and can be used as

the writer of the supervisor chooses.

Priorit~ 6 Faults (Connect. Timer Runout. and Shutdown)

Faults in piority group 6 are recognized under conditions similar to those of

program (external) interrupts. The processor checks for the three faults In

this group at the same time it makes its periodic checks for an interrupt pre-

~, sent signal for a program interrupt. The check is made at the beginning of ad­

dress preparation cycles for an instruction word, indirect word, terminating in­

direct cycle, and indirect then tally word. The recognition of anyone of these

faults may be inhibited in Master mode by the interrupt inhibit bit (28) of the

instruction word. The presence of group 6 faults is checked from the beginning

of every address preparation cycle until the generation of the corresponding

store location access request. Faults in this group have priority over program

interrupts and cause the operations in the processor to abort conditionally upon

completion of all pending operations. Faults must wait for the system controller

to acknowledge the last access request before initiating the abort routine. If

simultaneous faults occur in this group, priorities from highest to lowest are:

shutdown, timer runout, and connect.

Connect

The fault occurs when .the processor recelves a connect signal from another

active device through the system controller. This event shOUld not be

confused with the connect (ClOG) instruction encountered in a program

sequence. Note that the connect fault is the only fault generated by

7-9

a condition external to the processor, I.e., from another processor.

Timer Runoyt

The fault occurs when contents of the timer register reach zero. If the

processor is in Master mode, recognition of the fault is delayed until

the processor returns to Slave mode. This delay does not limit the

counting of the timer register which continues to decrement after it rolls

over to the maximum count of 224-1.

Shytdown

This fault can be originated in either of two ways. Power is turned off

approximately one millisecond after the occurrence of either:

a. Depressing of the POWER OFF button on the main panel.

b. Receipt of a remote signal which indicates a commercial

power fa i lure.

Fault Vector Address

Each fault has a corresponding pair of instructions in its fault vector and IS

trapped to these by the hardware. The 32 vector pairs constitute the fault

vector table which is a block of 64 words. The base address of the block, a 0

modulo(64) number, is set on the thumb, wheels located on the back of the processor

maintenence panel. The absolute 24-bit memory address of the fault vector pair

is generated by extending the fault code by a trailing zero and appending this

value to the value of the fault vector address. The generated address is that

of the first word of the desired fault vector pair, as shown:

0 17 18 22 2'2

Fault Vector Address Fault Code 0

Address of Fault Vector Pair

Sequence of Fault Procedyre

When a fault occurs, the control unit of the processor determines the time to

7-10

initiate the fault procedure. This depends upon the type of fault. The fault

procedure consists of the following steps:

1. Take a snapshot of processor status In anticipation of an SCU instruc­

tion and abort the processor.

2.

3.

At the end of the abort cycle, prepare the address of the fault

vector pair.

Force the operation code of an XED instruction and the address of the

fault vector pair into the instruction registers Y and C and set the

interrupt inhibit bit (2e) to 1.

If the instruction causing the fault was not the result of a prevIous

forced XED, the even or odd flag is set by the hardware to tell whether

the faulting instruction was in an even or odd location. The flag is

saved by the SCU instruction.

If an attempt to execute the XED results in a parity error or a pri­

ority group fault, the processor switches to a trouble fault. The

snapshot remains the same, but a new XED instruction is forced with

an address corresponding to the trouble fault into the instruction

registers.

4. Set a temporary absolute flag (not affecting the absolute indicator).

5. Cause Master mode of execution of the XED and vector pair instructions.

6. Issue a memory access request for the fault vector pair. The two in­

structions of the fault vector must adhere to the programming rules of

a normal XED instruction.

7. Begin address preparation for the even instruction which is most likely
to be an SCU instruction. If it is an SCU, bit 28 should be set to 1

by the operating system to avoid destroying the original snapshot.

If a directed fault, illegal descriptor, illegal procedure (out-of­

bounds or access violation fault) is encountered during any address

preparation cycle forthe SCU operand or indirect word or if a parity

error follows the fetch of an indirect word, the trouble fault routine

7-11

"

1S entered.

8. If the execution of the first instruction of the fault vector pair

did not result 1n a transfer, the processor begins address preparation

for the second instruction. The processor can now recogn1ze external

interrupts or faults and recovery. Therefore, use of bit 28 is op­

tional. If either of the two instructions results 1n a transfer

other than TSS, or a transfer with bit 29 = 1, or ITB or ITS indirec~

tion, the absolute indicator will be on. The mode of execution remains

Master unconditionally for as long as the absolute indicator is on.

If the absolute indicator is off, the mode of execution is set ac­

cording to the current procedure.

9. Execute the second instruction.

10. If neither instruction caused a transfer, execute the instruction next

1n the normal sequence after the instruction which caused the fault

directly or indirectly. This is the instruction in ICTC+1. The

snapshot data stored by SCU is ignored.

If the executed instruction caused a transfer, for example to a

routine to service the fault, there must be an RCU instruction to

restore the snapshot data stored by the SCU instruction. In most

cases the original status 1S restored by an RCU instruction at the

end of the service routine. After the status is restored, the or1g1-

nal sequence is completed as though the interrupt never occurred.

In some cases, as with the programmed Fault Tag 2, the restoration

1S achieved by an RCU pointing to modified SCU data.

Segment Address and Segment Number Generation

Faults 1n priorities 5 and 6 can have various effects on address preparation.

Faults 1n these groups are detected during address preparation and the actual

fetch from memory 1S inhibited. However, a segment address and a segment num­

ber are generated to define the word whose fetch is being attempted. The

computed segment address and number become part of the safe-stored data.

In all other cases, the computed address field of the snapshot contains the ad-

7~2

•

dress of the word causIng the fault during address modification. Certain faults

may be encountered during any phase of address preparation. These are:

directed faults

faults which occur when access rights are violated.

Some faults are trapped during the initial phase of address preparation. They

are:

635 compatibility faults

635/645 compatibility faults

privileged instructions in Slave mode

Some faults are trapped during segment address preparation. These are:

Master mode entry faults

derail fault

illegal procedure fault (when an attempt IS made to load an ABR with
the lock bit = 1).

EXTERNAL (PROGRAM) INTERRUPTS

,"--" When a device, such as an I/O device, needs a serVIce rautine, a request is made

to interrupt a current program and use a processor to serVIce the device. The

interrupt is signalled automatically, relieving the system of need to continu­

ously test for events requiring attention.

Execute Interru~t Reeister

The system controller has a 32-bit execute interrupt register which receIves

interrupt requests from active devices. Each device IS allocated specific

cells (bit positions) in the register, according to its functional requirements.

CellO has the highest priority and cell 31 has the lowest. A device can set

(to 1) any of the cells allocated to it by issuing an SMIC command to the system

controller. A processor program can also set any of the cells in the execute

interrupt register by issuing an SMIC instruction. However, the program cannot

read or reset the cells to O.

Interru~t Mask Reeister

The system controller has a 32-bit interrupt mask register which operates in

conjunction with the execute interrupt register. The interrupt mask register

7-13

can be set or reset by the "control" processor issuing an SMCM instruction in

Master mode. (Designation of the "control" processor is made by an 8-position

selector switch on the system controller panel.) Each 1-bit in the interrupt

portion of the mask allows recognition of the information in the corresponding

cell of the interrupt register. This 1-bit is said to unmask the interrupt

cell. When one or more of the unmasked execute interrupt cells is set to 1,

the system controller notifies the "control" processor of the interrupt. The

"control" processor can read the mask register by executing an RMCM instruction.

Interrupt Vector

Each execute interrupt cell has an instruction pair associated with it in memory.

The absolute address of the pair is a function of the cell number and the pro~

cessor port number. These core locations constitute the interrupt vector and

they are used in the same way as the fault vector locations already described.

The first of these locations normally contains an instruction which stores the

processor status so that restoration can be made to the point of interrupt. The

second location contains a transfer instruction to the service routine correspond­

ing to the particular interrupt cell. The operating system places the instructions

in the interrupt vector locations. The processor checks periodically for an

interrupt present signal. The checking takes place in the beginning of every

address preparation cycle other than for an instruction fetch. This occurs

about once every 0.750 to 2.250 microseconds. The checking is inhibited in

Master mode when the inhibit bit (bit 28 of the instruction) is on and also after

the first step of the execution of a multiple-step instruction such as LREG and

STB.

When one or more interrupt present signals are encountered and when operations

already in progress are completed (and no fault is encountered), the processor

issues an execute interrupt command. The command is issued in Master mode to the

highest priority cell which IS on. Because the processor can be designated

"control" by more than one system controller, the highest priority is assigned

to the controller connected to processor port A and the lowest to port H.

The system controller verifies that the execute interrupt command was issued by

the "control" processor and was in Master mode. (If it was not, the controller

7-14

responds with an illegal action code and the processor traps the illegal memory

command fault. Since these are hardware rather than programmed functions, a

hardware malfunction should be suspected. The processor would have a 635/645

compatibility fault; see pages 7-6 and 7-8. If the command is validated, the

system controller responds by sending the number (5 bits) of the highest unmask­

ed interrupt cell to the processor and resets the cell. The processor uses the

cell number as part of the address of the interrupt vector. The address is used

with a hardware-forced XED instruction to retrieve the instruction pair in

memory. The routine which services the interrupt is now executed. Other inter­

rupt cells remain set until priority permits their servicing.

Interry~t Priorit~

Interrupts have a priority equal to fault group 6. Within group 6, interrupts

have the lowest priority. The checking for interrupts resumes when the first

instruction having a 0 in bit position 28 is encountered. The programmer must

insert 1's in bit 28 of all instructions which he desires to be interrupt-in-

~, hibited. Bit 28 has no effect in Slave mode. When the XED instruction is forc­

ed by the hardware to fetch the interrupt or fault pair, the effect of bit 28

being 1 does not extend to the XED's instructions. It does, however, extend to

the subsequent indirect words and operand and address preparation (even if DU or

DL).

Interry~t Vector Address

Selection of the interrupt vector address is similar to the selection of the

fault vector address. There can be as many as eight interrupt vector tables

for each processor--one for each processor port. Each table consists of the 32

vector pairs and constitutes a 64-word block. The interrupt tables for a pro­

cessor immediately follow the fault vector tables for the same processor. The

tables for each port are in the order of the port designation--from A to H.

All of the tables for a processor are relocatable (as a group) and can be

placed anywhere in store by use of the fault vector thumb wheels. The switches

provide the base address, 0 modulo (1024), of the fault table. The 18-bit address

formed for a forced XED instruction points to the relative location of the vector

palr. This relative address is formed by adding a 4-bit port number code (from

7-15

0001 to 1000) and a 5-bit interrupt cell number to the fault vector table.

a

I ,
a

Relative location of Vector
r~--------------A----------------\

0 7 8 11 12 1 6

0-----0 Port No. Interrupt

Fault Vector
Switch

i
7'

Code Cell No.

Address of Interrupt Vector Pair

Formation of Interru~t Vector Pair Address

17

a

Use of Interrupt Inhibit

Bit position 28 of the instruction word can be used in Master mode to inhibit

the recognition of the three faults of priority group 6. When bit 28 is set to

1, interrupts are inhibited until either Slave mode is entered or until a sub­

sequent instruction having 0 in bit position 28 is encountered.

7-16

APPENDIX A - INSIRUCTIONS LISTED BY OCTAL CODE

001 MME 073 LREG 161 SBX1 245 ORSX5 324 LCX4 411 LDE
002 DRL 075 ADA 162 SBX2 246 ORSX6 325 LCX5 415 ADE
004 MME2 076 ADQ 163 SBX3 247 ORSX7 326 LCX6
005 MME3 077 ADAQ 164 SBX4 327 LCX7 421 UFM
007 MME4 165 SBX5 250 STPO 423 DUFM

100 CMPXO 166 SBX6 251 STP1 330 EA64 425 FCMG
011 NOP 101 CMPX1 167 SBX7 252 STP2 331 EAB5 427 DFCMG
015 CIOC 102 CMPX2 253 STP3 332 EAB6

~ 103 CMPX3 171 SWCA 254 STB 333 EAB7 430 FSZN
020 ADLXo 104 CMPX4 172 SWCQ 255 ORSA 335 LCA 431 FLD
021 ADLX1 105 CMPX5 173 LDB 2560RSQ 336 LCQ 433 DFLD
022 ADLX2 106 CMPX6 175 SBA 257 LAM 337 LCAQ 435 UFA
023 ADLX3 107 CMPX7 176 SBQ 437 DUFA
024 ADLX4 177 SBAQ 260 ORXo 340 ANSXO
025 ADLX5 111 ONL 261 ORX1 341 ANSX1 440 SXLo
026 ADLX6 115 CMPA 200 CNAXO 262 ORX2 342 ANSX2 441 SXL 1
027 ADLX7 116 CMPQ 201 CNAX1 263 ORX3 343 ANSX3 442SXL2

117 CMPAQ 202 CNAX2 2640RX4 344 ANSX4 443. SXL3
033 ADL 203 CNAX3 265 ORX5 345 ANSX5 444 SXL4
035 ADLA 120 sa.Xo 204 CNAX4 266 ORX6 346 ANSX6 445 SXL5
036 ADLQ 121 Sa.X1 205 CNAX5 2670RX7 347 ANSX7 446 SXL6
037 ADLAQ 122 Sa.X2 206 CNAX6 447 SXL7

123 Sa.X3 207 CNAX7 270 TSoo 350 EAPO
040 ASXo 124 Sa.X4 271 TSB1 351 EAP1 450 STZ
041 ASX1 125 Sa.X5 211 CMK 272 TSB2 352 EAP2 451 SMIC
042 ASX2 126 Sa.X6 215 CNAA 273 TSB.3 353 EAP3 453 LACL
043 ASX3 127 Sa.X7 216 CNAQ 275 ORA 354 STAC 454 STT
044 ASX4 217 CNAAQ 2760RQ 355 ANSA 455 FST
045 ASX5 135sa.A 277 ORAQ 356 ANSQ 456 STE
046 ASX6 136 sa.Q 220 LDXo 357 STCD 457 DFST
047 ASX7 137 Sa.AQ 221 LDX1 300 CANXo

222 LDX2 301 CANX1 360 ANXo 461 FMP
050 ADOO 140 SSXo 223 LDX3 302 CANX2 361 ANX1 463 DFMP
051 ADB1 141 SSX1 224 LDX4 303 CANX3 362 ANX2
052 ADB2 142 SSX2 225 LDX5 304 CANX4 363 ANX3 470 FSTR
053 ADB3 143 SSX3 226 LDX6 305 CANX5 364 ANX4 475 FAD
054 AOS 144 SSX4 227 LDX7 306 CANX6 365 ANX5 477 DFAD
055 ASA 145 SSX5 307 CANX7 366 ANX6
056 ASQ 146 SSX6 231 RSW 367 ANX7 500 RPL

147 SSX7 232 LDER 310 EAIb 505 BCD
060 ADXo 233 RMCM 311 EAB1 370 EAP4 506 DIV
061 ADX1 150 AD64 234 SZN 312 EAB2 371 EAP5 507 DVF
062 ADX2 151 ADB5 235 LDA 313 EAB3 372 EAP6

512 LDCF 063 ADX3 152 ADB6 236 LDQ 315 CANA 373 EAP7
513 FNEG 064 ADX4 153 ADB7 237 LDAQ 316 CANQ 375 ANA 515 FCMP 065 ADX5 154 SDffi 317 CANAQ 376 ANQ

066 ADX6 155 SSA 240 ORSXO 377 ANAQ 517 DFCMP

067 ADX7 156 SSQ 241 ORSX1 320 LCXO
520 RPT 157 ZAM 242 ORSX2 321 LCX1 401 MPF

071 AWCA 243 ORSX3 322 LCX2 402 MPY 525 FDI

072 AWCQ 160 SBXo 244 ORSX4 323 LCX3 405 CMG 527 DFDI

A-1

APPENDIX A - INSTRUCTIONS LISTED BY OCTAL CODE (Continued)

531 NEG 626 EAX6 706 TSX6 771 ARL
532 CAM 627 EAX7 707 TSX7 772 QRL
533 NEGL 773 LRL
535 UFS 630 RET 710 TRA 774 GTB
537 DUFS 633 RCCL 715 TSS 775 ALR

634 LDI 716 XEC 776 QLR
540 Sffio 635 EAA 717 XED 777 LLR
541 SBR1 636 EAQ
542 SBR2 637 LDT 720 LXLO
543 SBR3 721 LXL1
544 SBR4 640 ERSXO 722 LXL2
545 Sffi5 641 ERSX1 723 LXL3
546 SBR6 642 ERSX2 724 LXL4
547 SBR7 643 ERSX3 725 LXL5

644 ERSX4 726 LXL6
551 STBA 645 ERSX5 727 LXL7
552 STBQ 646 ERSX6
553 SMCM . 647 ERSX7 731 ARS
554 STC1 732 QRS
557 SAM 650 STP4 733 LRS

651 STP5 735 ALS
560 RPD 652 STP6 736 QLS
565 FDV 653 STP7 737 LLS
567 DFDV 655 ERSA

656 ERSQ 740 STXO
573 FNO 657 SCU 741 STX1
575 FSB 742 STX2
577 DFSB 660 t;RXo 743 STX3

661 ERX1 744 STX4
600 TZE 662 ERX2 745 STX5
601 TNZ 663 ERX3 746 STX6
602 TNC 664 ERX4 747 STX7
603 TRC 665 ERX5
604 TMI 666 ERX6 750 STC2
605 TPL 667 ERX7 751 STCA
607 TTF 752 STCQ

670 TSB4 753 SREG
610 RTCD 671 TSB5 754 STI
613 RCU 672 TSB6 755 STA
614 TEO 673 TSB7 756 STQ
615 TEU 675 ERA 757 STAQ
616 DIS 676 ERQ
617 TOV 677 ERAQ 760 Lffio

761 LBR1
620 EAXo 700 TSXo 762 Lffi2
621 EAX1 701 TSX1 763 LBR3
622 EAX2 702 TSX2 764 Lffi4
623 EAX3 703 TSX3 765 Lffi5
624 EAX4 704 TSX4 766 LBR6
625 EAX5 705 TSX5 767 Lffi7

A-2

APPENDIX B INSTRUCTION TIMING

This appendix describes the instruction execution times for the 645 proces­

sor. The actual time for each instruction is also included in a table at the

end.

BASIS FOR CALCULATION OF THE LISTED EXECUTION TIMES

The listed execution times are the ayer92e times for a pair of instructions

and are determined from the conditions listed below which are considered the

2eneral case.

The pair is preceded and followed by instructions of the same type. The ad­

dresses are such that the memory cycles for the preceding instruction fetch

and the memory cycles for the operands of the pair are overlapped. The ad­

dress modification IS register modification (for example R = Xn, AU, etc.,

but not DU, DL).

All necessary descriptor words for the appending operation are available In

the associative memory. In the case of store instructions, the "written bit"

of the page table word does not have to be set.

The average execution time for an instruction pair IS defined as the time in­

terval between the start of address preparation for the ~ instruction of

the pair, and the start of address preparation for the ~ instruction of the

next pair:

Average Execution Time = (Execution Time of Pair) divided by (2)

There are five exce~tions to the definition of ayera2e. The listed execution

times reflect these five exceptions. The exceptions are:

1. Short load type instructions including LDA, LDAQ, ADA, ADAQ. Any

instruction which requires an operand to be loaded from core, and for

which the required operations unit execution time is less than 1.35 micro­

seconds. When the memory cycle for the preceding instruction fetch, and

the memory cycles for the operands of the pair are not overlapped, the

execution time for a short load type is 1.5 microseconds.

B-1

2. Store types such as STA, STAQ, FST, DFST, AOS, ASA etc. Any instruction

which alters the contents of a core location is a store type instruction

and the listed execution time specified reflects the following conditions:

a. The store type instruction is preceded by a short load type instruc­

tion (for example, LDA - STA; LDAQ - STAQ; LDA - ASA).

b. Items 2, 3, 4 and 5 of the general case apply.

The listed execution time is calculated as follows:

Store Type Execution Time = (Execution Time of Pair) -

(Execution Time of Load Type)

3. Long load types (for example, FAD, FMP, MPS) - Any instruction for which

the required operations unit execution time is greater than 1.35 micro­

seconds is a long load type instruction. For a string of these instruc­
tions, the address preparation time and instruction fetch time are less

than the operations unit time. The listed execution time is the time

interval between the start of the operations unit operation for one long

load type and the next long load type instruction.

4. Control types (for example, TRA, TNC, XEC) - Any instruction that

fetches another instruction to be executed is a control type instruction.

The listed execution time is the time interval between the start of ad­

dress prdparation for the control type instruction and the start of ad­

dress preparation for the next instruction to be executed.

5. Base types (for example, LBRn, SBRn, EAPn, etc.) - Any instruction whidl

changes or stores a base register (ABR 0-7)' the descriptor sagment base

register or the associative registers is a base type instruction. The

listed execution time is the time interval between the start of address

preparation of the next base type plus one-half of the instruction address
preparation time.

B-2

ADDRESS MODIFICATION AND APPENDING OPERATION TIMES

The instruction execution time should be increased by the following factors

for address modi fication and appending operations;

1 • MOD R (R = Xn, AU, etc.):

2. MOD R (R = DU, u..)

3· MOD IR, RI

4· MOD IT

5. Appending Word Fetch

INSTRUCTION SEQUENCE TIMES

add nothing

add nothing

add 2 microseconds for each indirection;

add 2.3 microseconds for each ITS, ITB

indi recti on.

add 2 microseconds if the contents of the

indirect word are not changed, add 2.7

microseconds if the contents of the indi­

rect word are changed.

add 1.6 microseconds for a DSPTW, SDW, or

PTW fetch.

When an instruction sequence contains one or more instructions whose timing

factor is an exception to the average execution time, these additional times

must be added to the calculated average execution time of the sequence.

Cases which need additional time factors are:

1. A transfer to or from a long load type instruction.

2. An instruction at location n (n even) modifies an instruction at n + 1,

n + 2, n + 3, or an instruction at n (n odd) modifies an instruction at

location n + 1, n + 2.

3. An instruction at location n (even or odd) modifies a register needed

for the address modification of an instruction at location n + 1, n + 2.

4. Entry into a fault routine.

B-3

ALp hClh ... El.. t._L<;:;:lLJ-= .. L~ i .. o LJJ10JL.\~i.Lg n s
l.i,!!l.L[!e_D.ncLE'.f.~E';'9-I::!.I.) m h. ElG"i

wi th

MN[rJiO[~ I C P/\GE TIMING MNEMON I C PAGE T I.\,j I NG Mr~EMON I C PAGE T IMlf\!G
IN usee IN usee IN usee

ADA 2-29 1.67 DFAF 2-51 2.10 LBPD-7 2-20 2.j2
ADAQ 2-29 1.87 D!="CWG 2-62 1.87 LCA 2-10 1.67
AWO_7 2-24 3.31 DFCfv1FJ 2-62 1.8'1 LCAQ 2-11 1.87
ADE 2-51 1.67 DFDI 2-59 23.15 LeQ 2-11 1.67
AD~. 2-31+ 1.67 DFDV 2-53 23.56 LC~ 2-11 1.67
ADLA 2-31 1.67 DFLD 2-47 1.87 LDA -7 2-7 1.67
ADLAQ 2-32 1.87 DFMP 2-55 11.85 LDAQ 2-7 1.87
ADLQ 2-32 1. ;S7 DFSB 2-52 2. 51~ LDB 2-20 6.88 •
ADLXo_7 2-33 1.67 DFST 2-48 2.61 LDBR 2-21 2.92
ADQ 2-29 1.67 DIS 2-90 Vat-Ylng LDCF 2-21 3.73
ADXo·-7 2-30 1.67 DIV 2--44 14.12 LDE 2-47 1.67
AL.R 2-28 1.4.7 DRL 2-91 2.0 LDI 2-9 1.67
ALS 2-26 1.47 DUFA 2-51 2.10 LDG. ~-~-. 7 1.67
ANA 2 .. 61+ 1.67 DUFM 2-55 11 .61 LDT 2-8 1.67
ANAQ 2-6/+ 1.87 DUFS 2-53 2.51 .. LD>D-7 2-8 1.67
ANQ 2-61 .. 1.67 DVF 2--45 111-012 LLR 2-28 1.1t7
ANSA 2-65 3.73

EAA LLS 2·-26 1.47
ANSQ 2-65 3.73 2-5 1.51 LRm 2-10 6.29
ANSXO_7 2-66 3.73 I EABO_7 2-19 1.99 LPl 2-27 1.47
AOS 2-35 3.73 EAPO_7 2-19 2.11-1 LRS 2-25 1 .//1
ARL 2-27 1.47 EAQ 2-5 1. 51

LXLO_7 2-8 1.67
ARS 2-25 1.47 EAXO __ 7 2-6 1.51
ASA 2-30 3. '/4 ER/\ 2-69 1.67 M~,~EI_1+ 2-92 2.0
ASQ 2-31 3.74 ERAQ 2-69 1.87 MPF 2-1+3 7.09
AS><O __ 7 2-31 3. '13 tRQ 2-69 1.67 MPY 2-/1...3 7.09
MICA 2-33 1.67 [RSA 2--70 3.73 NEG 2-1+6 1 .51
AWCQ 2-33 1.67 ERSQ 2--71 3.73 NEGL 2-1 .. 6 1. 51 ERSY{)-7 2-71 3.73 NOP 2-109 1.11-7 BCD 2-89 3.71 ERXo-7 2--70 1.67

CAM 2-89 1.99 FAD 2-50 1.99
OFll\ 2-67 1.67
ORAQ ' 2-67 1.87 CANA 2-73 1.67 FCM3 2-61 1.79 ORQ 2-67 1.67 CANAQ 2-78 1.87 FCMP 2-61 1.79 onSA 2-68 3.73 CANQ 2-78 1.67 FDI 2-57 1!~.12

CM~Xo-_7 2--79 1.67 FDV 2-56 14.12 ORSQ 2-·68 3.73
CiOC 2-·90 1.35 FLD 2-47 1.67 ORSY'O_7 2-68 3.73
CMG 2-76 1.67 FMP 2-54 6.04 ORXo_7 2-68 1.67
CMf< 2-77 1. ()S nJEG 2-60 1.47 QLR 2-28 1.1 .. 7
CMPA 2-72 1.67 FNO 2-60 1./}7 QLS 2-26 1./:.7
CMrJAQ 2-·7/, 1.87 FS8 2-52 2. 5 It· QFtl_ 2-27 1.1 .. 7
CMPQ 2-73 1.67 FST 2-48 2.08 QHS 2-25 1./17
CMPXO_7 2--75 1.67 Fsm 2-4.8 2.84 Ficel 2--110 1.7 CNAA 2-80 1.67 FSZN 2-63 1.67
CNAAQ 2-80 1.87 RCU 2-118 4.6
CNAQ 2-80 1.67 GTB 2-89 9.87 RET 2-,8/1, It.O
Ci\IAXo_7 2-80 1.67 LACL 2-110 2.1

Rr.1CM 2-97 1.35
CWL 2-75 1.68 LAM 2-111 29..87 abs. RPD 2--103 1.35

33.33 app. Rf)L 2-106 1.35

(Rev i sed Septc:nber 11+ , 1970)

B--I+

MNErv10NIC PAGE TIIVIING MNEMONIC PAGE TIMING
IN usee IN usee

RPT 2-100 1.35 TNC 2-86 2.0
RSW 2-109 1.35 TNl 2-85 2.0
RTCD 2-84 3.7 TOV 2-'37 2.0
SAM 2-112 29.87 abs. TPL 2-86 2.0

33.33 app. TRA 2-81 2.0
SBA 2-36 1.67 TRC 2-86 2.0
SBAQ 2-37 1.87 TSBO_7 2-82 2.0
SBLA 2-39 1.67 TSS 2-83 2.0
-SBLA'1 2-40 1.87 TSXo_7 2-83 2.0
SBLQ 2-39 1.67 TTF 2-88 2.0
SBU(0_7 2-40 1.87 TZE 2-85 2.0
SBQ 2-36 1.67 UFA 2-50 1.99
SBPo_7 2-22 2.19 UFM 2-54 5.80
SBXo_7 2-37 1.67 UFS 2-52 2.54
SCU 2-113 6.1+4-
SDSR 2-22 2.19 XEC 2-96 2.0
SMCM 2-98 3.97 XED 2-96 2.0
SMIC 2-99 2.0 lAM 2-112 2.84 abs.
SREG 2-14 8.59 6.30 app. I $S"

2-38 3.73
,r"

SSQ 2-38 3.74
SSXo_7 2-38 3.74
STA 2-13 2.08
STAC 2-13 3.74
STAQ 2-13 2.61

I STB 2-22 8.25
STBA 2-16 2.03
STBQ 2-16 2.08
STC1 2-18 2.47
STC2 2-18 2.47
STCA 2-15 2.08
STCD 2-12 2.84
STCQ 2-15 2.08

I STE 2-49 2.08
STI 2-17 2.47

I STPO_7 2-23 2.84
STQ 2-13 2.08
STT 2-17 2.4"
STXo_7 2-14 2.08
STl 2-18 2.39
SWCA 2-41 1.67
SWCQ 2-42 1.67
SXLO_7 2-14 2.08
SlN 2-76 1.67
TEO 2-87 2.0
TEU 2-87 2.0
TMI 2-85 2.0

(Revised September 14, 1971)
B-5

It

APPEND I X C -- ASC I I CHARACTER SET

First Two Digits of
Octal Representation Last Digit of Octal Rep'resentation of Character
of the Character 0 1 2 3 4 5 6 7

{
00 (NUL) BEL

Control 01 BS HT NL VT NP RRS BRS
Characters 02 HLF HLR

03
/"

04 space I II # $ % & ~ .
01) () * + , - . /
06 0 1 2 3 4 5 6 7

07 8 9 : ; < = > ?

10 (0) A B C D E F G

Language 11 H I J K L M N 0
Characters 12 P Q R S T U V W

13 X y Z ["-] /'. -
14

, a b c d e f Q

11) h 1 .i k 1 m n 0

16 p q r s t u v w

17 y [I 1 . ..-.......- PAD x z I

Multics Im~lementation of ASCI I Character Set

Control Character Definitions

BEL - Sounds an audible alarm.

BRS - Black ribbon shift. Character code 017 (ASCI 1- SI) is used for this
function.

BS - Move carriage back one column. (Implies overstriking, not erasing).

HLF Hal f-l ine forward feed. Character code 022 (ASC 11- DC2) IS used for
this function.

HLR Half-line reverse feed. Character code 024 (ASCII- DC4) IS used for
this function.

HT Horizontal tabulate. Move carriage to next horizontal tab stop. (On
variable tab machines, the default tab settings are at columns 11, 21,
31, etc.)

NL - New line. Move carriage to left edge of next line. Character code
012 (ASCII- LF)is used for this function.

C-1

NP New page. Character code 014 (ASCI 1- FF) is used for this function.

NUL - This character is treated exactly as PAD. It is used in an "edited"
output mode by the operating system. In normal output mode it is
considered a "not-used" character, and printed with an octal escape
sequence. This character cannot appear in a canonical character
string.

PAD - Padding character. Character code 177 (ASCI 1- DEL) is used for this
function. This character cannot appear in a canonical character
str ing.

RRS - Red ribbon shift. Character code 016 (ASCI I-SO) is used for this
function.

VT Vertical tabulate. (On variable tab machines, the default tab set­
tings are at lines 11, 21, 31, etc.) This character cannot appear
in a canonical character string.

The followi ng ASCII control characters are not used:

SOH 001 STX 002 ETX 003 EOT 004 ENQ 005 ACK

CR 015 DLE 020 DCI 021 DC3 023 NAK 025 SYN

ETB 027 CAN 030 EM 031 SUB 032 ESC 033 FS

GS 035 RS 036 US 037

C-2

006
026

034

APPENDIX D - SCU/ACU SUMMARY

The SCU instruction is used to store data needed for resto~ing a processor

to the precise point of interruption after a fault or interrupt has been

serviced. The ACU instruction is used to restore the processor status.

SCU and ACU allow an instruction to be interrupted in mid-execution.

A total of three double-words is used by the SCU/ACU instructions. See next
page. The SCU instruction actually stores 203 bits of information. The
remaining 13 bits are not used; they are indicated by X on the next page. The

ACU instruction restores only 168 bi ts. (The 35 bi ts used by the SCU but ig­

nored by the ACU are indicated by * on the next page.)

To facilitate definitions and descriptions, the SCU/ACU data is grouped into
the following functional classes:

1. Control Unit Status
a. CYCle flags: PL, PA, PZ, PT, PN
b. Repeat modes flags: RF, FT, FD, FL
c. Execute Double mode flags: XDO, XDE
d. Segmentation flags: ESTRo_3, OSTRo_3' ITS, ITB
e. Mode of Execution flags: M/S, MASF, ABS (included in I R)
f. Control tag register: CTO_5
g. Auxi liary flags: IC, TRZ

2. Computed address.

3. Registers - TBR, PBR, IR, ICTC, IE, 10

4. Software - assisting status

a. Appending subcycles: DSPTW, SDW, PTW
b. Fault code
c. Processor number
d. Illegal procedure fault type: a-e
e. Auxiliary indicators: EA, PEO

D-1

WORD
Y

WORD
Y 1

WORD
Y 2

WORD
Y 3

C(Y)0-17 ~ C(TBR)0_17

C(Y)18-35 ~ Appending Unit Status

OSTRO_3 ESTRO_3 I TS I TB PEa TRZ DSPlW PTW
SDW

I I I x I I
18 19 20 21 22 23 34 25 26 27 28 29 30 31 32 33 34 35

C(Y 1)0-17 <==> Computed Address (*)

C(Y 1)18-35 ~ Control Unit Status
XOO MASF

PI PN XDE IC EA MS PA PZ PT CTO_ 5

I I I X I I I I 1* I I I I I
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

C(Y 2)0-17 <==> C(PBR)0_17

C(Y 2) 18-35 ¢:::;> Fault Data (*)

PROC.# ILL. PROCED. TYPE FAULT CODE

I I * * * * * I * ~f * * I X Ix I X I X I
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

C(Y 3)0-17 ¢:::;> C(ICTC)0_17

C(Y 3) 18-35 <==> C(I R)0_10 and C(Y 3) 30-35 ¢::.::> Control Uni t Status

Z NCO EO EU OM T P PM AM RF FT FL FD

I
35

x
35

I I I I I I I I I I I I X I I I I X X
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

WORDS 0-35 [
C(Y 4) <==> Even Instruction (IE)

Y 4 C(Y 5) <:.::::;> Odd Instruction (10)
Y 5 0-35

Format of the SOU Data

D-2

CONTROL UNIT AND APPENDING UNIT STATUS

C¥cle Fla~s

PI - This flag defines the cycle during which an address derived from the

instruction counter (ICTC) is prepared for instruction fetch. This

does ll2i include instruction fetch due to transfer, return, execute or

execute double.

PA - This flag defines the cycle during which an address (or a direct oper­

and) is prepared as specified by the original address and tag fields

of an instruction. Ifit is a direct instruction (e.g., NEG, CAM, RPT

shifts) or a direct operand (DU or DL) then no memory access request

will be made. If it is not direct but the modifier is R, a request

will be made for an indirect word and address modifications will pro­

ceed when the latter is received.

~, PZ - This flag defines the cycle during which an address is prepared as

specified by the address and tag fields of an indirect word and the

immediately preceding tag was IR or RI. If the new tag is R or IT

(other than faul t tag), the preparat ion is for an operand. I f the

new tag is RI or IR, a request will be made for a further indirect

word.

PT - This flag defines the cycle during which an address is prepared as

specified by the address and tag (only for DIC or IDC) fields of an

indirect and tally word (and the tag of the immediately preceding

IT tag). The alteration of the tally word (for tags other than I

and CI) took place previously. In cases other than DIC and IDC the

preparation IS for an operand. In the case of DIC and IDC, further

indirection IS possible depending on the new tag.

PN - This flag defines the cycle during which address modification tags are

ignored and the indirect address becomes the effective address. This

cycle is employed in two cases. One is in the Return mode (RET and RTCD)

D-3

after the new ICTC has been received and the address for the instruc­

tion fetch is to be prepared. The other case is the operand from re­

peated instruction (under RPT and RPD) with RI modifier. In this case

only R=N is allowed in the indirect word.

The cycle flags field may be viewed as a one out of five code. One and

only one bit must be set to 1. The one exception is interrupts and res­

torations to the DIS state which may be made with all flags reset, or with

PA alone set.

Re~eat Modes Flaes

RF - This flag defines the period extending to the end of the first address

preparation cycle of the repeated instruction in the Repeat or Repeat

Link mode, or to the end of the first address preparation cycle of the

odd repeated instruction in the Repeat Double mode. Address prepar­

ation during the first execution of a repeated instruction follows a

different formula than during subsequent executions.

FT - This flag indicates that the processor is in the Repeat mode. It is

set following a RPT instruction and reset when a prespecified terminate

condition is met, or the abort sequence is entered due to a fault or an

external interrupt.

FD - This flag indicates that the processor is In the Repeat Double mode.

It is set following a RPD instruction and reset when a prespecified

terminate condition is met, or the abort sequence is entered due to a

fault or an external interrupt.

FL - This flag indicates that the processor IS In the Repeat Link mode. It

is set following a RPL instruction and reset when a prespecified term­

inate condition is met, or the abort sequence is entered due to a

fault or an external interrupt.

The RF flag may be set to 1 only if one of the Repeat modes is in effect.

No more than one Repeat mode may be set to 1 at any given time.

D-4

..

•

"-..J

Execute Double Mode Fla~s

XDE - This flag IS set following a XED instruction encountered in an even

location. It remains set until one of the XED'ed instructions causes

a transfer of control, or all XED'ed instructions have been executed

and the odd instruction, which follows the XED in program sequence,

is about to be executed.

XDO - This flag IS set following a XED instruction encountered in an oda

location. It remains set until one of the XED'ed instructions causes

a transfer of control, or all XED'ed instructions have been executed

and the even instruction, which follows the XED in program sequence,

IS about to be executed.

XDE and XDO are interlocked so that no more than one may be on at a time,

even though one XED may bring in another XED as the odd member of the pair.

XDE or XDO will indicate the location of the origi"nal XEDo

Se~mentation Fla~s

During PI cycles, segmentation IS carried out according to PBR if the

absolute indicator IS off. No segmentation takes place during PI if the

absolute indicator IS on. However, during PA or PZ or PT or PN cycles,

the following flags define how segmentation is carried out:

ITS - This flag is set to 1 when an ITS modifier is encountered and remains

set until an ITB modifier is encountered subsequently, or address

modification is completed. When ITS is set, segmentation is carried

out according to TBR. The following flags are significant only if

I TS is reset.

ITB - This flag is set to 1 when an ITB modifier is encountered and remaIns

set for the duration of the PZ cycle corresponding to the indirect word

adjacent to the ITB word. This flag allows an internal base, if one is

specified, to be added to the indirect address.

D-5

ESTRO_2 The even segment tag register contains a pointer to one of eight

ABR's (address base registers). The pointer is loaded from the three

most significant bits of the original address of an even instruction,

or from an ITB word encountered during address modification for an even

instruction.

This bit IS set to 1 if bit 29 of the original even instruction

was 1, or if an ITB modifier has been encountered during address

modification for an even instruction.

OSTRO_2 Similiar to ESTRO_2 for an odd instruction.

OSTR3 Similiar to ESTR3 for an odd instruction.

The ITS and ITB flags shoud not be set to 1 concurrently.

The Mode of Execution Fla~s

M/S - The Master/Slave flag represents the class of the most recent active

instruction. When in Absolute or temporary Absolute, itis arbitrarily

set to Master (1). (Absolute mode addressing is Master mode execution

by definition).

MASF - This flag defines the temporary Absolute mode, which begins when the

processor forces the XED for the fault vector or issues the execute

interrupt command to the memory controller,and ends when the Execute

Double mode terminates.

Conirol Ta~ Re~isier

CTO_5 - The control tag regisier is used to store IT or IR modifiers during

address modifications. Once an IT or IR modifier has been encountered,

a definite pattern is established for further indirection. Since the

tag of the incoming indirect word replaces the previous tag in the tag

field of the instruction register, it is necessary to hold IT or IR

D-6

...

..

modifiers in a special register. If CTO=O' then an IT or IR modifier

has been encountered and the modifier in the tag field of the instruc­

tion register (R or RI) controls address preparation.

A!Jxj] iary flags

IC - This flag denotes whether current address modifications are for the

even member (0) or the odd·member (1) of the instruction pair. Also,

the least significant bit of the instruction counter (i.e., ICTC17)

indicates whether the active instruction is odd (1) or even (0).

Normally ICTC17 and IC represent the same state, however, in the

Execute Double mode ICTC17 corresponds to the location of the original

XED instruct i on whereas I C wi 11 c"orrespond to the XED' ed instruct ions.

In the case of faults other than groups 5 and 6, the IC flag has no

meaning; however, ICTC will point to the active instruction for group

3 and 4 faults. If this happens in the Execute Double mode, IC will

point to the faulting XED'ed instruction.

TRZ - When certain IT words are altered, the tally may reach zero. This

should be reflected by the Tally Runout indicator when the execution

of the instruction is completed. During the remainder of the address

modification process, a flag is set to 1 to indicate that the new tally

was zero (RSO_11 =O).

COMBITED ADDRESS

This is the address calculated according to.the rules imposed by the parti­

cular type of cycle and/or the history of address modifiers before any re­

location takes place.

During normal PI cycles (PI • XDE) the address IS computed according to the

fOllowing formula:

D-7

ICT + 1 if ICTC17 = 1 or

ICT + 2 l'f ICTC 0 17 =
During PI cycles intended to refetch an odd instruction due to XED In the

even location (PI • XDE) the formula is:

1 CTC + 1

The following terms will be defined in order to present the formulae for

address computation for operand or indirect word fetch:

Y The most recent address field of the instruction or indirect
word held by IEO_17 or 100_17

~2

A

B

The delta

The delta

Bit 8 of

Bit 9 or

specified by cedai n IT words.

specified by RPT or RPD.

RPD (a binary coefficient).

RPD (a binary coefficient).

X X1 - X7

D A binary coefficient, which is equal to 0 if the register
designator is N, DU, Dl. The binary coefficient is equal to
1 for other designators.

TAG The most recent tag of the instruction or indirect word held by
I E30- 35 or . 1°30- 35 •

The address remains unchanged (i.e., equal to Y) In the following cases:

PT I (PA+PZ)&(TAG=IR) I PN I PN&(FL&RF)

D-8

r--,

In the case of PT certain computations may have taken place In the pre­

ceding PR cycle. In particular,

y ~ if CT2_5 = SD

or I DIC Y - 1 if CT2_5 = DI

or
CT2_5 = SCR and old Cf = 0

The address IS computed according to

y I D&c(R) when (PAlpZ)&(TAG=RIRI) I PZ&(CTO_1 = I R) (TAG=RII T)

The address IS computed according to

y I C(X) when PA (FTiFDIFL)&R="

The address IS computed according to

C(X) I 11 when PA&fT&RF
2

The address IS computed according to

C(X) I A~2 when PA&Ic&fD&fiF

The address IS computed according to

C(X) I B8Q2 when PA&I C&FD&RF

Also, during any PA if bit 29 of the instruction word is 1, or during PZ

if ITB = 1, if the selected ABR is designated as internal its address

field will be added to the relative address.

The computed address stored by a SCU for a group 5 or 6 fault will be in

accordance with one of the above formulae. In the case of a Fault Tag 1-3

encountered in RI or IR indirect word, however, it will be the address com­

puted in the previous cycle (i.e., the relative address of the word contain­

ing the Fault Tag). Also, in the case of a parity error encountered in an

D-9

RI, IR, or IT indirect word, the address IS that of the word containing

the parity error.

REGISTERS

Temporary Base Re~ister (TBR)

During any address preparation cycle the effective pointer is placed in TBR.

If ITS = 0, then TBR contains either PBR or one of the eight ABR's. If

ITS = 1, then TBR contains the pointer which was brought in by th~ ITS paIr.

The TBR captured by a SOJ for a group 1-4 fault is not necessarily the one

involved in the fault.

During the cycle restored by the ROU, the effective pointer is generated

again and placed in TBR. Therefore, if ITS = 0, then TBR is superfluous

in the RCU.

The Procedure Base Re~ister (PBR)

The PBR captured by the SOU defines the active procedure which generated

the fault, except for groups 1 and 2.

In general, the RCU must contain a valid PBR.

The Indicator Register (IR)

C(Y+3)25 will contain the state of the Tally Runout indicator prior to

address modification of the SCU instruction (for Tally operations).

Following the RCU the Tally Runout indicator will reflect C(Y+3)25 regard­

less of what Tally is generated by address modifications of the RCU

instruction.

The indicators stored by a SCU following a group 5 or 6 fault represent the

proper state. However, certain indicators may have changed due to an oper­

ation executed with an operand having a parity error.

Only the Absolute indicator is initialized (to the off state). Other

D-10

indicators may assume either state In a SOU following a group 1 fault.

The Instruction Qpunter (ICTC)

The ICTC stored by a SOU following a fault in PI represents the last suc­

cessfully executed instruction. In general, for a group 3 to 6 fault, the

ICTC points to the active instruction. In the Execute Double mode, the

original XED is defined as the active instruction. In the Repeat modes,

the current repeated instruction is defined as the active instruction.

The ICTC is not initialized; consequently, a group 1 fault may cause any

random number to appear in ICTC. The ICTC stored due to a Lockup and Op

Not Complete may be 0, 1, or 2 greater than that of the faulting instruction.

Eyen and Odd Instructions

The instruction pair stored by the SOU is irrelevant for faults which

occur during the PI address preparation cycle. For other faults in group

4 to 6 the active instruction is one of the pair as determined by ICTC17,

or by I C in the Execute Double mode. The address field (0-17), contains the

original address of the most recent indirect address. The Op Code field and

control bits (18-29) contain the original values. The tag field (30-35)
contains the original tag or the most recent indirect tag except during the

repeat modes, where the original tag is maintained.

For group 3 faults, the instruction pair may be irrelevant In the normal

mode. However, in Execute Double mode the active pair is captured by the

SOU. In normal mode PBR and ICT may be used to refetch the faulting instruc­

-tion.

Illegal Procedure Type - A one out of five code identifies the type of

violation causing the illegal procedure fault. The violations

are: a) privileged instruction in slave (PIF); b) locked base

D-11

in slave (LBF); c) illegalop codes (laC); d) out of bounds

(ooB); e) access violations (AVF). The last two may occur

concurrently.

DSPTW, SDW, PTW - These flags give the location of a directed fault or an

illegal descriptor as the descriptor segment page table word, or

the page table word. Also, DSPTW or SDW indicates an out of

bounds pointer, and PTW or none of the three indicate an out of

bounds relative address. These bits are also valid during parity

faults.

Fault Code - The fault code is included for use by the Trouble Fault re­

oovery routine. It identifies the fault vector, which the pro­

cessor was attempting to execute when trouble occurred.

Processor Number - The processor number identifies each processor in a

multi-processor system for purposes of Test and Diagnostic routines

and machine checks due to hardware-generated faults.

Auxiliary Indicators - The EA flag indicates whether a group 5' or 6 fault

was encountered during address preparation for an operand (1) or

an indirect word (0). The PEa flag indicates a parity error in

the operand.

Hardware Fla~s - Allowable Codes

The following table is a summary of the codes allowed to represent the

various groups of hardware status.

D-12

•

Flags

PI-PA-PZ-PT-PN

XIE-XOO
IC

FT-FD-FL

RF

ITS-ITB

M/S
MASF
OSTRO_3
ESTRO_3
ITR

CTO_5

VALIDITY OF SCU DATA

1 out of 5

00, 01, 10

0, 1

Allowable Codes

000, 1 out of 3

0, 1 with FT\FDIFL=1

00, 01, 10

0, 1

0, 1 with forced XED

any

any

0, 1

any except 100010 (undefined IT)

The fallowing IS a summary of the validity of SCU data for various fault

situations.

The effective pointer (tlTBRIl) and the relative address (tlComputed Address")

are valid for faults in groups 5 and 6. The "Software-assisting Status" IS

valid for specific group 5 faults, except the fault code and processor

number, which are always valid. The validity of other data is tabulated

below.

Hardware PBR ICT IR IE/IO Status

Group 1 a ° ° a DI S/DI S

Group 2 ° 1 b 0 ° Group 3 c 1 1 1 c

Group 4 c 1 1 d c

Group 5 1 1 1 1 1

Group 6 or
Interrupts 1 1 1 1 1

D-13

1 - Valid

o - Invalid or questionable

a - Some initialized, some don't care

b - ICTC + 0, 1, 2

c - If XDEIXDOIFLIFTIFD = 1, then IC, RF and IE, 10 are valid.

Otherwise, invalid.

d - May be invalid due to operand parity error

SCU MODIFICATIONS

Faul t Ta~ 2

The following discussion illustrates the modifications to the SCU data,

required prior to the RaJ, in the case of Fault tag 2 employed in the

linking process.

Fault Tag 2 may be encountered in anyone of four types of words. The

exact type may be determined from the SCU data, stored in Y through Y+5,

as follows:

1. The instruction word. In this case PA=C(Y+1)27 = 1.

2. An indirect word under control of IT with DICIIDC modifier.
In this case PT=C(Y+1)29 = 1.

3. An odd indirect word under control if IR\RI modifier. In this
case PZ=C(Y+1)28 = 1 and C(Y+1)17 = 1.

4. An even indirect word under control of IRIRI modifier. In this
case, PZ=C(Y+1)28 = 1 and C(Y+1~7= O.

The actions taken for cases 1 to 3 will not be discussed here. It IS

assumed that linking is desired for case 4; that implementation IS des­

cribed below.

The linker can determine the segment and address of the word containing the

Fault tag from TBR=C(Y)0_17' and the computed address = C(Y+1)0_17' resp­

ectively. The address field of this word contains a pointer to the call

name. The linker will find the segment number for the call name and use it

D-14

to form an ITS pair. The ITS pair will be stored In the location of the

Fa.ult Tagged word and the adjacent word.

Alternately, the pointer to the call name may be obtained from the address

field of the active instruction in the SaJ data. If IC=C(Y+1) 23=O, the

active instruction is the even one, and the pointer is C(Y+4)0_17' If

IC:::C(Y+1)23=1, the active instruction is the odd one, and the pointer is

C(Y+6)0_17'

Next, the SaJ data must be modified so when used by the RaJ, the processor

will refetch the word pair now contai.ning the ITS. Only the address and

The address of the tag field of the active instruction need be altered.
~

Fault Tagged word, i.e., tile computed address = C(Y+1)0_17' must be stored

in the address field of the active instruction, which is in (Y+4)0-17 if

IC:::C(Y+1) 23=O, or in (Y+5)0-17 if IC=C(Y+1)23=1. The tag of the active

instruction, which is stored in (Y+4)30-35 if IC=O, or (Y+5)30-35 if 1C=1,
must be RI, N for which the code is 010000.

Since the Fault Tagged indirect word was replaced by an ITS paIr, no trap

will occur on successive executions. The fOllowing illustrates an encounter

WJith Fault tag 2 in an even indirect word under control of IR or RI modifi­

cation.

N

and\~Other
--~

"-
) Action

d

y

,Y

_____ ~_=_O_')-.. C(Y+1)0_1 7=>C(Y+4)0-17]

q1 OOOO=>C{ Y+s))0-35 1 OOOO=>C(Y+4) 30-35

,~--------------~~----~--------~/ -
~

D-15

Ski~ to the Next Instryction - Groy~ 5 Faylts

In certain cases of group 5 faults, it is necessary to modify the SQJ data

so that the RCU, which follows the fault-initiated routine, resumes execu­

tion following the faulting instruction. This action is likely to take

place in the case of MME's and DRL, and perhaps in the case of certain Fault

Tags.

It is assumed that if the fault occurred in the normal mode due to an In­

struction specified by ICTC, the return will be to the instruction specI­

fied by ICTC+1. If the fault was encountered in an even XED'ed instruction,

the return will be made to the odd XED'ed instruction. If the fault was

encountered in the odd XED'ed instruction return will be to the instruction

which follows the XED.

not occur in the Repeat

FDIFTIFL = a in the SOU

Due to programming restrictions these faults should

modes. This can be tested by ascertaining that

data.

The technique for modifying the SQJ data turns out to be rather simple. If

the faulting instruction is even, i.e., IC = C(Y+1)23 = 0, then zeros must

be inserted in the positions corresponding to PZ, PT, PN, PI (bits 28, 29,

19, 18 of Y+1); and ones must be inserted in the bit positions corresponding

to IC, PA (bits 23,27). If the faulting instruction is odd, i.e., 1C=1,

then zeros must be placed In the bit positions corresponding to PA, PZ, PT,

PN; and a one must be placed in the bit positions corresponding to PI. In

either case, zeros must be placed in the bit position corresponding to ITS,

ITB (bits 26, 27 of Y) and CTO (bit 30 of Y+1).

If a tally operation occurred during address modi·fications for the faulting

instructions, and the instruction is considered complete when the fault is

recognized (e.g., MME's, DRL), the Tally Runout indicator will reflect the

new state. However, if the faulting instruction is not considered complete

when the fault is recognized (e.g., Fault Tag), the state of the tally is

saved by the ITR bit, C(Y)30 and is not reflected by the indicator. If the

instruction is resumed, the hardware will transfer the state of ITR to the

indicator. However, if the process is returned to the instruction following

D-16

the faulting instruction, the ITR bit should be reset to zero by the soft-

ware.

O==>PZ, PT, PN, PI
1 =>PA, IC

Illegal Memory Command

N

ITB, ITR, CT 0

y

= 1 ',/-------.,

O=->PA, PZ, PT, PN
1 :=>P I

In general, this fault is interpreted as an illegal request by the processor
for action of the system controller. If the validity of the request can be
determined within the processor, then the trap is handled via other faults

(i.e., 635 and 635/645 compatibility). However, one violation is detected by

the system controller, namely, when a processor (in the Master mode) has is­

sued a connect to a channel that is masked off (by program or switch). In

this case, the connect is not sent to the designated channel, and the pro­

cessor is notified of the illegal action. The clock request to memory that

doesn't have a clock results in an illegal memory command. These are the

violations which will cause the illegal memory command fault in the 645.

The location of an invalid CIOC instruction is given by ICTC and PBR of the
SCU data.

It is desirable for the fault handling routine to have the location of the

CIOC operand. This word ~considered as the connect word by the GIOC, or
the PCW by the Drum) was used by the system controller to determine the

designated channel (the decode of bits 33-35). At the present time, the
hardware does not save the effective address and the effective pointer,

D-17

corresponding to this word. Therefore, the burden of tracing through the

CIOC instruction is on the fault handling routine.

Memory Parity Error

Additional information is provided with the SCU data of parity faults to help

identify the type of word containing the parity error and its location.

If the parity error occurred in a DSPTW, SDW, or PTW a one would be placed

In ,(V) 33-3-5 of the SCU data as follows:

DSPTW --- (Y) 33

SDW --- (Y) 34

PTW --- (Y) 35

If the parity error occurred in the operand, then a one is placed in (Y)29

(PEO). It may be quite difficult to determine the location of the operand

since the SCU does not contain the effective address and pointer in this

case. Furthermore, the faulty operand had already been used in the operation,

which might have altered a register used in its address preparation. No

simple solution is offered for this problem. The problem is also complicated

in the cases of XEC and XED, since these operations involve more than one

operand each.

If the appending words and the operand were eliminated as parity candidates,

i.e., (Y)29 = (Y)33-35 = 0 in the SCU, then the error is in an indirect word,

or in the instruction word, whose location is defined by ICTC and PBR. If

ICT is even, the parity error could be in either the even or the odd instruc­
tion word, or both. If PT = 1 in the SCU, the parity error occurred in an

IT type indirect word whose location is given by the computed address and the

TBR of the SClJ (if the word were of the RAR type, the parity error may no

longer exist).

If PZ = 1 in the SCU data, the parity error occurred in an IR I RI type indirect

word. The address of the indirect word containing the parity error is gIven

by the computed address of the SCU data. If this address is odd, then the

pointer (i.e., segment number) is given by TER of the SCU data. However, if the

address is even, then the pointer is not available in the SCU data if the

D-18

parity error occurred in an ITS or an "ITB pair. Consequently, if ITS I ITB= 1,

In the SCU data, the fault handling routine must trace through the instruction

to der i ve the effect i ve po inter. If PN = 1 and FT I FD = 1 in the SCU data, the

parity error occurred in an RI type indirect word in a repeated instruction.

If PN= 1 and FT FD= 0, then the parity error is in the word containing

I CTC, etc., dur ing the execut ion of RET or RTCD.

D-19

APPENDIX E FORMAT OF WORDS USED IN ADDRESS APPENDING

This appendix contains descriptions of the segment descriptor word (SDW), the
page table word (PTW), and the descriptor segment page table word (DSPTW).

FORMAT OF SEGMENT DESCRI PTOR WORD (SDW)

Each SDW has an address field pointing to the orIgIn of a segment or its page

table. The SDW also has size and control information about the segment which

it describes. The SDW has the format shown below.

Address of Segment

Unused

/'
,/ (
~ Unused

/paged: O=Yes,
(/~ 1=No

Block/Page Size: 0=1024,
1=64

1 1 I Size of Segment

O=No,
1=Yes

Format of Se~ment Descriptor Word

See Note 2

1=Yes,
O=No

Not Used
~
2

"----r-I
Class:

O=fault
1=data
2=slave

proc •
.3=execute

only
4=master

mode
proc.

Notes: 1. If bit 28 is 1 in the SDW, the address points to the

segment: otherwise, the address points to the page

table.

2. Bits .30-.32 are heated as a special field. If there IS

a directed fault, they contain the fault code. If
there is no fault, they contain information as shown In

the illustration.

E-1

Bjts 0-17, Address - The address field contains the high-order 18 bits of

a 24-bit address. It is the absolute address of either the origin of a seg­

ment being accessed or the segment page table if the segment being accessed

is paged. This address is 0 modulo(64) for 64-word blocks of unpaged seg­

ments, 0 modulo(1024) for 1024-word blocks of unpaged segments, and 0

modulo(64) for page tables.

Bit 18 - Not used.

Bits 19-26; Size These bits contain the number of pages In the segment

if paged; or the number of blocks if not paged.

Bit 27. DescriRtor -

o = 1024

1 = 64

Indicates block.or page size:

Bit 28 - Indicates paging:

o = paged

1 = non-paged

Bit 29 - Not used.

Bit 30 - Indicates permission to write when in Slave mode:

o = may DQi be written into in Slave mode

1 = may be written into in Slave mode

(see bits 33-35)

Bit 31 - Indicates permission to access the segment of page table:

o = access may be made ~ in Master mode

1 = access may be made in either Slave or Master (see bits 33-35)

Bit 32 - Used only when bit positions 33-35 indicate a directed fault.

Bits 33-35, Class bits -

the type of segment.

These are called class bits because they classify th

E-2

Bits 33-35 of the SDW are interpreted as follows:

3() 31
X X

32 33 34 35
X 0 0 0

o 0

0' 1

o 1

1 0

1 0

1 1

1 1

1

o
1

o

Meaning
Directed Fault XXX; the code

which is in .bit posi Hons

30-32
Data Segment Only

Slave procedure

Execute-Only

Master Procedure

These codes constitute

an illegal descriptor

If bit positions 33-35 contain a fault code, the number of the fault code is

contained in positions 30-32.

FORMAT OF PAGE TABLE WORD.

Ea.ch page table word (PTW) contains an address field which points to the

origin of the block in core memory to which the corresponding page of the seg­

ment is assigned. Each word also contains a control field. The word has the

following format:

o 8

Block Location Unused

Paee Table Word

E-3

o

'----v--:---'
Unused Same as" SDW

written: 0 ::: No,
1 ::: Yes

used: 0::: No,

1 ::: Yes

Bits 0-17. Address - The address field contains the high-order 18 bits of a

24-bit address. This address is 0 modulo(64) for 64-word pages or 0 modulo(1024)

for 1024-word pages.

Bits 18-24 - Not used.

Bits 25-35. Control Bits - In the control field, bits 30-35 have the same

meanings as they do in the SDW, except that they apply to the page. Bit

positions 25 and 26 are used to indicate page use. The control bit positions

for the PTW are summarized in the following illustration.

Referenced

25

--Written Into

ot Used

-Not Used

[NO, t __ Us_e_d ________ -J Same as in the SDW

,---------------29 30 31 32 33 34 35~

I 1

26 27 28

Bit 25 - Indicates whether the page has been referenced (used):

o = not yet referenced

1 = has been referenced

Bit 26 - Indicates whether the page has been written into (modified):

o = not yet written into
1 = has been written into

Bits 27-29 - Not used

Bits 30-35 - These bit positions have the same meaning as those In the seg­
ment descriptor word already described.

FORMAT OF DESCRIPTOR SEGMENT PAGE TABLE WORD (DSPTW)

The format of a DSPTW is the same as that for a PTW. The processor ignores

the contents of bits 25 and 26 of a DSPTW.

£-4

APPENDIX F SEGMENT AND PAGE ACCESS BIGHTS

The 645 processor possesses a set of access rules which are applied to each

word referenced in a segment. The settings of control bits in the SDW and PTW

are used to determine the access rights. For each reference, access is

determined by the value of the control bits for both the referenced segment

and the segment being executed. The following table lists the possible control

bit settings and summarizes the corresponding access rights.

Current
Procedur
Mode

e

Master ~

l
,.

Slave

'-

Control Bits in SDW Access Permi Hed
or PTW of Segment Non- Transfers
Being Accessed Transfers Same Different

c It S
Class Access Write Bead Write TBR=i'BB TBf¥PBR

(Bits 33-35) (Bit 31) (Bi t 30

Data 0/1 0/1 Yes Yes No No
Segment

(001)

Procedure
Segment
Slave(010) ~
Execute(011) 0/1 0/1 Yes Yes Yes Yes
Master(100)

Data 0 0/1 No No No No
Segment 1 0 Yes No No No

(001) 1 1 Yes Yes No No

Procedure 0 0/1 No No No No
Slave(010) 1 0 Yes No Yes Yes

1 1 Yes Yes Yes Yes

Procedure 0 0/1 No No No No
Execute Only 1 0 G) No Yes C2>

(011) 1 1 Q) <D Yes 0

Procedure 0 0/1 No No No No
Master 1 0/1 No No No (;)

(100)

NOTES: G) If TBR = PBR (i.e., if the segment being referenced is
the segment being executed, then yes; otherwise, no.

~ I f effect i ve address = 0; then yes; otherwise, no.

F-1

When referencing an unpaged segment, the processor generates a fault if the ~
reference is incompatible with the access indicated by the class bits of the

SDW for that segment. If a segment is paged, the processor logically combines

the class bits of the SDW and the class bits of the PTW. Then, if the references

is incompatible with the most restrictive access produced by combining the two

sets of access rights, the processor generates a fault and the segment IS

not accessed.

•

F-2

INDEX (EXCLUDING INSTRUCTIONS)

A REGISTER
ABR
ABSOLUTE ADDRESS
ABSOLUTE ADDRESS OF PTW
ABSOLUTE ADDRESS OF SDW
ABSOLUTE MODE
ACCESS
ACCUMULATOR
ADDRESS APPEND I N3
ADDRESS BASE REGISTERS
ADDRESS FI ElD
ADDRESS MODIFICATION
ADDRESS POINTER
ADDRESS PREPARATION
ADDRESSING MODES
ALIGNMENT
ALPHANUMERIC DATA
APPEND MODE
APPENDING UNIT
AQ REGISTER
AR REG I STERS
ARITHMETIC, INTEGER AND FRACTIONAL
ARITHMETIC OVERFLOW
ARITHMETIC SIGN
ASC I I CHARACTER SET
ASSOCIATIVE MEMORY
ASSOCIATIVE MEMORY REGISTERS (AR)
ASSOCIATIVE MEMORY UNIT
BASE REGISTER INSTRUCTIONS
BINARY DATA
BINARY FIXED-POINT
BINARY FLOATING POINT
BINARY POINT, LOCATION OF
BIT POSITIONS IN CHARACTER
BLOCK
BOOLEAN OPERATIONS INSTRUCTIONS
CHANGING ADDRESS MODES
CHARACTER HANDLING (SC, SCR AND CI) VARIATIONS
CHARACTER POSITIONS
CHARACTERS
CLASS OF SEGMENT
COMPARISON INSTRUCTIONS
COMPARISON RELATIONS
CONTROL UNIT
DATA
DATA MOVEMENT LOAD INSTRUCTIONS
DATA MOVEMENT SHIFT INSTRUCTIONS
DATA MOVEMENT STORE INSTRUCTIONS
DATA REPRESENTATION
DATA TRANSFERS
DBR

IND-1

4-2
4-4 5-1 5-6 E-2 E-4
3-3 5-1 6-3 to 6-7
E-4
E-2
1-4 4-8 4-12 5-6
5-5 Appendix F
4-2
1-2 4-5 Chapter 5 Appendix E
4-4 6-26
5-4 E-1 E-2 E-4
1-2 4-7 Chapter 6
4-4 4-6
D-3 D-4 D-10 D-11
1-3 5-6
3-9
3-3
1-4 1-5
1-6 1-7
4-2
4-11 to 4-13
3-2
3-5 3-6 7-5
3-1 3-6
Appendix C
1-6 1-7
4-11 to 4-13
1-6 1-7
2-20 to 2-24
Chapter 3
3-5 3-6 3-7
3-7 to 3-10
3-2
3-4
1-1
2-72 to 2-80
5-6
6-14 6-15
3-4
3-3
5-1 5-2 5-4 E-3 E-4
2-81 to 2-91
3-8
1-6 1-7
3-3 4-7
2-5 to 2-11
2-25 to 2-29
2-12 to 2-19
3-1 to 3-10
3-2
4-6 5-1 to 5-5

INDEX (EXCLUDING INSTRUCTIONS), Cont'd.

DEC I MAL DATA
DESGRIPTOR BASE REGISTER
DESCRIPTOR SEGMENT
DESCRIPTOR SEGMENT PAGE TABLE
DESCR I PTOR SEGMENT PAGE TABLE WORD (DSPTW)
DIS (DELAY UNTIL INTERRUPT SIGNAL)
DIVISION
DOUBLE PRECISION READ
DOUBLE WORD
DSPTW, SCW AND PTW CONTROL FIELDS
E REGISTER
EAQ REGISTER
EFFECTIVE ADDRESS
EVEN INSTRUCTION WORD
EXECUTE INTERRUPT COMMAND
EXECUTE INTERRUPT REGISTER
EXECUTION MODE
EXECUTE PUSHBUTTON
EXPONENT REGISTER
EXPONENT ACCUMULATOR QUOTIENT (EAQ)
EXPONENT OVERFLOW
EXPONENT UNDERFLOW
EXTERNAL ABR
EXTERNAL INTERRUPT
FAULT CODE
FAULT PRIORITY GROUPS
FAULT PROCEDURES
FAULT VECTOR
FAULT VECTOR ADDRESS
FAULTS

635 COMPATIBILITY
635/645 COMPATIBILITY
CONNECT
DERAIL
DIRECTED FAULTS
DI V IDE CHECK
EXECUTE
FAULT TAGS 1 to 3
ILLEGAL DESCRIPTOR
ILLEGAL MEMORY COMMAND
ILLEGAL PROCEDURE
LOCKUP
MASTER MODE ENTRY FAULTS
OPERATION NOT COMPLETED
OVERFLOW
PARITY
SHUTDOWN
STARTUP
TIMER RUNOUT
TROUBLE

FAULTS AND INTERRUPTS

IND-2

3-4
4-5 5-1 to 5-5
4-6 5-1 to 5-5
5-4
E-4
7-7
3-2 3-6 7-4
7-5
3-5 3-7
E-2 to E-4
4-3
4-3
5-1 6-1 6-2
D-2
7-14
7-13
1-3
7-3
4-3
4-3
3-5 7-5
7-5
4-4
7-13 7-16
7-2 E-3 E-4
7-1 7-2
7-10 to 7-12
1-4 7-1 7-10 7-11
7-10
Chapter 7
7-8
7-8
7-9
7-8 7-14
5-2 5-4 7-2 7-8 7-10 7-13
7-4
7-3
7-8
7-7
7-6
7-7
7-6
7-8
7-3 7-4
7-5
7-5 7-6
7-10
7-3
7-10
7-3
1-3 Chapter 7

•

•

INDEX (EXCLUDING INSTRUCTIONS), Cont'd.

FIXED-POINT
FIXED=POINT INSTRUCTIONS
FLOATING-POINT
FL.O AT I NG-POI NT INSTRUCTIONS
HALF WORD
ICTC (lC)
INDEX REGISTER
INDICATOR REGISTER (IR)
INDICATORS
INDIRECT THEN REGISTER MODIFICATION (IR)
II\IDIRECT THEN TALLY MODIFICATION (IT)

ADD DELTA TO ADDRESS (AD)
CHARACTER FROM INDIRECT (CI)
DECREMENT ADDRESS, INCREMENT TALLY (DI)
DECREMENT ADDRESS, INCREMENT TALLY

AND CONTINUE (DIC)
FAULT TAG MODIFICATION
INCREMENT ADDRESS, DECREMENT TALLY (ID)
I NCREMENT ADDRESS, DECREMENT T ALLY

AND CONTINUE (IDC)
INDIRECT ONLY (I)
INDIRECT TO BASE (ITB)
I ND I RECT TO SEGMENT (I TS)
SEQUENCE CHARJlCTER (SC)
SEQUENCE CHARJlCTER REVERSED (SCR)
SUBTRJlCT DELTA FROM ADDRESS (SD)

I ND I RECT WORD
INFORMATION REPRESENTATION
INHIBIT BIT
INSTRUCTION CATEGORIES
INSTRUCTION COUNTER (ICTC or IC)
INSTRUCTIONS
INTERNAL ABR
INTERRUPT
I NT ERRUPT CELLS
INTERRUPT INHIBIT
INTERRUPT MASK REGISTER
I NTERRUPT VECTOR
INTERRUPT VECTOR ADDRESS
INTERRUPT VECTOR TABLE
INTERRUPT PRIORITY
INTERRUPT TYPE FAULT
IT
ITB
ITS
LOGIC OVERFLOW
MACHINE INSTRUCTIONS
MACH I NE WORD
MANTISSA
MASTER MODE
MODES OF ADDRESSING

IND-3

4-2 4-9
2-30 to 2-49
3-7 4-2 4-3 4-9
2-50 to 2-71
3-5
4-6
4-7
4-8 D-10
3-1 4-8 to 4-10
6-6 to 6-8
6-8 to 6-10 6-23
6-13
6-21
6-12

6-16
6-23
6-10 6-11

6-17 6-18
6-9 6-10
6-24
6-24
6-19
6-20
6-14
4-4 Chapter 6
3-1
7-15
2-4
4-6 Appendix D
Chapter 2 Appendixes A and B
4-4
1-2 7-13
7-13
7-16
7-13
7-1 7-14 7-15
7-15
7-1
7-15
7-6
See indirect then tally
See indirect to base
6-24
3-5
Chapter 2
3-2
3-7 3-9 4-3
1-4 1-5 4-10 7-10 7-16 F-1 F-2
5-6

INDEX (EXCLUDING INSTRUCTIONS), Cont'd.

MODES OF OPERATION
MOD I F I C AT ION

INDIRECT THEN REGISTER (IR)
INDIRECT THEN TALLY (IT)
REGISTER (R)
REGISTER THEN INDIRECT (RI)

MODIFIER FIELD
MULTICS
MULTIPLICATION
NEGATIVE NUMBERS
NON PAGED DESCRIPTOR SEGMENTS
NORMALIZED FLOATING-POINT NUMBERS
NUMBER RANGES
NUMBER SYSTEM
NUMER IC DATA
OCTAL CODES FOR INSTRUCTIONS
ODD INSTRUCTION WORD
OFFSET
OPERAND
OPERATIONS UNIT
OVERFLOW
OVERFLOW MASK
PAGE
PAGE TABLE
PAGE TABLE WORD (PTW)
PAGED DESCRIPTOR SEGMENT
PAG ING
PARITY
PARTITIONING OF SEGMENT NUMBER AND SEGMENT

ADDRESS
PBR (PROCEDURE BASE REGISTER)
POSITION NUMBERING
POSITIVE NUMBERS
POWER OFF
POWER ON BUTTON
PRECISION
PRIVILEGED INSTRUCTION
PRIORITY 1 THRU 6 FAULTS
PROCEDURE BASE REGISTER (PBR)
PROCESSOR
PROCESSOR MACHINE WORD
PROCESSOH MODES OF OPERAT I ON
PROCESSOR UN I TS
PROGRAM ACCESS I BLE REG I STERS
PROGRAM (EXTERNAL) INTERRUPTS
Q REG I STER
RCU I NSTRUCT I ON
REGISTER MODIFICATION (R)
REGISTER THEN INDIRECT MODIFICATION (RI)
REGISTERS

ACCUMULATOR (A)
ACCUMULATOR QUOTIENT (AQ)

IND-4

1-3 1-4 5-6
Chapter 6
6-7 6-8
6-8 6-10
6-4
6-4 to 6-6
6-2
1-1
3-2 3-6
3-9 3-10 4-8
5-2
3-9
3-6 3-7 3-10
3-1
3-4
Appendix A
D-2
2-3 4-4 4-8 5-1 to 5-5
3-1 4-4 5-3 7-7
1-6 1-7
4-8 7-5 7-6
4-9 7-5
4-5 5-3 to 5-5
5-3
5-3 5-4 E-3 E-4
5-4
1-1 5-3
4-10 7-5 7-6

5-3
4-7
3-1
3-9 3-10
7-10
7-3
3-1 3-2 3-5 3-7
7-13
7-1 to 7-10
4-6 D-10
Chapter 1
3-2
1-3
1-6 1-7
Chapter 4
7-13
4-2 4-3
Appendix D
6-3 to 6-5
6-5 6-6

4-2
4-2

•

..

INDEX (EXCLUDING INSTRUCTIONS), Contld.

REGISTERS (continued)
ADDRESS BASE (ABR)
ASSOCIATIVE MEMORY (AR)
DESCRIPTOR BASE (DBR)
EXPONENT (E)
EXPONENT ACCUMULATOR QUOTIENT (EAQ)
INDEX (Xc to X7)
INDICATOR (I R)
INSTRUCT ION COUNTER (J CTC 0 riC)
PR08EDURE BASE (PBR)
QUOTIENT (Q)
TIMER (TR)

REPRESENTATION OF DATA
SCU I NSTRUCT I ON
SEGMENT
SEGMENT DESCRIPTOR WORD (SDW)
SEGMENT NAMES
SEGMENT NUMBER
SEGMENT AT ION
SEGMENTATION AND PAGING
SINGLE WORD
SLAVE MODE
SPECIAL INSTRUCTIONS
SUBTRACT I ON
TALLY COUNT

~ TALL Y RUNOUT
TALLY WORD
TEMPORARY BASE REGISTERS (TBR)
TIMER REGISTER
TIMER RUNOUT
TIMING OF INSTRUCTION
TRANSFER OF CONTROL INSTRUCTIONS
TYPES OF FAULTS
TYPES OF MODIFICATION
USAGE COUNT
WORD PAIRS
WORDS USED IN SEGMENTATION PAGING AND

APPENDING
XED
Xc to X7
ZERO, REPRESENTATION OF

IND-5

4-4
4-14 to 4-16
4-6 5-1
4-3
4-3
4-9
4-11 to 4-14
4-8
4-7
4-2
4-10
3-3
7-3 Appendix D
1-1 5-1 5-2
4-14 4-15 5-1 to 5-5 E-1
1-1
1-1 4-4 4-7 5-1 7-12 7-13
5-1
1-1
3-5 3-7
1-4 4-10 F-1 F-2
2-103 to 2-138
3-1 3-2
6-8
4-9
6-9
D-10
4-7 7-10
7-9 7-10
Appendix B
2-92 to 2-102
7-1 7-2
6-2 6-3
4-12 4-13
3-3

4-11 4-12 5-1 to 5-5 E-1
7-3 Appendix D
4-7
3-9

INDEX TO INSTRUCTIONS

ADA ADD TO A 2-30 DFDV D-P FLOATING DIVIDE 2-63 ~
ADAQ ADD TO AQ 2-31 DFLD D-P FLOATING LOAD 2-50
ADBn ADD TO ABRn 2-21 DFMP D-P FLOATING MULTIPLY 2-60
ADE ADD TO EXPONENT REGISTER 2-56 DFSB D-P FLOATING SUBTRACT 2-58
ADL ADD LOW TO·AQ 2-36 DFST D-P FLOATING STORE 2-51
ADLA ADD LOGIC TO A 2-33 DIS DELAY UNTIL INTERRUPT
ADLAQ ADD LOGIC TO AQ 2-34 SIGNAL 2-106
ADLQ ADD LOGIC TO Q 2-34 DIV DIVIDE INTEGER 2-47
ADLXn ADD LOGIC TO Xn 2-35 DRL DERAIL 2-107
ADQ ADD TO Q 2-30 DUFA D-P UNNORMALIZED FLOATING ,
ADXn ADD TO Xn 2-31 ADD 2-55
ALR A LEFT ROTATE 2-26 DUFM D-P UNNORMAL FLOATING
ALS A LEFT SHI FT 2-29 MULTIPLY 2-60
ANA AND TO A 2-72 DUFS D-P UNNORMALIZED FLOATING
ANAQ AND TO AQ 2-72 SUBTRACT 2-58
ANQ AND TO Q 2-72 DVF DIVIDE FRACTION 2-48
ANSA AND TO STORAGE A 2-73 EAA EFFECTIVE ADDRESS TO A 2-5
ANSQ AND TO STORAGE Q 2-73 EABn EFFECTIVE ADDRESS TO
ANSXn AND TO STORAGE Xn 2-74 BASE n 2-20
ANXn AND TO Xn 2-73 EAPn EFFECTIVE ADDRESS TO
AOS ADD ONE TO STORAGE 2-37 PAIR n 2-20
ARL A RIGHT L031C 2-25 EAQ EFFECTIVE ADDRESS TO Q 2-5
ARS A RIGHT SHIFT 2-27 EAXn EFFECTIVE ADDRESS TO Xn 2-11
ASA ADD STORED TO A 2-32 ERA EXCLUS I VE OR TO A 2-78
ASQ ADD STORED TO Q 2-32 ERAQ EXCLUSIVE OR TO AQ 2-78
ASXn ADD STORED TO Xn 2':"33 ERQ EXCLUSIVE OR TO Q 2-78
AWCA ADD WITH CARRY TO A 2-35 ERSA EXCLUSIVE OR TO STORAGE A 2-79
AWCQ ADD WITH CARRY TO Q 2-36 ERSQ EXCLUSIVE OR TO STORAGE Q 2-80
BCD B I NARY TO BCD 2-103 ERSXn EXCLUSIVE OR TO STORAGE Xn 2-80
CAM CLEAR ASSOCIATIVE MEMORY 2-105 ERXn EXCLUSIVE OR TO Xn 2-79
CANA COMPARATIVE AND WITH A 2-88 FAD FLOATING ADD 2-54
CANAQ COMPARATIVE AND WITH AQ 2-89 FCMG FLOATING COMPARE MAGNITUDE 2-68
CANQ COMPARATIVE AND WITH Q 2-88 FCMP FLOATING COMPARE 2-67
CANXn COMPARATIVE AND WITH Xn 2-89 FDI FLOATING DIVIDE INVERTED 2-62
C IOC CONNECT I/O CHANNEL 2-106 FDV FLOATING DIVIDE 2-61
CMG COMPARE MAGNITUDE 2-86 FLD FLOAT I NG LOAD 2-50
CMK COMPARE MASKED 2-87 FMP FLOATING MULTIPLY 2-59
CMPA COMPARE WITH A 2-81 FNEG FLOAT I NG NEGATE 2-65
CMPAQ COMPARE WITH AQ 2-83 FNO FLOATING NORMALIZE 2-66
CMPQ COMPARE WITH Q 2-82 FLOATING SUBTRACT 2-57 • FSB
CMPXn COMPARE WITH Xn 2-84 FST FLOATING STORE 2-51
CNAA COMPARATIVE NOT WITH A 2-90 FSTR FLOATING STORE ROUNDED 2-52 • CNAAQ COMPARATIVE NOT WITH AQ 2-91 FSZN FLOATING SET ZERO AND
CNAQ COMPARATIVE NOT WITH Q 2-90 NEGATIVE INDICATORS FROM
CNAXn COMPARATIVE NOT WITH Xn 2-91 MEMORY 2-71
CWL COMPARE WITH LIMITS 2-85 GTB GRAY TO BINARY 2-105
DFAD D-P FLOATING ADD 2-55 LACL LOAD ALARM CLOCK 2-127
DFCMG D-P FLOATING COMPARE LAM LOAD ASSOCIATIVE MEMORY 2-129

MAGNITUDE 2-70 LBRn LOAD ADDRESS BASE
DFCMP D-P FLOATING COMPARE 2-69 REG I STER n 2-21
DFDI D-P FLOATING DIVIDE LCA LOAD COMPLEMENT A 2-9

INVERTED 2-64 LCAQ LOAD COMPLEMENT AQ 2-10

IND-6

INDEX TO INSTRUCTIONS (Continued)

~,

LCQ LOAD COMPLEMENT Q 2-10 SBAQ SUBTRACT FROM AQ 2-39
LCXn LOAD COMPLEMENT Xn 2-11 SBLA SUBTRACT LOGIC FROM A 2-41
LDA LOAD A 2-6 SBLAQ SUBTRACT LOGIC FROM AQ 2-42
LDAQ LOAD AQ 2-6 SBLQ SUBTRACT LOG IC FROM Q 2-42
LDB LOAD BASES 2-21 SBLXn SUBTRACT LOG I C FROM Xn 2-44
LDBR LOAD DESCRIPTOR SEGMENT SBQ SUBTRACT FROM Q 2-38

BASE REGISTER 2-22 SBRn STORE ADDRESS BASE
LDCF LOAD CONTROL FIELD 2-22 REGISTER n 2-23
LDE LOAD EXPONENT REGISTER 2-50 SBXn SUBTRACT FROM Xn 2-39 LDI LOAD INDICATOR REGISTER 2-8 SCU STORE CONTROL UNIT 2-131
LDQ LOAD Q 2-6 SDBR STORE DESCRIPTOR SEGMENT
LDT LOAD TIMER REGISTER 2-7 BASE REGISTER 2-23
LDXn LOAD Xn 2-7 SM)M SET MEMORY CONTROLLER
LLR LONG LEFT ROTATE 2-26 MASK REG I STER 2-115
LLS LONG LEFT SHIFT 2-28 SMIC SET MEMORY CONTROLLER
LREG LOAD REGISTERS 2-9 I NTERRUPT CELLS 2-116
LRL LONG RIGHT LOGIC 2-25 SREG STORE REGISTERS 2-14
LRS LONG RIGHT SHIFT 2-29 SSA SUBTRACT STORED FROM A 2-40
LXLn LOAD Xn FROM LOWER 2-7 SSQ SUBTRACT STORED FRO~ Q 2-40
MME MASTER MODE ENTRY 1 2-108 SSXn SUBTRACT STORED FROM Xn 2-41
MME2 MASTER MODE ENTRY 2 2-109 STA STORE A 2-13
MME3 MASTER MODE ENTRY 3 2-110 STAC STORE A CONDITIONAL 2-13
MME4 MASTER MODE ENTRY 4 2-111 STAQ STORE AQ 2-13
MPF MULTIPLY FRACTION 2-46 STB STORE BASES 2-23
MPY MULTIPLY INTEGER 2-45 STBA STORE CHARACTER OF A 2-16
NEG NEGATE A 2-49 STBQ STORE CHARACTER OF Q 2-16
NEGL NEGATE LONG 2-49 STC1 STORE INSTRUCTION COUNTER
NOP NO OPERATION 2-126 PLUS 1 2-18
ORA OR TO A 2-75 STC2 STORE INSTRUCTION COUNTER
ORAQ OR TO AQ 2-75 PLUS 2 2-18
ORQ OR TO Q 2-75 STCA STORE CHARACTER OF A (SIX
ORSA OR TO STORAGE A 2-76 BIT) 2-15
O:1SQ OR TO STORAGE Q 2-76 STCD STORE CONTROL DOUBLE 2-12
ORSXn OR TO STORAGE Xn 2-77 STCQ STORE CHARACTER OF Q (SIX
ORXn OR TO Xn 2-76 BIT) 2-15
QLR Q LEFT ROTATE 2-26 STE STORE EXPONENT REGISTER 2-53
QLS Q LEFT SHI FT 2-28 STI STORE INDICATOR REGISTER 2-17
QRL Q RIGHT LOGIC 2-25 STPn STORE PAIR n 2-24
QRS Q RIGHT SHIFT 2-27 STQ STORE Q 2-13
f{;CL READ CALENDAR CLOCK 2-128 STT STORE TIMER REGISTER 2-17
RCU RESTORE CONTROL UNIT 2-136 STXn STORE Xn INTO UP?ER 2-14
RET RETURN 2-96 STZ . STORE ZERO 2-19
RMCM READ MEMORY CONTROLLER SWCA SUBTRACT WITH CARRY FROM A 2-43

MASK REG I STER 2-114 SWCQ SUBTRACT WITH CARRY FROM Q 2-44
RPD REPEAT DOUBLE 2-120 SXLn STORE Xn INTO LOWER 2-14
RPL REPEAT LINK 2-123 SZN SET ZERO AND NEGATIVE
RPT REPEAT 2-117 INDICATORS FROM MEMORY 2-86
RSW READ SWI TCHES 2-126 TEO TRANSFER ON EXPONENT
RTCD RETURN DOUBLE 2-97 OVERFLOW 2-101
SAlVI STORE ASSOCIATIVE MEMORY 2-130 TEU TRANSFER ON EXPONENT ,,-.., SBA SUBTRACT FROM A 2-38 UNDERFLOW 2-102

IND-7

INDEX TO INSTRUCTIONS (Cont i nued)

TMI TRANSFER ON MINUS 2-98 'will
TNC TRANSFER ON NO CARRY 2-100
TNZ TRANSFER ON NOT ZERO 2-98
TOV TRANSFER ON OVERFLOW 2-101
TPL TRANSFER ON PLUS 2-99
TRA TRANSFER UNCONDITIONALLY 2-92
TAj TRANSFER ON CARRY 2-100
TSBn TRANSFER AND SET BASE n 2-93
TSS TRANSFER AND SET SLAVE 2-95
TSXn TRANSFER AND SET INDEX

REGISTER n 2-94
TTF TRANSFER ON TALLY RUNOUT

INDICATOR OFF 2-102
TZE TRANSFER ON ZERO 2-98
UFA UNNORMALIZED FLOATING ADD 2-54
UFM UNNORMALIZED FLOATING

MULTIPLY 2-59
UFS UNNORMALIZED FLOATING

SUBTRACT 2-57
XEC EXECUTE 2-112
XED EXECUTE DOUBLE 2-113
ZAM STORE ASSOCIATIVE MEMORY

ZERO 2-130

•

IND-8

r-.:

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form*

TITLE: MODEL 645 PROCESSOR REFERENCE MANUAL

ERRORS IN PUBLICATION:

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:

(please Print)

FROM: NAME ______________________________________ _

COMPANY __________________________________ __

TITlE ________________ ~---------------------

ORDER No.: IAH82, REV. 0

DATED: IMAY 1972

DATE: ______________ __

*Your comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please check he,re.O

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

HoneY"'ell

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

w
Z
..J

t:l
Z

, 0
,_..J

<t
o
..J
o
U.

:'-111

w
Z
..J

t:l
Z

:- g
, <t.

o
..J
o
U.

