/

MASSACHUSETTS INSTITUTE

PROJECT MAC

DISTRIBUTION LIST:

Vyssotsky

Couleur

Evans

Galler

Fano

Krenn

Glaser

Corbatd

Graham

Daggett and M Wagner
Daley and Otis Wright
Dunten and M. Child
Schroeder and L. Pouzin
Crisman and D. Oppert
... Poduska and J. Saltzer
Garman and R. Stotz
Bailey

Edwards

.

.

.

.

D W W W e <

s
.

*

<0 Gy kg

v

TR 27

OFf

TECHNOLOGY

Reply fo: Project MAC
545 Technology Square
Cambridge, Mass. 02139

Teléphone: (617) 864-6900 x5851

February 16, 1965

February 16, 1965

To Attached Distribution:

The enclosed Section II of the MAC version of the Design Notebook
is an extensive rewrite and simplification of the November 31, 1964 ver-
sion of segment conventions. As most know from preliminary discussion,
the spirit of the mechgnism is essentially the same as before but there
have been extensive chénges and simplifications, Besides the hardware
improvemenits to the augmentor, the biggest changes are conceptual in that
the interfaces and notation for the ordinary programmer have been cleaned
up. In particular, the "own data'" segments and '"headers' have been removed
and hiddén from view, and the call, save and return macro sequences have
been shortened and reworked so that undesired features can be stripped
away incrementally in special, high-efficiency situations. No generality

has been given up in these changes.

Complete coding examples are given in another section so that the

interface to an ordinary programmer can now be evaluated..

o

Section 1XL.

A Proposal for GE 636 Segment Conventions

. i
introduction by F. J. Corbato

The purpose of the present memo is to develop a set of suitable
conventions, standards and techniques for the use of segments on the
GE 636 computer. The current groups interested in standards are: Bell
Tabs, GE Phoenix, Michigan, Carnegie Tech. and M.I.T. The present pro-
ﬁosal is an attempt to be a consensus of the interested ﬁembers of the

Bell, GE and M.I.T. groups.

Background

No effort will be made here to review the segment hardware of the
636, since it is described in early form in MAC memo M-182 by E. L. Glaser
and in near final form in the version IV memo of February 3, 1965. (The
frozen form of February 10, 1965 is assumed.) The detailed philosophy of
segmentation will not be repeated here since it is given in MAC Technical
Report TRQll by J. B. Dennis. However, a brief summary of the advantages

of segmentation and paging will be offered in review.
The major rezsons for segments are as follows:

1. The user with segments is able to program in a doubly infinite
memoxry system. Thus any single segment can dynamically grow
(or shrink) effectively without limit. (A quarter million words
maximum with up to a quarter million segments are possible on
the 636).

2., The user can operate his program through phases of segment
configuration without prior planning of the storage allocation
need or the management of the segments.

3. The largest amount of code which must be bound together aé a
solid block is a single segment. Since binding pieces of code
together (i.e. '"loading' in today's BSS parlance) is a process
which is similar to assembly or compiling, the advantage is
immense of being able to prepare arbitrarily large programs out
of a series of limited-overhead segment bindings. (c.f. the

overhead of Fortran II subprograms vs. Fortran I programs.)

4. Program segments appear to be the only reasonable way to
achiieve the use of common (i.e. shared among several users)
procedures and data bases. Segmentation allows this important

gozl both elegantly and conveniently.
Pages, such as were first on the Atlas Computer, are a separate
idea from segments and have further advantages:

L5y

. The use of a paged cove memory allows a very flexible technique

et

of dynamic storage management without the overhead of moving programs
back-and-forth in the memory. The importance of this reduced overhead
is especially high in heavy-traffic situations such as occur in responsive

time-shared systems.

2. The mechanism of paging when properly implemented as in the 636
allows the operation of arbitrarily incompletely paged segments so that
by only retaining active pages more effective use can be made of high-

speed memory.

Major Features of the Present Proposal

In the present proposal it was felt important to meet the following

requirements:

Any segment should only have to know of another segment name

et
.

- symbolically. Intersegment binding should occur as needed
dynamcially during program execution. Intersegment binding
should be automatic (i.e. not explicitly progfammed by the user)
and the mechanism should operate at high-efficiency after the

first binding occurs.

2. similarly, any segment should be able to reference symbolically
a location within another segment. This reference should bind
dynamically and automatically; after binding occurs the first

time, program execution should be at full-speéed.

3. The mechanism should be such that it is straightforward to have
all procedures be pure procedures (i.e. capable of being shared

by several users).

4. Similarly it should be straightforward to write recursive
procedures (i.e. subroutines capable of calling upon themselves

either directly or indirectly through a circular chain of calls).

5. The general conventions should be such that the call, save and
return sequences used to link one independently compiled pro-
cedure to another should not depend on whether or not the two

procedures are in the same segment.

Segment Conventions

The output of any translator should by definition be a subprogram

which consists of two regions, a pure procedure region and a linkage

region. When one or more subprograms are bound together, by a program X
called a binder, a segment and an associated linkage section are created.

When this is the case, as will be seen later, one or more users can share

the operation of a single copy of a pure procedure segment.

As a general rule all segments should have a pair of names, the
first a proper name and the second a class name, e.g. ALPHA PUREPR{C,
BETA DATA, etc.

The classes are:

1. Pure procedure

gt 7,

Impure procedure — (¢

N

. Read-write data

w

4, Read-only data
s 5. Write-only data
A1l symbolic names should begin on an integral word boundary and be of
variable length fromat where the first 8-bit character is a character
count. {(Initial implementation may only handle strings of a definite

length, for example, of 15.)

Segments are stored in a user's file directory as one type of file
and the supervisor can always gain access to segments by appropriately
“Wéearching the user's directories. Since directories can be treé-struc-
tured and can contain indirection links to other files (or to other
directories), there is a great searching and linking flexibility
possible. Whenever a pure procedure is requested by a user, the super-

visor need only have one working copy of the procedure for all users;

however each user will have a private copy of the corresponding linkage

section of the pure procedure.

To understand the proposed mechanism better let us coasider the
limitation of the execution of a process {(i.e. thread etc.) by the super-
visor program. It is assumed that the user of the system has indicated
symbolically to the supervisor a particular segment and internal location
at which to start the process. Whenever the supervisor starts a process,
it creates several special auxiliary tables for the process. These tables

which are all basically hidden from the programmer, are each in the form

of segments:

(@]
8]
=N
o
(g
(o]
Lo}
2]
o
9
=
(O]
=]
+

1. Des
2. s
. Linkage segment

3
4. Linkage section boundary segment
Figure 1 shows these segments. A brief description of each follows:

The descriptor segment contains a sequence of descriptor words for
all the segments which have been associated with the process. The descrip-
tor word contains the address of the user's page table for the segment and
the descriptor bits which control access to the segment. For reasons which

-

will zppear later, the zeroth entry, by convention, should be the descriptor

Py

of the "iinkage boundary segment''.

The stack segment is, as the name suggests, a push-down mechanism

1 7

- o the "scratch pad" or working storage region for every subprogram called.

"The -se of the stack will be explained later.

The linkage segment is built up out of the linkage sections of each

of the segments involved in the process. As a process proceeds and the

segment and the linkage segment will grow in length. Automatic page-

o
turning based on activity will orevent the mechanism from becoming unwieldy.

The linkage boundary segment is merely an auxiliary directory to
z3sist in the location of the intermal linkage section of any particular

. . th . . . e
segment. Precisely, the i— entry is a relative pointer to the beginning

=

. . . th . .
nkage section corresponding to the i— descriptor in the

of the i— _

descriptor segment.

H i 1 i
i 1 H i .
i E 5 ?
H i : H i
| ¢ : H
i : H i
3 i i f
i i | i L %
i ! ! { i !
: ¢ - — i H
| i i i i {
WS 1B, | ?
z ih A BN ;
i = :
| e ; SO :
H i i i i ¢
5 I 1 MC, i { | i
i H = H H 1 H
H { 1 RS : ' H : e e
' H f H H H i] i
i : i Poeee [N LBj :
TR i : ! :
Y WS, ; !
: 1 i ; ! }
H : i H
‘: ; ! H i H
H y :)
b H i i i H
BVl ! H ! ¢
I] H H H H
} e H iT i :
i L H ;.IS, H
——} H
i L 2 |
; i R
H H i v
i i i t
| : i :
! ; : :
: i i i
H i i H
| i : i
i
i
t

(@)
o
r'i
o)
(@]

0D, . O

: i t

escriptor Stack Linkage Linkage-section
Segment Segment Segment boundary segment

1
= .’tn

DW= Descriptor of j segment,

. P . .th -
= Machine conditions of i subprogram call.

th

WS, = Work space of 1 subprogram call.

.- s .th .
Linkage section of j segment,

|y
w
I
=

T

. . . .th
Linkage boundary of j segment.,

td

(SN
4

ot

FIGURE 1

tzi

-

To describe the technique of symbolic referencing between segments,
it is necessary to use a notation. (This notation, of course, will probably
be improved in any assembler which is produced.) To give the address field
of an instructicn word which has bit 29 on, the notation of (base tag) %

{displacement) will be used. TFor example, LDA 34 25 or symbolically LDQ

Literals will be designated by an "=" sign.

o describe addresses which are not defined at translation time or
at binding time, a notation of brackets is introduced. Thus writing LDA Z@[x]

signifies that when the program operates, the A register is to be loaded from

the location X in the segment which has its descriptor pointer loaded in

o

ase Z. The mechanism of tramslation, as will be seen, only produces a

01

o

lative address to an appropriate point within the corresponding linkage
section of the program being translated; however as the program operates,

the effect will be as indicated.

It is also convenient to refer to the descriptor index of a segment.

fo refer ¢ . . . \f\fk(

lc refer to a segment descriptor pointexr by segment name, one writes <beta>

[}

xampie, The notation LDA <beta™> | [x] -5, 7 will be used to indicate

a similar mechanism.

Mechanism for Inter~Segment References

Returning to the description of intersegment linking, when a process
is initiszted, the supervisor "call the process starting location with
particular base registér conventions set. As will be seen subsequent calls

a procedure within the process use the same conventions. The base
register assignment conventions are given symbolically as follows where a
£

suffix b or p designates an external or internal base, respectively:

base description
st pointer to the stack segment descriptor; probably

unalterable sxcept by a supervisor call.

sp pointer to current procedure stack origin

ib pointer to the linkage segment descriptor

1o pointer to linkage section of the current procedure

ab pointer to descriptor of segment containing the argument
iist

an pointer to argument list location

g 2 bases are arbitrarily available for the programmer to use
and zre labeled bp and bbb, All internal bases are assigned to the external

base of the same first letter. Bases not explicitly unalterable are alter-

It should be emphasized that the above base settings are set for
convenience upon entry to a procedure., During execution of any procedure,

bp, bb bases are available for any purpose since all machine

in the return macro, With considerable care, 3 more bases can be used

for specizi purposes by saving lp and 1b in the stack and then saving sp

Tre Call Mzcro
The czll macro is:
L.DAQ (aro ument list pointer)
STAQ sp+ T + 20
SICD sp 4 18
TRA <seg>:« [loc]
The constant T is the amount of temporary storage required by the procedure.

If this amount varies during execution a slightly more elaborate call is
required., The argument list pointer can be in the procedure segment or

A . .
eny other arbitrary segment. The location <seg>7 [loc] is automatically

“

established during program executioa by a cross-referencing mechanism

including bases, are preserved in the save macro and reestablished

which is described later. It should be noted that the above call is

reasonazbly economical of space and that error returns, if any, are to
ordinary arguments. If there is no argument list, of

course, the call is only 2 instructions. The argument list consists

2-word ITS-modifier addresses wnich point i

o the argument values.

o : wwilhach L~,1k- 4
ck usage by procedures is, O modulo 8. In addition, “

sumably with & smooth enough programmi

)

1g notation that the user is
unbothered by the mechanismy. Temporary storage for the program starts

722 and on up., The amount of temporary storage L 0 reguired
by a procedure, T, is by convention always kept as a constant in the

first word of the linmkage section at 1p| 0. Similarly Ip ¢l contains | ¥

the constant -T,

Subroutine call argument lists should normally be either in the

or the procedure itself (if constant), or in an arditrary seg-

ment; the stack is preferred. Also preferred is the use of argument

addresses pointing tc values rather than direct argument values: such
o

practices ailow sophisticated techniques where values are automatically

computed by procedure when needed by means of the "execute pair" modifier

. set new stack origin
save bases

v

TRS save registers

C,t""- S o I
;ST set new 1p

SAVE o set new 1p

DI set new lp

e a2 . . i -

S record info to give effective stack length
DL pair base ap to ab

establish argument list pointer in ap

o
Fz

LDRS spi+ 8
LDB spo 0 o
SAVE ADBsp io o1 reset stack origin
STZsp sb %0 record info to give effective stack length
RTCD sp £ 18 return
T - o 1

he above macros are for the completely general case of nested calls,
recursion, pure procedure, and either inter-segment or intra-segment trans-
fers, It should be obvicus that even though the call, save, and return
macros are feairly efficient in this general form, they can be further
streamlined 1f there are special conditions such as "no argument list"

or "no further calls within the procedure'.

Similarly the wor/-pairs at location spyl8 and spy20 in the stack

have the ¢ ITS-modifier double~word format.

Within the argument list itself, ITS-modifier word-pairs which point

i
O
M
=

gument values, matrix origins, etc. can be used for easy, general

trensmittai, However, storage-~saving options are possible at execution-

expense such as using the left half word as a descriptor pointer and

the right half word as a location.

In generxal when passing parameters, it is desirable to pass loca-
tions rather than values, The main reason is that this allows mechanisms
{such as we will use to mechanize segment cross-referencing) which are

- R}

triggered by the unagvailability of data and which asutomatically trap to

visheés to release for reuse a segment descriptor index value,

]
tn
(5]
O
H
o]
(¢
®
w
[0]
<t

it should be able to do so by en expiicit call to the supervisor; otherwise,

@

the table must grow with the councomitant gradually increasing page overhead.

rocedure, one can manipulate, save or destroy the

ab, bp, bb. Other bases can be used provided one is
careiul to restore them before any calls. In particular base sp can be
used when no stack references are made between calls and bases 1p and 1b
s ~ I Ve T T =S N N - = wma amm e - B - Kol
nay be used 1f no intersegment references are made, To make a reference

to <2 input argumentc from within a procedure, one can for example use
LDA ap 3,5
To refer to a temporary location one can use

which by zppropriate modification of the assembler would be more convenient

as

DA so VX, 5

o Reaarks on the Call Ligkage

There are special problems whenever a procedure has a requirement for
temporaries which is unboundcl at translation time. In this case, the sub-

1

increment and decrement by an amount equal tc 0 modulo 8 1p'i'0

5 V1, respectively; This should be done by a call to the supervisor
to avoild the user having to be zble to write in the linkage segment. In
macro used must pe special since the value of T is no

the pure procedure, In any case, it shculd be clear

P

7 N £3 -

that the above complication can usually be avoided and that for non-recur-

sive proc. ures it 1s not even mnecessary to use the stack for more than the

(@)
)
)
1
0
[
o
o
®
0]
I
]
H
o
e

nformation, by merely, placing all parameters and tempor-

aries in an arbitrary data segment.

[(¥]
e
or
juyd
m
r
jon
[0]
H
©
]
j)
(o
®
u
th
[}
h{
B
[wd
)
ot
e
el
-
(]
o
R
,.,
®
]
]
5
(5}
o
;“
@)
3
O
[
[ud
'_.l
o}
N
©
[a R
<
[}
"
w
'—
(o}
)
o
[}

o)
[¢]
m
}t
-
L5
I
9]
[t}
]
s
£
o]
¢)
Lo}
[
5
0
t
8
[
[¢]
t
H
e}
o3

ns are saved and other special cases can

ot
()
Pl
<
O
i
"(
®
o
Q
oo
jat
.
',.I
e
w

nhoped that most of the time the general machinery

Tt gshould be observed that the use of the stack mechanism should
serve as a mejor diagnostic tool since whenever a program is stopped, a
o o <o b

traceback’ program can work its way back to the base of the stack by

s
o]
jar
]
=
[
- 1
oF
l. .
el
b
©
V]
H
O
O
©
w
[
(]
w

invocked by a supervisor call since new descrip-

ks, etc. must be started for each daughter process. The

tg by 2-woxrd pairs represents no problem except that the
T iy

descriptor segment. Therefore

start with a copy of the parent descriptor seg-
the question of interlocking the reading and/or

3

relues with respect to daughter processes. It

ghould be clear that some additional conventions are required to clarify

these issues but that nothing inherently prevents processes branching and

£ is now possible to trace through the various addressing mechanisms,

r
2) Whenever & user wishes to use & cons tant or make a transfer in

the pure procedure section, the assembler should assemble the referencing
instruction with bit 29 off (i.e. with ordinary addressing machinery but

b)Y Whenever a reference is to the stack of the procedure,_the user

can write the address in the form of sp ¥ x where sp and x have definite

values at transletion time. This form of referencing is, of course, limited

£o a 16X word section in the stack cegment unless one explicitly programs

n the stack.

e

pointexr to locaticn X

a more general case which illustrates most
of the mechanics, Whenever a user wishes to refer to a variable in another

arbitrary segment with the descriptor pointer in, say, base 3 he writes in

<

amically at execution time,
a location in the procedure's

r creates for the original

where is a location in the procedure’s linkage section roughly of the

7 s namE o AT

. . 1

ce location Z through its address
trap to the supervisor. The super-
descriptor is loaded into base 3. Let

in the corresponding linkage section

ist of all those symbolic names and values
wnich were designated as external at the segment creation time of "alpha data®
(The precise form of the linkage section is given later. When the supervisor
\ i o o .

“has established the value of x as, say, 129, then it rewrites. the wogﬁ at

e

-13-

Wt
\ 4!
24

location Z as: ARG (§§? 4,7. Thereafter, whenever the same reference

is made, it proceeds at the normal speed except for the extra indirect

d In a very.tight loop, or in a case of data segments la}ger
than 16K, the user may wish to use internal bases and thus 1) avoid the
indirection cycle within the loop and 2) have general addressing. This
is done in a similar manner as above by programming an internal base. In
the example it is assumed that base 2 is assigned as an internal base

Q\’;J &4“’0

pointing at the appropriate external base.

EAB2 [X],* (outside loop))Sw-j{“ G -
""""""" ANFT TS : 3
LDA 128-5,7 (inside loop) !ile- xi;jj’r} g
< Uy
or alternatively Lt L pﬁ”'vfﬁw;. 4 : Ne S
s 1€ W
AR D :/‘ - y .
EAB2 L_[}_{‘__5:]_‘_/(:_"__gouts:uie loop)
LDA ' 2580, 7 o (inside loop)

&
The mechanism of indirection is identical in form as in the previous case,

except that the words corresponding to location Z+1 are: ARG -5 and ARG O

for the two alternative examples given.

e) In the procedure's linkage section, there are similar supervisor
trapping addresses for the case of cross-references to other segments. Thus

when & user attempts to load an external base with
1LDB2 <alpha>

" the assembled instruction is again to an indirect word at Z where the con-

tents of Z are with a specially coded op code OPCD:
Z 0PCD (pointer to segment name "alpha"),F

The segme: - name consists of a BCI string in the linkage section. The super~
visor is able to rewrite the contents of Z after looking up the corresponding
descriptox index of the "alpha" segment. Subsequent-references during pro-

gram execution are at full speed.

-1b-

Remarks on Referencing

In general the above scheme consists of every program knowing only
symbolic information pairs (e.g. symbol x in segment alpha) or invariant
indicial pairs (e.g. relative 1§cation 1536 in the segment which has its
descriptor located in 107 relative of the process descriptor segment).
Under no circumstances is a program able to obtain an 2bsolute address of
information in memory; thus it is guaranteed that all programs can be
invariant to physical storage remapping., Symbolic pairs which are known
at translation time are linked automatically to indicial pairs without
explicit programming by the user; however there is also a need for a
special supervisor call to éitablish linking in the cases of generated

names or names acquired from typewriter input during execution,

In order to endure flexibility arising with "'saved" processes it
is important that the linking mechanism also be reversable, General pro-
g.am reversability cannot be done but is valuable in special cases (e.g.
as in using the latest copy of the library "sine" routine); rather
stringent usage requirements are needed for this suBstitution technique
to work correctly. One mechanism for unsnapping links would be to

replace each linkage segment with a fresh copy..

Remarks on Segment Creation by the Binder

In the process of binding one or more subprograms into a segment,

_there arises the need to equate segment names, decide on segment names

for the various groupings of subprograms envisioned, etc, This should
probably be an interactive program with the user responding at a console.
For routine, repetitive binding action, the binder shquld allow a mechan-

ism for a declaration file to be created by the user,

For convenience there should be a special entry to the supervisor
for the case of a program during execution creating empty segments of
either given or temporary names. Non-repeating names can be generated
from the information; processor factory serial number, date, month, year,

and time in units comparable to memory cycles,

