
··-r-r
·'-~('()(.. /.L-

MASSACHuSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

DISTRIBUTION LIST:

V. Vyssotsky
J. Couleur
A. Evans
B. Galler
R. Fano
H. Krenn
E. Glaser
F. Corbato
R. Graham
M. Daggett and M Wagner
R. Daley and Otis Wright
S. Dunten and M. Child

. Schroeder and L. Pouzin
P. Crisman and D. Oppert
J .. __ Poduska and J. Sal tzer
9. Garman and R. Stotz
M. Bailey
D. Edwards

Reply lo: Projecl MAC
545 Technology Square
Cambridge, Moss. 02139

Telephone: 16171 864-6900 x5851

February 16, 1965

February 16, 1965

To Attached Distribution:

The enclosed Section II of the MAC version of the Design Notebook

is an extensive rew-~ite and simplification of the November 31, 1964 ver­

sion of segment conventions. As most know from preliminary discussion,

the spirit of the mechanism is essentially the same as before but there

have been extensive changes and simplifications. Besides the hardware

improvements to the augmentor, the biggest changes are con.:eptual in that

the interfaces and notation for the ordinary programmer have been cleaned

up. In particular, the "own data" segments and "headers" have been removed

and hidden from view, and the call, save and return macro sequences have

been shortened and reworked so that undesired features can be stripped

away incrementally in special, high-efficiency situations. No generality

has been given up in these changes.

Complete coding examples are given in another section so that the

interface to an ordinary progrannner can now be evaluated ..

SE::etion E.

A ?roposal for GE 636 Segment Conventions

Ir...troduction by F. J. Corbato

The purpose of the present memo is to develop a set of suitable

conventions~ standards and techniques for the use of segments on the

GE 636 con:pu ter. The current groups in teres ted in standards are: Be 11

Tabs~ GE Phoenix~ Michigan~ Carnegie Tech. and M. I. T. The present pro­

posal is an attempt to be a consensus of the interested members of the

Bell~ GE and M.I.T. groups. J•

Background

No effort will be made here to review the segment hardware of the

636~ since it is described in early form in VAC memo M-182 by E. L. Glaser

and in near final form in the v~rsion IV memo of February 3, 1965. (The

frozen form of February 10~ 1965 is assumed.) The detailed philosophy of

segmentation will not be repeated here since it is given in MAC Technical

Report TR-11 by J. B. Dennis. However, a brief summa:ry.of the advantages

of segmentation and paging will be offered in review.

The major reasons for segments are as follows:

1. The user with segments is able to program in a doubly infinite

memory system. Thus any single segment can dynam:Lcally grow

(or shrink) effectively without limit. (A quarte:::- million words

maximum with up to a quarter million segments are possible on

the 636).

2. The user can operate his .Program through phases of segment

configuration without prior planning of the storage allocation

need or the management of the segments.

3-. The largest amount of code which must be bound together as a

solid block is a single segment. Since binding pieces of code

together (i.e. "loading" in today' s BSS parlance) is a process

which is similar to assembly or compiling, the advantage is

immense of being able to prepare arbitrarily larg4::! programs out

of a series of limited-overhead segment bindings. (c.f. the

overhead of Fortran II subprograms vs. Fortran I programs.)

-2-

4. P~ogram segments appear to be the only reasonable way to

2cC;ieve the use of comrr~on (i.e. shared among several users)

procedures and data bases. Segmentation allows this important

goal both elegantly and conveniently.

Pages, such as were first on the Atlas Computer, are a separate

idea. from segments and have further advantages:

1. The use of a paged COllE: memory allows a very flexible technique

of dynamic storage management without the overhead of moving programs

back-and-forth in the memory. The importance of this reduced overhead

is especially high in heavy-traffic situations such as occur in responsive

ti·me-shared systems.

2. The mechanism of paging when properly implemented as in the 636

allmvs the operation of arbitrarily incompletely paged segrr..ents so that

by only retaining active pages more effective use can be made of high­

speed memory.

Y~jor Features of the Present Proposal

In the present proposal it was felt important to meet the following

requirements:

1. Any segment should only have to know of another se:gment name

symbolically. Interse&'1ll.en.t binding should occur a.s needed

dynamcially during program execution. Intersegment binding

should be automatic (i.e. not explicitly progr~ed by the us~r)

and the mechanism should operate at high-efficiency after the

firs~ binding occurs.

2. Similarly, any segment should be able to referencE~ symbolically

a location within another segment. This referencE~ should bind

dynamically and automatically; after binding occurs the first

time, program execution should be at full-speed~

3. The mechanism should be such that it is straightforward to have

all procedures be pure procedures (i.e. capable of being shared

by several users).

/

. ~--
./

-3-

4. Similarly it should be straightforward to write ::::ecursive

procedures (i.e. subroutines capable of calling upon themselves

either directly or indirectly through a circular chain of calls).

5. The general conventions should be such that the eall, save and

return sequences used to link one independently eompiled pro­

cedure to another should not depend on whether 01: not the two

procedures are in the same segment.

Segment Conventions

The output of any translator should by definition be a subprogram

which consists of two regions, a pure procedure region and a linkage ~
region. When one or more subprograms are ~ together, by a program~~

called a binder, a segment and an associated linkage secti~ are created.

When this is the case, as will be seen later, one or more users can share

the operation of a single copy of a pure procedure segment:.

As a general rule all segments should have a pair of names, the

first a proper name and the second a class name, e.g. ALPF~ PUREPR¢C,

or BETA DATA, etc.

T"he classes are:

1. Pure procedure

2. Impure procedure --
rJL-t.J ., ¢

3. Read-write data

4. Read-only data

5. Write-only data

All symbolic names should begin on an integral word boundary and be of

variable length fromat where the first 8-bit ch~racter is a character

count. (Initial implementation may only handle strings of a definite

length) for example, of 15.)

Segments are stored in a user's file directory as one type of file

ana the supervisor can always gain access to segments by appropriately

~earching the user's directories . Since directories cari be tree-struc-

tured and can contain indirection links to other files (or to other

direc::tories), there is a great searching and linking flexibility

possible. whenever a pure procedure is requested by a user, the super­

visor need only have~ working copy of the procedure for all users;

-4-

hmvever each user will have a private copy of the corresponding linkage

section of the pure procedure.

To understand the proposed mechanism better let us consider the

limitation of the execution of a process (i.e. threag etc.) by the super-

visor prograrl.1. It is assumed that the user of the system ::1as indicated

s~rrbolically to the supervisor a p~rticul&r segment and internal location

at which to start the process. vrl.l.cnever the supervisor starts a process~

it creates several special auxiliary tables for the process. These tables

which are all basically hidden from the programmer, are ea~h in the form

of segments:

l. Descriptor se&aent

2. Stack segment

3. Linkage se~rrent

4. LirJzage section boundary segment

Figure 1 shows these segments. A brief description of each follows:

The desc::-iptor segment contains a sequence of descriptor words for

all the segments which have been associated with the process. The descrip­

tor -.;vord contains the address of the user 1 s page table fo·r the segment and

the descriptor bits which control access to the segment. For reasons which

wilL appea::- later, the zeroth entry, by convention, should be the descriptor

of the 11li:akage boundary segment".

The stack segment is, as the name suggests~ a push-down mechanism

c:he 17scratch pad" or working storage region for every subprogram called.

':ihe .· se of the stack will be explained later.

T;:1e linkage segment is built up out of the linkage seetions of each

of the segments involved in the process. As a process proeeeds and the

number of segments involved increases~ it is expected that the descriptor

aegment and the linkage segment will grow in length. Automatic page­

turning based on activity will ·;?revent the mechanism from becoming unwieldy.

The linkage boundary segment is merely an auxiliary directory to

.. o: :;sist in the location of the internal linkage section o~ any particular
"Q • 1 h . th . 1 . . h b . . segment. .Lrec1.se y, t. e 1:- entry 1.s a re at1.ve po1.nter to t e eg1.nn1.ng

of the i th 2.inkage section corresponding to the i-t_h descriptor in the

descriptor segment.

HS.
:::..

LS.
J

LB~
j

i ;
--J5w-.-j
__ _,lc_;

ws ..
J..b

'
il~S.

1.

l
!MC.
i ~

-5-

---~.

· T Ol
: .Ll..U :,

j

! T c:
; ..r...JW~

l.

\. ' LB· J

0 'DWo o! 0' i 0 T B . :-.:;.~ 0 I __ _; \.. _____ .J . I

Descriptor
Segment

Stack
Segment

.·th
Descriptor of J segment.

Linkage
Segment

Linkage-section
boundary segment:

. . '. . f . th , 1-= Hachlr..e connJ..tJ..ons o 1. suoprogram ca 1.

r.T • ,.. • th b ., 1
~orK space OI 1. su program caL .

' · · sec·c· '~on of J. th · LJ..nKage ~ segmenL.

th
== Linkage boundary of j segment.

FIGURE 1

-6-

Xotation

To describe the technique of symbolic referencing between segments,

it is necessary to use a notation. (This notation~ of course, will probably

be improved in any assembler whic.i1 is produced.) To give the address field

of an inscr\.iction word which has bit 29 on, the notation of (base tag) t
(displace-mer,t) will be used. For exa;-nple, LDA 3 {1 25 or synbolically LDQ

sp ',c x.
'

Literals will be designated by an "=" sign.

To describe addresses which are not defined at tran.slation time or

at !::>inding time, a not:ation of brackets is introduced. Thus writing LDA Z'r[x]

signifies tha·t when the program operatesy the A register is to be loaded from

the locatio:1 X in the segraent which has its descriptor pointer loaded in

base ~.. 'I'he mechanisra of translation_:, as will be seen_, only produces a

relative address to an a.ppropriate point within the corresponding linkage

sectiOil. o£ the program being translated; however as the p;::-ogram operates,

the effect will be as indicated.

It is also convenient to refer to the descriptor index of a segment.

To refer to a segment descriptor pointer by segment name, one writes <beta>
I·

- 1:or example. The notation LDA <beta> 'i~ [x] -5, 7 will be used to indicate

a s{:~:ila:: · .. 11echanism.

·::::ce :Linkage l'1echanism. for Inter~·Segment Reierences

Returning t:o ·::he descriptio-:1 of intersegment linking_, when a process

is initiated, the supervisor "calls" the process s·tarting location with

particular base register conventions set. As will be seen subsequent calls

m'i.de by a procedure within ·the process use the same conventions. The base

register assignment conventions are given symbolically as follows where a

suffix b or p desj_gnates an external or internal base., respectively:

bc~se

sb

sp

lb

lp

ab

.,. 7-

description

pointer to the stack seg:rtent de scrip tor; probably
unalterable except by a supervisor call.

pointer to cuYrent procedure stack origin

pointer to the linkage segment descriptor

pointer to lin:.<age section of the cur:rent procedure

pointer to descriptor of segment containing the argument
list

pointer to argument list location

The ren1ai·ning 2 bases are arbitrarily available for the programmer to use

ar~d are labeled b~:J and bb. All internal bases are assigned to the external

base of tl1e same first letter. Bases not explicitly unalterable are alter-

able.

L: sho-c1ld be e:1.1p:1asized that the above base settings are set for

co:.."lver:ieEce upon entry to a proceclure, During execution of any procedure,

the ap J a·;:, J bp, bb bases are available for any purpose since all machine

condit.ior.sy including bases, are preserved in the save macro and reestablished

in t:he re·.:urn macro" With considerable care, 3 more bases can be used

for specic:.l purposes by saving lp a.nd lb in the stack and then saving sp

The call ma.cro is:

LDAQ (argument list pointer)
,,

STP._Q sp 'i' T + 20

STCD sp f(18

TRA <seg> ~ [lac]

The constant T is the amoun·t of temporary storage required by the procedure.

If ·chis auount. varies during execution a slightly more elaborate call is

required. The argument list pointer can be in the procedure segment or
A

E."'"Y other arbitrary segment. The location <seg>"f [loc] is automatically

established during program executio~1 by a cross-referencing mechanism

,_g_

\ihicl1 is described later. It shoi.lld 0e no<::ed that the above call is

:ces.sona.bly econon;,ical of space and that error returns, if any, are to

be trez.t.ed a~ ordinary arguments. If there is no argument list, of

course, the call is only 2 instructions. The argument list consists

of 2--;.m:cd ITS-modifier addresses \vhich point to the argume:J.t values.

.4..s is tl1.e
·~.).:...:, ·~ ... ~·-.·,'-.':~<·-~:,~,:.:,•.:.:::~~~{;.::J W~·~"icE .. ~ a_:.~!C

J...U figure 1, stack is used to store machine

Al9._stack usage by procedure!:: is .. 0 modulo 8. In addition,
...~ ----·--· ..

corcdi timis.

the .:::.ssernbler will assign all tem;,)orary storage within the stack (pr,

sums.bly ~;-vith a smooth enough prograGming notation that the use:D is

unbothereci by ·the mechanism). Temporary storage for the program starts

at sp-/22 a:.1.d o:1 up.
f-"

TI1e maount of temporary storage required

by a proceciu.re, T, is by convention &h-vays kevt as a consta.nt in the

fii-st I:Jord. of the lir1kage sectiOl1 at lp 'i- 0.
·' --1

Similarly lp 1;'1 contains (l_,,;-'·!·
..

the const.::..n.t -T.

Sub:cout:ir.e call arg-c:ment lists should normally be ei'cher in the

st&ck; or the procedure itself (:LE constant)~ or in an ar"0itrary seg-

t;:-~e stack is preferred. Also preferred is the use of argument

aciC:.;::-esses pointing to values rathe;::- than direct argument values: such

prc::c tices allow sophisticated techniques where values are _:mtomatically

co:nputed by procedure when needed by means of the 11 execute pair11 modifier

'I:he save and :return macros are next presented follm-ved by explanation:

,,..-

; P~DBsp
s;~B

STCD
LDXO
LD3lp
S?Bsp

I LDCF
EAPap

\,., -

....
lp i 0

f
SP'i' .,
sp :}

0
8

sp ';' 16
sp : .. 16
lb.:: 0~·"'0
spt 0

(ap.:.t>ab)
~ ' 20 -·~ op '(J'

set new stack origin
save bases
save registers
set r.i.E:VJ lp
set nevJ lp
se~ ne\v lp
record info to give effective stack length
pair base ap to ab
establish argument list pointer in ap

SAVE

LDRS
LDB
ADBsp
STBsp
RTCD

sp <\ 8
sp .(, 0
lp .. ;'~ 1
sb :;. 0
sp {: 18

-9-

~0store registers
T·2store b.::tses
reset stack origin
record info to give effec:tive stack length
return

The ·above rr.acros are for the completely general casE~ of nested calls,

recursion, pure procedure, and either in'cer-segment or intra-segment trans-

fers. It should ~be obvious that even though the call, save, and return

macros are fairly efficien·t in this general form, they can be further

strea;:1lin.ed if th•2re are special conditions such as "no al;'gument list"

or nno further calls within the J?rocedure".

Tl-le word pair at lb$0 is a pai:::- of constants with an ITS-modifier

set by the supervisor ~1en it creates the linkage segment. The pair con-

tail"lS:

ARG O,ITS

ARG 0

1\

SL:n:i.larly the wor6~-pairs at location sp\J1.8 and sr/if20 in the stack

have the ;:: ___)ITS-modifier double-word format.

Within the argument list itself, ITS-modifier word-pairs which point

to argumer.t values, matrix origins, etc. can be used for easy, general

transm~ttai. However, storage-saving options are possible at execution­

t::..me expen3e such as using the left half word as a descriptor pointer and

the right half word as a location.

In general when passing parameters, it is desirable to pass loca­

tions rather than values. The main reason is that this aLLows mechanisms

(such as we will use to mechanize segment cross-referencing) which are

trigge::ed by the unavailab.ility o£ data and which automatically trap to

generative procedures.

It is necessary to digress a moment to discuss descriptor segment

ma::.J.ager£cen·t. The descriptor segment is initiated by the supervisor when­

ever it establish,2d a process. An obvious algorithm is to assign segment

desc::iptors to successive index values as each new segment reference occurs.

-10-

If a process wishes to release for reuse a segment descriptor index value,

it should. be able to do so by an explicit call to the supervisor; otherwise,

the table must grow with the conco:nitant gradually increasing page overhead.

VJithin a called procedure., one can manipulate, save or destroy the

conte;.:ts of bases ap ~ ab, bp, bb. Other bases can be used provided one is

careful to restore them before any calls. In particular base sp can be

used \..rhe~-. T;.o s·taek references are made between calls and bases lp and lb

r.-,ay be u3ed. if i1.o intersegment references are made. To make a reference

to .::..::-. inp·u·t argument from within a procedure, one can for example use

to pick up the 3,5 argument. To refer to a te~porary location one can use

LDA

~;vhich by appropriate modificatio·a of the assembler would be more convenient

as

'-~ Rc..::s.rks on the Call Linkage

There are special problems whenever a procedure has a requirement for

te:::poraries which is unboundc.::· at translation time. In this case, the sub­

routine must increment and decrement by an amount equal to 0 modulo 8 lp/~. 0

and lp ';' 1, respectively; This should be done by a call to the supervisor

to avoid ·c:te user having to be able t.o write in the linkage segment. In

c..d.dit::on the call macro used must be special since the value of T is no

longer allowed in the pure procedure. In any case, it should be clear

tt-ia:t the above complication can usually be avoided and ths.t for non-recur­

sive proc~ .Jres it is not even necessary to use the stack for more than the

basic sa£estore information, by merely, placing all parameters and tempor-

aries in an arbitrary data segment.

V.:::rious -. .
r e:c ~11en1en 1:s deserve brief attention. Tl-1e sc.~ve r11acro can.

either oe repe&ted for multiple enL::c-ies or & subroutinized version cern be

If one is confident th&t no regis£ers need be preserved across

a call, t~en two more instructions &re saved and other special cases can

I "i: is ·1:1oped tl12.t rnos;: of t:::-:2 ci.n12. the ger:e:cal machinery

::::::: sl-10uld be observed that the use of the stack mechanism should

serve as a m.s.jor diagnostic tool since 'liiJ.enever a program is stopped, a

"t:c2.cetac:.-c" program can 'ivork its '""'"-Y ·oack to the base of the stack by

using ~he contents of sp$0.

Br2:.-::.-;.cl-1ir;.g :-._~ __ ;:;·;: 22 in in.voi,ed ·c-y a supervisor call since ·new descrip-

t:o:.~ se.gn:er:tsJ stack.s_, etc. rnust be .star·ted for each daughter process. Tl1e

pe:sss.ge o:: argume:c~Lts by 2-vJOrd p&irs represents no problem except that the

descriotor index is relative to the p&ren; descriptor segment. Therefore

eacl: ds.ughter process must st&rt with & copy of the parent descriptor seg-

In .:;;cld:.tion t'here is the question of interlocking the reading and/or

~,;::i:::i.:;~g of parent argcment values with reE>pect to daughter processes. It

s::-_oc:.:..;: be clear that some additional conventions are required to clarify

these :_sE>ues but that ~1othing inherently prevents processes branching and

It is now possible to trace through the various addressing mechanismsJ

a) \'Jlienever a user wishes to use a constant or make a transfer in

·che pure procedure section, the assem-oler should assemble the referencing

ii::struction Hith bit 29 off (i.e. with ordinary addressing machinery but

b) Hhenever a reference is to che stack of the procedure, the user

can write the address in ·the foLn of sp ':- x where sp and x have definite

val-ues at tr;::;::cslation time. This fonn of referencing is, of course, limited

-·12-

to a l6K \vvrC. sec: tion in the stack scgmex~ unless one explicitly programs

the use of an index register, e.g.

LDX2 '\7
.1.

location Y con~ains to . ' -cne stack .

c) ?ino.ll.y vJe. tal:ce -up a raore gei-.LE::ral case which. illustrates most

of t:-:e c:ec:-:s.nics. 'vTher:.ever a user 'ivishet> to refer to a variable in another

arbL:rary segme~1.t: with the descriptor pointer in, say~ base 3 he writes in

3 [x]-5, 7

:::..s tc n1::,~-ce ·the reference an indirect one off a location in the procedure 1 s

L::. particular, c:l-,e asserr..ble:c creates for the original

i:: ... s ·~:c-~~.c t.io:.l.

lp J

'Cv":-1e:ce Z is a locc:tion in the procedu:ce' s linkage section roughly of the

z ARG NP. ... iVI, F

z-;-~ ARG

BCI l_,X

D:J.:cir.g execution, the o.tteupt to reference location Z thro::.1gh its c:ddress

field with an F modifier creates a fault trap to the supervisor. TlLe super-

viso:c ca·r-c ·::he::.l. determi:-,e w'l1.ich segment descriptor is loaded into base 3. Let

us cell t.lris segment n2.lpha datan .. Then in the corresponding linkage section

of "alpha dat2.r' there is a sorted list of all those symbolic names and values

·\v":_i.cl-, 1vere designated as external at the segment creation time of "alpha data".

(':::'_-:e pre:::=._se form of the linkage section is given later.) When the supervisor
.e

say' 129, then it re~vrites_ the worl~ at
.I

-13-

3"\~1.\;<\

location Z as: ARG ~4, 7. Thereafter, 'tvhenever the~= reference

is made, it proceeds at the normal speed except for the ~tra in~iirect

cycle.

d) In a very tight loop, or in a c:ase of data segments larger

than l6K, the user may wish to.use internal bases and thus 1) avoid the

indirection cycle within the loop and 2) have general addressing. This

is done in a similar manner as above by programming an internal base. In

the example it is assumed tha·t base 2 is assigned as an int,ernal base

pointing at the appropriate external base.

EAB2 [X], ;'c (outside loop)
--------------~0~~~------
LDA : 2$-:-5,7 (inside loop)

'-C
or alternatively 'l f-~,<~

~~~---------~/{;~~~~~side loop)_ 
LDA · ,2$ , 7 (insid-e loop) 

~+·:)11 . 

The mechanism of indirection is identical in form as in the previous case.,-

excep·t that the words corresponding to location Z+l are: ARG -5 and ARG 0 

for the two alternative examples given. 

e) In the procedure 1 s linkage sect:ion, there are similar supervisor 

trapping addresses for the case of cross-references to other segments. Thus 

when a user attempts to load an external base with 

LDB2 <alpha> 

the assembled instruction is again to an indirect word at ·z where the con­

tents of Z are with a specially coded op code OPCD: 

z OPCD (pointer to segment name "alpha") ,F 

The segme: name consists of a BCI string in the linkage section. The super-' 

visor is able to rewrite the contents of Z after looking up the corresponding 

descriptor index of the "alpha" segment. Subsequent-references during pro­

gram execution are at full speed. 



Remarks on Referencing 

In general the above scheme consists of every program knowing only 

symbolic information pairs (e. g. symbol x in segment alpha) .or invariant 

indicial pairs (E!.g. relative location 1536 in the segment which has its 

descriptor locatE!d in 107 relative of the process descriptor segment) • .. 
Under no circumstances is a program able to obtain an _,n,so•lute address of 

information in memory; thus it is gua;ranteed that all pro•grams can be 

invariant to physical storage remapping. S~bolic pairs ~hich are known 

at translation tj~me are linked automatically to indiciai pairs without 

explicit progranm11.ing by the user; however there is also a need for a 

special superviS<)r call to dtablish linking in the cases of generated 

names or names acquired from typewriter input during execution. 

In order to endure flexibility arising with "saved"' processes it 

is important that the linking mechanism also be reversablE!. _General pro• 

·<C g:::&n reversability cannot be done but is valuable in spec:l.al cases (e. g. 

as :1~ using the latest copy of the library "sine" routine); rather 

stringent usage ll:'equirements are needed for this substitution technique 

to work correctly. One mechanism for unsnapping links would be to 

replace each linkage segment with a fresh copy •. 

Remarks on Segment Creation by the Binder 

In the pr•ocess of binding one or more subprograms into a segment, 

:,;.- there arises the need to equate segment names, decide on. 1~egment names 

for the various groupings of subprograms envisioned, etc. This should 

probably be an interactive program with the user respondil:tg at a console. 

For routine, repetitive binding action, the binder should allow a mechan­

ism for a declaration file to be created by the user. 

For convenience there should be a special entry to the supervisor 

for the case of a program during execution creating empty segments of 

either ~iven or temporary names. Non-repeating names can be generated 

from the information; processor factory serial n~ber, date~ month, year, 

and time in units comparable to memory cycles. 


