Tod- 25, 1965

Section‘III.

A Proposalhfor a Minimal Assembler, GAP, for the GE 636

by R.M. Graham
It will be assumed that the reader is familiar with Section II of

the Design Notebook (A Proposal for GE 636 Segment Conventions) and Appen-
dix C (Memo of J. Couleur on GE 636 hardware).

Table of Contents

Goals

.

Assembler Input-Output

.

Operation Codes, Bases, and Modifiers

Character Size

0o N P W

Addresses

-CALL,SAVE,RETURN, and EXIT Macros 10
Coding Examples

~ o B LW N +H O

Implementation

0. Goals

This proposal represents what is considered to be the minimum modi-
fications and additions to the GEM Assembler in order to produce a satis-
factory minimal assembler for the GE 636, It should be understood that
this assembler, GAP, is to be considered as having only temporary life
until an assembler designed specifically for the GE 636 is written, Never-

theless there are certain properties which it must have in order to be a

useful tool.

a) It must conform to certain basic time-sharing system (TSS)
standards
i) Since all console I/0 is in terms of a single, full charac-
ter set, using 8-bit codes, GAP must be aware of only 8-bit

characters.

ii) All input and output must be to and from files and all
character input and output must be TSS standard print=-
able files,

1iii) GAP itself must be a pure procedure segment (or group

of segments) and must be a subprogram callable using

the standard GAP call macro.

b) The output of a GAP assembly must be a segment and its asso-

ciated linkage section.

“~ ¢) It should be extremely easy to write pure procedures in GAP

and it should be difficult to write impure procedures.

d) Input should be free field rather than the existing fixed

fields of cards.

e) GAP must be able to process TSS standard names,i.e. variable
length format (although imitially this may be limited to a

maximum of 15 characters).

These are critical goals, for if GAP does not have these abilities

it will be virtually impossible to assemble the time-sharing system itself.

T

9-bit field of each line giving the number of 8-bit characters in the

1. Assembler Input-Output

Input to GAP will be a file with class name GAP. For the purpose
of this write-up assume that the name of this file is ALPHA GAP. OQut-
put will consist of four files: 1) the text file with name ALPHA TYPE
where TYPE is supplied by the SEGMENT pseudo-operation which must be
the first line of any assembly, 2) the Lot file with name ALPHA
LINKAGE, 3) the listing file with neme ALPHA LISTING, and 4) the debug-
symbol table file with name ALPHA DEBUG.

The three files ALPHA GAP, ALPHA LISTING, and ALPHA DEBUG will
conform to the TSS standards for printable files, i.e., a file composed

of variable length lines which end with a carriage return and the first V*>
/

line'fwhich are right justified in 9-bit fields packed four per word).
With regard to ALPHA GAP, each line (composed of less than 512 charac-
ters) corresponds to a card in GEM. The fields in the line are sepérated

by the "tab" character, i.e., the GAP instruction format is:

location '"'tab" op-code ''tab" address ''tab" comment
field field field

The file ALPHA DEBUG contains, as a bare minimum, the symbol table

P
e

accunulated during assembly. Other information which the debug routine
finds useful 1is to_Es_igggi_huxn;
_—

The file ALPHA TYPE contains the text (instructions and/or constants)

resulting from this assembly. All assemblies will be relocatable, however,
initiaily (until the binder is defined and coded) the relocation informatiom
will be discarded and output will be a contiguous block beginning at rela-
tive location 0. This can be accomplished by appending to GEM a modified
version of the standard loader which would load the text juét assembled

and separate out the information to ferm the file ALPHA LINKAGE. The

loaded text is then the desired output for file ALPHA TYPE. The file

ALPHA LINKAGE has the following structure:

Relative location Contents
0 ARG T
1 ARG ~-T
2 ARG k
3 ZERD PS1,VALUEL
4 ZERP PS2,VALUE2
k+2 ; ZERD PSk,VALUEk
k+3 SEG PL,F
ARG C
PS1 _ STRING Li,SYMBOL1
PS2 STRING L2,SYMBOL2
Pl » STRING Lj,segment name

T = the amount of temporary storage needed in the stack by ALPHA, which)
) rwddef and ae - l
must be equal to O modulo 8. Wy wl e $\”Q¥*“““M' 4‘L‘ g M”[lVLf o £

k = the number of symbols defined in ALPHA which can be referred to from
other segments. Location 3 thru k+2 contain the definition of these sym-

bols. PSi is a pointer to the ith symbol and VALUEi is the symbol's

value.

The linkage information which starts at k+3 contains pointers to
the segment names and symbols (which are not defined in this assembly)
to which ALPHA réfers. The symbols and names start at PS1 and use the

new STRING pseudo-operation (see section 3).

2. Operation Codes, Bases and Modifiers

The following correspondence of bases will be established and the

symbols ap,ab,...,sb will be predefined in the assembler to have the

indicated wvalues.

base symbol use
0 ap argument pointer (internal base paired with 'ab)
i ab argument base (external base)
2 bp free base
3 bb free base
4 1p linkage pointer (internal base paired with 1b)
5 1b linkage base (external base)
6 sp ' stack pointer (internal base paired with sb)
7 sb stacﬂ\base (external base)

The foilowing new operation codes will be added to the assembler:

assembrer:
LBRap SBRap) EAPap EABap

" LBRab SBRab EAPab ~ EABab
SBRbp SBRbp EAPbp EABbp
LBRbD SBRbb EAPbbL EABbb
LBR1p SBR1p EAP1p EABlp
‘LBR1b SBR1b EAP1b EAB1b
LBRsp SBRsp EAPsp EABsp
LBRsb SBRsb EAPsb EABsb
ADBap STPap TSBap LXLO
ADBab STPab TSBab LSL1
ADBbp STPbp TSBbp LX12
ADBbb STPbb TSBbb LXL3-
ADB1p STP1p TSBlp LXLA4
ADB1b STP1b TSB1b LXL5
ADBsp STPsp TSBsp LXL6
ADBsb STPsb TSBsb LXL7
SXLO LDBR LDCF
SXL1 ‘ SDBR CLAM
SX1.2 LDB STAM N
SXL3 STB snuﬁ@kjﬁ)'

. SXL4 SCU
SXL5 RCU
SXL6 STCD

SXL7 RTD

The following psedo-operation ' codes are to be disabled:

ERLK SYMREF LBL ABS
FUL TCD PUNCH BLOCK

The foliowing new pseudo-operation codes will be added:

SEGMENT TEMP STRING
INSERT TEMPD EXIT

The pseudo-operation STRING is defined in section 3 and EXIT in section 5.
Since a pure procedure may not have any temporary storage within itself
TEMP and TEMPD are used for declaring temporary storage in the stack.
Single words are defined by TEMP and double woq&‘pairs (the first word

to be at an even location) are defined by TEMPD. A vector may be defined
by enclosing its length in parenthesis aftef the symbol which is to be

defined as its base. For example,

N

-~ TEMP a,b,c(3)
TEMPD x,y(2),2z

would give the following stack assignemnt,

relative location symbolic location

a

b

N W DN = O
(¢}
0
[
WW

c vector
c + 2
5 .
6 X
7 x + 1-} X
8 v]
9 _ g+ 1 y vector
10 y + r
11 - y + 3]
12 z 7
13 z + 1 : #

The SEGMENT pseudo-operation must be the first line in the

assembly. It defines the type of segment being assembled. For example:

SEGMENT ppsegment

would define this segment to be a pure procedure segment. The output

text file would then be named ALPHA PPSEGMENT. .

The INSELT pseudo-operation is used to insert into this assembly

(in place of the INSERT) the contents of another file. For example:

INSERT BETA

will insert the contents of BETA GAP and the assembly will continue as
if the contents of BETA GAP had actually been written in place of the
line INSERT BETA.

The assembler should recognize the following new modifiers:

ITS EP CIé6
ITB SC6 F35

the SC6, CI6, and F35 modifiers are to have meaning identical to the SC,

N
J

»\5&, and‘E modifiers in GEM. The SC and CI modifiers are to be redefined
to Tefer to 9-bit fields rather than 6-bit fields (which wilffge referred
to by SC6 and - CI6). The F modifier is to be redefined to mean the 636
IT-type fault rather than the 635 IT-type fault (which is now F35).

' . ' S
3. Character Size | \i§ﬁp}JfRA
The assembler should consistantly deal with 8-bit characters.)
- That is, all input and output of characters will be 8-bit characters. u&§?1J§9;
. _~—ihe BCI and H-type literals must use 8-bit characters. .The codes for v

the 8-bit characters will be those defined as TSS standard character ﬂ%
codes. The 8-bit characters are packed four.per word and right justi-

fied in 9-bit subfields.
The STRING pseudo-operation is identical to the BCI pseudo-oper-
ation except that the first 9-bits of the first word of the constant con-

tain a count of the number of characters in the constant with the constant
itself starting in the second 9-bit field.

,L\

Addresses

The following new forms of address are now legal:

(1) BASE l? EXP

(11) BASE & [syMBlsEXP
(iii) <SEG>‘§3 EXP

(iv) (SEG)“;* [SYMB J+EXP

where BASE 1is a symbol, defined at assembly time, with value 0,1,...,0r 7

(i.e., specifying one of the base registers), EXP is any legal GEM expres-

sion defined at assembly, SEG is the name of some segment, and SYMB is a o
symbol not defined at assembly time but defined in somel&ther segment. "z

The "+ ZXP" is optionmal in (ii) and (iv), and EXP is optional in (i) and
(iii).. In case (ii) SYMB must be defined in the segment whose descriptor
pointer is in the base register BASE while in case (iv)_SYMB must be de-
fined i%‘the segment SEG. In all caées the portion of the address follow-
ing the??, when completely evaluated, defines a relative address in the
segment referred to by the symbol proceeding tbfz%. All address forms

may be modified by any valid modifier.

In case (1) all parts of the address are bound at assembly and

the resultant 18-bit address is defined as:

bits
0-2 = the value of BASE truncated to 3 bits.
3-17 = the value of EXP truncated to 15-bits.

In cases (ii), (iii), (iv) at least one part of the address is
unbound until execution, hence linkage information must be assembled into
the linkage section.

Assembly of the various forms results in an assembled address of;

1p% LSP, *

-~ shere LSP is the relative location in the linkage section of the following

iinksze information.

original original linkage linkage section
address _ section entry entry after linking
B | [SY]-EXP,M tse (ap¥ B,F LSP ADD B, ITB

/ ARG ARG v (SY)-EXP,M

zfﬁl ARG S8SP ARG SSP

ARG -EXP,M - ARG =-EXP,M
SSP STRING n,SY SSP STRING n,SY
<SEG)§‘-EXP,M LsSP @ SP,F LSP SEG v(SY),ITS
ARG -EXP,M ARG -EXP,M
SP STRING k,SEG SP STRING k,SEG
{SEGY § {sY] -EXP,M LSP SP,F LSP SGAD +w(SEG),ITS
ARG ARG v(SY)-EXP,M
ARG SSP ARG SSP
ARG -EXP,M ARG -EXP,M
SP STRING k, SEG SP STRING k,SEG
SSP STRING n,SY SSP STRING n,SY

B (a base)and EXP(any valid GEM expression) must be defined at assembly
time. M is any valid modifier. SEG is the name of a segment (k charac-.
ters long) and SY a symbol defined in some other segment (n characters
long). <+{SEG) is the descriptor pointer for the segment SEG and v(SY)

is the value of the symbol SY. The pseudo-operations ADD, SEG, and SGAD
are defined to have different values so that the linker will be able to

tell which of the three cases exists when it establishes the link.

It is also possible to use a literal of one of these addresses.
The literal is written as the address with "=" as a prefix. The
assembled address is the same and the linkage section entry is also the
same except that it is preceeded by the two words ‘

PTR #2,F
ARG

-10-

. 4
For example, = <3EG>3 -EXP,M produces;

LSP

SP

original linkage linkage section
section entry : entry after linking
PTR *#2,F : LSP PTR %42

ARG ARG

SEG SP,F SEG v(SY);ITS
ARG -EXP,M ARG -EXP,M

STRING k, SEG SP STRING k,SEG

The following new. symbolic addresses are used in the CALL and EXIT

macros and are explained in section 5:

@SYMB ?n ZA 7Q

5. CALL,SAVE,RETURN, and EXIT Macros

The CALL,SAVE, and RETURN macros will be redefined and a new macro,

a)

b)

EXIT, added. There are three variants of the CALL macro:

CALL ENTRY

In this call there are no arguments. The macro expands to;
STCD sp 7 18
TRA ENTRY

CALL ENTRY ({&/ ARGLIST)
In this call the arglument list is located at ARGLIST and must
have been explicitly constructed by the user. The following
code is generated as part of the prologue;

EAPbp ARGLIST A

STPbp sp AL -

and the macro expands to;

LDAQ sp | AL
STAQ sp} T20
STCD sp ! 18
TRA ENTRY

~11-

¢) CALL ENTRY (ARGL,ARC2.,,,.ARGn) n=1
In this call the argumcncs are explicitly written and GAP
will generate the argument list. The following code is

33\)

generated as part of the prologue;
2 W ot ot ha 50 e I}

I

EAPbp spt ALF2 \ ‘ ,v;*p 02

STPbp sp| AL s

EAPbp ARGl el oy

STPbp spi AL+2 o
EAPbp ARG2

STPbp sp% ALt4L

EAPDbp ARGn

STPbp sp 'l Al#+2%n

and the macro expands to;
A

LDAQ sp | AL
STAQ sp | TH+20
STCD sp 18
TRA ENTRY

In all cases ENIRY is the entry point of the subroutine being called which

is usually of the form <SEG>>§[LOC], although the call will work even if

ENTRY is a location within this segment. The return is stored in relative
location 18 of the stack before transferring to the subroutine. Remember-

ing that the segment being assembled is ALPHA suppose we are calling <BETA>| O,
then the use of the stack is as shcwn in figure 1. 1In cases b) and c) a
pointer (an ITS pair) to the argument list (called the argument list pointer)
is passed to BETA by storing it in BETA's part of the stack, i.e., in loca-

tion 20 relative to spBETA. The pair of instructions,
EAPbp <SEG> | [L@C]-EXP
A
f . STPbp sp| AL
i A
will produce in sp?xAL and sp‘fAlﬁl the pair of words;

v(SEG) 3 1TS
v (L§C)-EXP
0 17 18 29 30 35

+TBETA
+22

420 |

spALPHA
spBETA
1pALPHA
1pBETA
T
TBETA

~a T R

i
|

temporary storage Zor BETA

pointer to argument list when BETA called

E
i return if BETA calls another subprogram

2 pointer to BETA (used to set—up 1pBETA)

| other registefé when BETA called

base registers—%hen BETA called

temporary storage~for ALPHA

pointer to argument list for ALPHA

return when ALPHA calls BETA

pointer to ALPHA (used to éetup 1pALPHA)

other registers when ALPHA called

base registers when ALPHA called

effective stack pointer

stack segment

contents of base sp when executing ALPHA

]

contents of base sp when executing BETA

contents of base lp when executing ALPHA

contents of base lp when executing BETA

amount of stack storage needed by ALPHA

amount of stack storage needed by BETA

Figure 1

\ a0

-13-

The argument list itself is a list of pointers which point to the actual
arguments. In case‘b) the user must construct his own list and in case
c¢) the argument list is constructed in the prologue, the code being gen-
erated by the CALL macro (see section 7 on implementation). The prologue

(which may be viewed as an addition to the SAVE macro) is executed once

upon entry to the subprogram. ARGLIST in case b) may be any valid GAP
address (e.g., sp‘%k, <SG>%3[X],...). In case c) the ARGi méy be any

_valid GAP address (e.g. spﬁgk, = 5,...) or a symbol of the form %m which
refers to the mth_argument of ALPHA. In this case the instruction pair

in the prologue to generate the pointer must be;

&

EAPbp ap T 2%(m-1),%
STPbp sp i Aldk

The SAVE should be the first instruction executed upon entry to a
subroutine. The macro expands to;

&

ADBsp lpﬂ 0 set sp to spBETA
STB sp&-O _ save bases
STéS sp£\8 save registers
STCD sp” 16 set lp to 1pBETA

LT LDXO sp’ 16 ...

LDB1p 164 0, %0 ...

STBsp sb 40 save effective stack pointer
LDCF (ab<-ap),DU pair pase ap to ab
EAPap spﬁ‘ZO,* get argument list pointer

Referring to figures 1 and 2, the stack pointer sp is incremented by T
so that it is now pointing to BETA's area in the stack. The bases and
registers are saved and the linkage pointer lp is reset to 1pBETA so
‘that it points to BETA's linkage section. The STCD instruction stores
the two word pair:

i .
loc (STCD)+2 | ‘2

i
'@
i B % indicators} ITS
0 17 18 29 30 35

- ’/‘!
. e 7 ;
. i
+1 ' -TBETA
" TBETA |
1pBETA IBETA
1 I
1pALPHA = T
1 0 |
o 0 ITS

Linkage segment

0

:A T~ \/’/\,f’/g

e —.

¥
i

{1pBETA

i

|1pALPHA
:. [S,

2 1

Linkage~section
boundary segment

Figure 2

Descriptor
of BETA

Descriptor
of ALPHA

i
i

Descriptor of
Linkage-sectm

i boundary segment

Descriptor
segment

-15-

where B 1is a pointer to the descriptor of BETA and loc(STCD) is the
-relative location (in BETA) of the STCD instruction. An ITS pair point-
ing to the linkage-section Boundary segment is always located at relative
locé£ion zero in the linkage segment. The descriptor of the linkage-sect ion
boundry segment is aiways at relative location zero in the descriptor seg-
ment. The contents of sp (which now contains spBETA) is saved in relative
location zero of the stack. This allows the supervisor to compute an upper
bound on the effective stack length when the stack contents need to be
savedf That 1is, C(sb'?O)O_17 = SpBETA, stkspBETA+l6 leads to 1pBETA,and
C(lb‘flpBETA)O_l7 = TBETA. The upper bound on the effective stack length
is then spBETA + TBETA + 20. The instruction LDCF (ab%ap),DU sets the
control bits of the bases ab and ap such that ab is an external base and

ap is an internal base which is paired to ab. The argument list pointer

is then loaded imto the pair of bases (aby-ap).

The RETURN macro is used to return to the calling program. The

macro expands to;

LDRS sp? 8 restoreregisters

LDB sp% 0 restore bases

ADBsp Ipf 1 reset sp to spALPHA
STBsp sbi 0 reset effective pointer
RTCD sp’18. return

This 1s effectively the inverse of the SAVE macro.

The EXIT macro is used for error returns and alternate exits from
the subprogram. Error returns and alternate exits are always given in the
argument list just as any other argument. An EXIT macro is necessary. to

insure that the stack and Iinkage pointers are correctly reset. The macro,

EXIT n
expands to;
' LDXO 2%(n-1),DU move exit pointer to
LDAQ sp'TZO,*O fixed location in
STAQ sb 12 stack

LDRS sp 18 restore registers

-16-
LDB ~ sp Ao restore bases ‘
. ADBsp L 1p Q‘ 1 reset sp to spALPHA
STBsp z sp 1 A 0 reset effective stack pointer
LDI L sp é ‘restore indicators
A 2 exit ‘

TRA sb i

The pointer to the exit location in the calling program is moved
-from the argument list to a fixed location, namely relative location 2
< -in the stack segmerit, and the machine conditions are restored as in the

; . SAVE macro. The indicators have to be explicitly restored.

o ‘As can be seen from the macro expansions all registers are restored

: ;be_fore returning to the calling program. Hence, if it is desired to returt '
‘to the cailing program with a result in either the A or Q registers (or
:both) the result must be placed in the proper stack locations (spé 8 for

5' the A regxster and sp 4 9 for the Q register) so ‘that it will be loaded

by the SAVE or EXIT macro. ', To facilitate this the following symbols will"'
:‘:be defined in GAP which will refer to the proper stack location' !

N £ e Mt L e ey

PAGE 17

6. Coding Examples

a) The first example is a subprogram to calculate N!
(the factorial of N) by recursion. It illuStratés that the
standard CALL, etc., macros use the stack in such a way that
itis trivial tb write recursive subprograms. The call s
‘to bes . "

CALL CFLIBY ¥ [FACT](N, ERREXIT)

The subprogram is iocated in the segment named FLIB“ wi th
nentry point FACT. The result N! is to be left in the A
register or, if N1D235 » the subprogram should exit to
J_ERREXfT. | |
" 'SEGMENT FLIB

. SYMDEF FACT
_FACT SAVE- "

- "LDA - ap*Q,* get N SR
TNZ ~— ~ OVER if N=0 S -
LDA 1,DL then '
STA %A ~ Ni=1
. . RETURN
~ OVER STA N if N0
x - SBA 1,0L N1=N-1)
STA N1
CALL - (FL|3>4[FAct](N1 EX) find (N-1)!
LLR ~ switch (N=-1)! to Q
- MPY N _ N*(N=1)1!
LLS 36 ‘ test for .
TRC . EX overflow
STA ZA return N! in A
N RETURN _ o
EX . EXIT 72 overflow, take error exit
TEMP N,N1 reserve N,N1 as temps in the stack
END '

Following is the compiete contents of the segment FLIB,
i.e.,, the previous subprogram with all macros expanded, all
segment address symbols, etc., replaced by the; proper base

register references, and all pseudo-operations dropped.

FACT

OVER

EX

ADBsp
STB
STRS
STCD
LDX0
LDB1p
STBsp
LDCF
EAPap
LDCF
EAPbp
STPbp
EAPbp
STPbp
EAPbp
STPbp
LDA
TNZ
LDA
STA
LDRS
LDB
ADBsp
STBsp

RTCD

STA
SBA

- STA

LDAQ
STAQ -

STCD

TRA
LLR
MPY
LLS
TRC
STA
LDRS
LDB

ADBsp .

STBsp
RTCD
LDX0
LDAQ
STAQ
LDRS
LDB
ADBsp

‘'STBsp

LDI
TRA

1pdo0
sp$0
sp48
sphl6
sph16
1b40, *0
sbd0

(ab‘-ap) ’ DU

sph20,

(bb"bp)l DUW

spday
sp422
sph29
sph2y
EX
sp426
aplo, »
OVER
1' DL
sphs
sps
sp*O
1pdl
sb{o0
sph1s
sp28
1' DL

spé29

spt22

spds52 CALL macro

sph1s- '

1pht :
—\

36
sp428 N
36

EX

sphs
sphs
sp0
1phl
sbéo
sph1s
2,DU
sph20,*0
sbé2
sphs
sp40
1pt1l
spho

> SAVE macro

J

}prologue

J

RETURN macro

RETURN macro

? EXIT macro

sp418
sbhé2 W

PAGE 18

PAGE 19

The linkage section for this segment is:

ARG 32
ARG -32
ARG 1

ZERO pl,0
SGAD p2,F

ARG
ARG pl
ARG 0

pl STRING &4,FACT
p2 STRING &4,FLIB

A partial picture of the stack shows its wuse during the

first two calls on FACT:

X k+ 0 save bases for 1lst call
8 save registers for 1lst call
16§ Ad(FLIB) I TS
FACT+5 pointer to loc(STCD)+2
18| d(FLIB) ITS
OVER+7 return tor 2d call
20
) . arg list ptr from original call
22 | d(STACK) 7S :
first k+214 arg list ptr for 2d call
call 24| d(STACK) ITS pointer
k+29 to N1 argument
26 | d(FLIB) ITS pointer list
I EX to EX
N temp N
N1 temp N1

save bases for 2d call
save registers for 2d call

d(FLIB) ITS
FACT+5 pointer to loc(STCD)+2
18| d(FLIB) I TS
QVER+7 return for 3d call
20 | d(STACK) ITS .
. : k+24 arg list ptr from 1lst call
" A 22| d(STACK) ITS
v 7d j+2L arg list ptr for 3d call
‘call 24| d(STACK) ITS pointer
j+29 to N1 argument
26| d(FLIB) ITS pointer list
EX to EX :
28 N temp N
29 N1 temp N1
¥ 30

k+32 ‘ save bases for 3d call

PAGE 20

-b) This éxample is a subprogram to compute the integral
of a functidh using the trapezoid rule. The call is to be,
© CALL (INTEGRATEYA [TRAPZ] (A, B, N, F)
The subprogram is to be located in the segment INTEGRATE
with entry point TRAPZ. The function to beiintegrated is F,
and it is to be integrated over the interval from A to B in
N equal steps.

SEGMENT INTEGRATE
SYMDEF TRAPZ

TRAPZ SAVE
FLD ‘aph2,
FST B save B
FSB apho, * compute
FDV aphy, * H=(B-A)/N
FST H
CALL ap}6,*(?21) compute F(A)
STA S
CALL aph6,*(?2) compute F(B)
STA ™
FLD TM
FAD S
ADE =-1825,DU (FCA)+F(B))/2
FST s ,
FLD apho, * get A
" TRA TEST ‘
AGAIN CALL aph6,*(X) compute F(X)
STA Ti4 '
FLD ™
FAD S
FST S
FLD X compute
TEST FAD H X=X+H
FST X
FCMP B if X™B
TMI AGAIN compute
FLD S S+H
FiaP -H as
FST %A integral
RETURN
" TEMP X,H,S,B,T™M

END

The linkage section for the segment INTEGRATE is:

ARG 40
ARG . - 40
- ARG 1

pl

ZERO pl,0
STRING 5, TRAPZ

The prologue is:

LDCF (bbebp),DU

" EAPbp spé24 arg list pointer
STPbp sph22 for first call to F
LDAQ apho ?1
STAQ sph2y
EAPbp sp#28 arg list pointer
STPbp spd26 for 2d call to F
LDAQ aph2 22
STAQ sph28
EAPbp sp432 arg list pointer
STPbp sph30 for 3d call to F
EAPbp sph3s X

STPbp spd32

A partial picture of the stack used by INTEGRATE is

the value of sp after the SAVE is k):

k+ 0
8
16
18
20
22
24
26
28
30
32

bases
registers

return for F

pointer to arg list in calling program

arg list pointer for 1st call to F (sbbk+24)
pointer to A (copied from caller) _
arg list pointer for 2d call to F (sb#k+28)
pointer to B (copied from caller) -
arg list pointer for 3d call to F (sbfk+32)
pointer to X (sb#k+3y)

X

H

S

B

™
..nNot used..

* start of stack area used by F

PAGE 21

(where

o

PAGE 22

The following is a subprogram which callsvon I NTEGRATE .
It's call is:
CALL <SINAREXD % [ENTRY](A,B)
It calculates and prints the integral of sine(x) over the

interval from A to B.

SEGMENT SINAREA
SYMDEF ENTRY
ENTRY SAVE

CALL <| NTEGRATQ} MTRAPZ] (21, 72,=100., GRIGH[SIN])
STA

CALL <0PK>+[@KL«0(ROLT)

RETURN

TEMP RSLT

END

lts prologue is:

LDCF (bb<¥bp),DU.

EAPbp sph2u arg list ponnier for
STPhp spf22 i NTEGRATEY #[TRAPZ]
LDAQ apf0 71

~ STAQ sphau

0 O LDAQ apd? 72
. STAQ ' sph26
~ EAPbp =100.

STPbp sph28

EAPbp 1p8,* iy 4 si]

STPbp spd30

EAPbp spd3u arg list pointer for
STPbp ~ spf32 oPKy Q[PRINT] |
EAPbp RSLT

STPbp sp?3h4

lts linkage section is:

ARG
ARG
ARG
ZERO
SGAD
ARG
ARG
ARG
SGAD
ARG
ARG
ARG
SGAD
ARG
ARG
ARG
STRING
STRING
STRING
STRING
STRING
STRING
STRING

40

-40
1‘
pl,0
p2,F

p3
0
ph,F

p5
0
p6,F

p7

0

5,ENTRY

9, I NTEGRATE
5, TRAPZ

4L, TRIG
3,SIN

L, 10PK

5, PRINT

PAGE 23

PAGE 24

c) This example is a matrix multiply subprogram. The
Ccall is:-
CALL ATy 4[MPY] (8, 4,A,B,C)

The product of the two matrices A and B is stored in C. The
matrices are NXN and are stored row-wise as submatrices of
MXM (M2N) matrices, i.e., A(i,1) is M words .away from
A(i-1,1). The following subprogram calls MTX:

SEGMENT HMAIN

SYMDEF IN
[N SAVE _

cALL Ty A [1PY] (QATA 4 [D1), QATAY 4D 1] +1, (AY4,{AY4 5000, <O

RETURN .
END .
The two matrix dimensions are found in consecutive locations

in the segment DATA. The two matrices are both in segment

A, one starting at A+0 and.- the other at A+5000.

The linkage section is:

ARG
ARG
ARG
ZERO
SGAD
ARG
ARG
ARG
SGAD
ARG
ARG
ARG
SEG
ARG
SEG
ARG
SEG
ARG
SGAD
ARG
ARG
ARG
STRING

STRING

STRING
STRING
STRING
STRING
STRIRNG

Lo
-40
1
pl,0
p2,F

p3
]
p2,F

p3

L
pk, F
0
p4,F
5000
p5,F
0
p6, F

p7

0

2,11
L4, DATA
3,01
1,A
3,MTX
3, MPY

PAGE 25

PAGE 26

The multiply routine calls on a subprogram to &ompute
the dot proquct of two vectors. This is done to illustrate
the ménipu]ation of argument pointers and the construction
of an argument list. The call to the dotproduct'is:

CALL QVECT?%[DOTPROD}<N,M,Row,00L)
ROW'is tﬁe base of a row of consecutive elements and COL is
the base of a column of elements seperated from each other
by M words.

SEGMENT MTX
SYMDEF MPY

MPY SAVE
LDAQ apto get ptr to N
STAQ AL .
LDAQ ap%Z get ptr to M
STAQ AL+2
LDAQ ap%h get ptr to A
STAQ AL+L
EAPbp apls, * load base with -ptr to C
LDXO apto, zet N (row count)
TRA CTEST
NXTROW LDAQ apts cet ptr to B
STAQ | AL+6
LDX1 v zet N (col count)
NXTCOL CALL <?£Cf>é[pUTPHOQ](@AL) mpy row of A
STA by col of B
ADBbp 1,0U C base+l
LDA 1,DU
ASA AL+7 3 ptr+l
SBX1 1,0V col count-1
THNZ NXTCOL
LDA ap$2,* get M
ASA AL+5 A ptr+i
SBX0 1,bu row count-1
TEST TNLZ NXTROW ‘
RETURN

. TEMPD AL(L)
END ,

N

The linkage s

ARG
ARG
ARG
ZERO
SGAD
ARG
ARG
ARG

pl STRING

p2 STRING

pP3 STRIKG

And the prolo

LDCF (
EAPbp s
STPbp s

The dotproduc

SEGME
SYMDE
DOTPROD SAVE
LOCF
LDA
STA
LDA
STA
~ EAPbp
EAPap
"~ STZ
LDXO
LDX1
NEXT FLD
FMP
FAD
FST
ADXO
ADX1
CiMPX1
TRC
RETUR
TEMP
END

ection is:

32

-.32
1
pl,0
p2,F

p3

0

3,MPY
4L,VECT
7,D0TPROD

gue is:

bhebp),DU
p92h
p422

£ routine is:

NT VECT
F DCTPROD

(bbebp) , DU
apfO,*

1,D0U
N
NEXT
N
N, M

get N
get M

col ptr to base

row ptr to bhase
zero sum

zero col count

zero row count (i=0)
col(i)*row(i)

accumulate sum
col count+M

row count+1l (i+l)
test if done iDN

PAGE 27

b

Mazchk 30, 1965

DISTRIZU TION

=,
A,

CGlager, MIT (3)
Evang, I, Cmme‘gie Tec‘q,

H.
G
W.
E.

OSGN;D'J.,, B@ll Td:apzwne Lr,,b° (3}
Reevas, Ohlo State University
Boezmighaus en, GE

Clausgen, GE {2) for B. Jacks at GMTC
Cowin, GE for SDC

Dusiin, GE

Epstein, GE

Estian, GE (6)

Gutman, G

" Heffner, GE

Merney, GE

Oliver, GE

Raunilar, GE {2} for Dr. Laizrd at Penn State
Rugh, GE

Sassenfeld, GE (8)

Scott {3}

Sbelly, GE

Vance, GE

J. Weil, GE

R,

Turner, NASA lLewis Res. Center

-

A
A &4

~ March 30 1965

¥, M. Sagsenfeld, Manager
- Project MAC-BTL

&tkached is a brief description of the Booistrap Assemblaer prepared
oy Bill Steiner and Bromton Ratcliff, The content is as agreed upon
by MAC, BTL and GE pezeple in the meestiag at MIT on March 22,
1965 We have started the knplementation.

2 C. 0N Lo /ot

R. C. bciee
Project MAC-BTL

RE MCG’ t&@

6326 BOOTETRAP ASSHMBLER

Thizg document describes an aszembler o be run on the GE-635 which
will produce GE-636 cbject code. 3t will b2 ussed as the basic implementa~
tion tool for producing 63% software wniil the 636 zsgembler is available in
late 1965. Iis companion, the 636 sémviawrs will allow 636 programs to
run on the 635 before 636 hardware avallability.
Although the “Bootst vap Assembler” ‘;.\':11 require restrictions to be adhered
to which will be relaxed in the 6346 assembler, i2 will provids the software
developer with the fellowing impor i'm?; capab;lities:

‘1. A method of expregsing addregses in the segmented environment

of the 636. |

2. The ability to use § bit ASC 7 code {with resirictions) in assambly
source language and assembly oulputs.

nregs the new ingtxuctions and address modification

4. A froe field syrtax which is equally well guited for wuse at typewriler
terminals ox conventional input devices.
. A method of producing object code ian the proper format to become

.

input o the binder, v
Thwe bootstrap assembler fox the 636 will consisi of GEMAP precedsd by
vemrocessor and followed by 2 post processor. The function of the pre-
zzzsor i o translate $36 code inte 2 foxm acceptable to GEMAP and
Frrm whick GEMAP can directly generate 635 code. The function of the
zost processoer is o take the GEMAP ouiput and coanvert it into 636 format,
. to take the binary cutput and split it inte a procedure segmant 2ad a
age saction and o convert the listing cutput fo TES standards.

s e p

3
T

e

The preprocessor reads 9 bit characiers and wormaeally compresses
correasponding 6 bit characiers except when gspecial datr genexating g

cpexations are enccunierad. In addition when 6356 type ccd‘g ie encountered

the code is trxonslated se as to look like 625 code (to GEMPA, but behave
itke (306 code. It should be moted that with the exc emzcm ot pre-de ala:w@tis«..
shatements each line of code is translated at the time it iz 2acountered and |
without examining ifs cfisct on earlier oz qubsoqac,m. code lines. ihe con-
seguence is that the programmer should be aware of the translation pracess

N

2

when preparing MACROs. To facilitate generating linkage informaticn
the pregrocesser makes use of multiple location counters. As a result
the weer would be well advised to avoid niuiiiplex location counters. The
preproceseor genarates instructions with 636 addregses by using the
VID pooudo operation. To avoid making operation code names resevved
symbois, a table of octal equivalents and mnemonic codes is stored in the

reprocessor. Hence the OPD and OPSYN pesendo operations cannot be
used.

1. Assembler Input/Output

The following fileaz are considered:

SCURCE Inpui to Bootetrap Assembler
PROC ' Text rosulting from the assembly
LINKAGE The linkage file for PROC

- LISTING _ The iisiing file for PROC
DEBUG The gymbol table for PROC

The files SOURCE, LISTING and DEBUG will conform to TSS atandards
fox printable files,

The file, SQURCE, will congist of statements of the form
label; Y OPCD (addvess, mod 4 comment Cyp

[

Under certain conditions, aay orx all of the fields wnay be null.

label o The lobel field consists of from 1 to 6 characiers
i pxesent. The label may be preceded by cne
or more blanks and must be kmmediately foliowed
by & colon (¢}, The label may be explicitly null
{2 colon preceded by no blanks or some number
of blanks).

Symbele may consist of alphanumeric characters
pluz decimel point.

OPCD The operation code may consist of from 0 to 6
characters. ¥ aull, it must be suplicitly null .

through the presence of a comma delimiter (or
2 leading open parsnthesis in the address field).
The OPCD may be preceded by one or rnors
blanks.

The operation code is terminated by a conama,
a group cf one or more blanks, or a statement

tarrninator,

variable

terminator

address

The variable ficld, i notl null, may consist

of one or more subfiekds. The variable ficld

of 2 machine instruction may iaciude an addrese
field followed by a modifier {ield. Either may
be null, '

Each subfield may be preceded by one or mo.o
blanks and must be terminated by & comma, a
group of ope or more blanks, or a statement
terminator,

The statement terminator may include a comment
in which case the {first character is @ Charac~-
ters within the comment may be any of the
Bootatrap Assembler resiricted character set
except @,

The comment is texminated by @, or is implicitly
terminated by a CR, semicolon {;}, or ECOR,

i no comiaent iz present, the statement is
tezrminated by a CR, semicolorn {;}, or EOR.

The address field may be of the following forms:
<sGg> & [sv] imxpr
<sG»> b tExer
2asE 4 [5Y] *EXPR
BASE 4 IEXZPR
+EXPR . | _
The first form may be writien in the form

¢
sY TEXPR
if the symbol 8Y has been predeclared to be in
aegment SG by its appearance in a SEGREIF

gtaterment, ag in

SEGREF SG,A,B,8Y, ==

2.

The sogmment name gppears first and is
foliowed by .lx’) w

sequence of syrmbols within
that segment. Additional SEGREF statementa
‘ may be veed with the same ssgment name

appea%:mw ap the first symbol.

Creration Codea, Eases and Modifiers

C’;’I’

he bootstrep assembler will cstablish the fe’ lowing correspondence
hetween aymbo.l.ic bages and GH~636 address ases.

ot

Symbol - Base

AP 0 axrgument rointez
AD 1 argurnent bag

2 A free base

B 3 free bas2

LpP o4& linkage nointer
L3 5 linkage base

SP 6 stack pointer

SB 7 stack bag

With n represeating the uymbcls linted above, the followmg new operation
‘codes will be availables

LEBRn Leoad bose register n

SBR=n . - Siore base register

A Pn Fifective address to gm.ig

BABO Effective address to hase n

ADBn &dd 0 basan

TEBn Transfer and get bage

STPn Stozra pair

LX Lz Load index from lower R x &7
SKLx Store index in lower 08 = 27
LEOBR Liond dezcripior base vegisier
SDBR - Store descriptor base register
STR Store bases

LDB ' Toad bases

LDCE load contzol field

SCU . Store control umnit

RCU Restore contvol unig

STCD Store contzol doubis

RTD - Return conirol double

CLAM Clsar associative memory

STAM : Store associative memory

STAMZ . Store associative memeory zero

()

M \2“ Do
(N

“Hea

The fellowing peeuvdo aperaiion codes ave o be disallowead:

ERLK : TCOD BLOCK
FUL LBL RN

SYMRE e(sGREF PUNCH HITAD
SYMDEF ¢e6d¥ ABS - OPSYN
OPD

*Sarde ave also disallowed,

The following new pscude operation codes will be added:

'I""“\ft SEGRMIENT
TEMPD TALLYE
SEGDEF AGC

SEGREF AHCI
Ts T8

el

The following maodifiers will be addeds

ITs Indirect ¢o segment ’
N5 , Indirect to baue

=P Execute pair

Fi ' Fauwlt 2 nnmeg.ame

The pzeude operations TEMP and TEMPD are uesed te declare temporary
storage in the giack.. Thus, the psewdo~operations

TEMP A, B, C3)
TEMPD X, wayﬂ z,

would allow the asgembler to eifectively gener ate, for exampie,

sPHo - for A
SP 4 24K for i
SPH6 for Vel

ks

‘"}: o pseudo operations ACE and ACC genaerate ASBCEH characters in @
oit data sml.i...o Data strings may be genevated sither with or without

& character count. The siatements

ACE 6:. STRING
LY V"BTRINGY

wiil each generate 8 word containing STRI {ollowed by a word containing

GQ

~5

The siatements

ACC 6, 8TRING

ACC "STRING"

will each generais a word contalining 6STR followed by & word con-
taining BIGb. The firast 9 Lits conizin a binary value which is the
mamber of meaningivl chazracters. in the si{atements

ACH e
..-C-,. }Kg clcz‘«?}o ° o c}.‘;
.&.CC l\-p C1C3C30 o v blzc <
2
k is the number of meaningful charactera,

o

The SEGMENT pseunde operation muet be the first line in the sssembly.

t,

The ou’tp ut text file will be given the name and segment type specified
in the variable feld,

The pseudo opevation ITS is used to gouzrate an indirect pair {(IT3). The
statement ’

iTS EXPR,MOD,SEGP
»v;‘}nl gem\raﬁc an FTS modifier word in the next avallable sven location,

e “df}l.\»‘ a ficld will contain SEGP, the effective base address pointer.
ke adjacent higher odd weord will confain addrese BXPR and modifier

TE
N
e

Similarly, the pscudo operation ITH is used io generate an ITH paiv.

ITE YRR, MOD,BASE -
In this cace BASE js the base address register which contains ﬁcv' -

eficctive p@mtmu

SECDEF is used to declare those symbols defined within the segment
which may b referenced cz:;%.ea‘;m*im Thus,

N‘EG‘DEF ‘SYIQ sygg v e o

Each symbel appearing in SEGDEF resulis in the creation of an entry

in the linkage section aEG&UL‘E‘ iz used to declare sxtevnal aymbols
whacn will be refexe \,@ai internally. Thusg,

a2

SEGREY SEGL, 4,B,GC,D
SEGREF SEGZ,X,¥,Z

30

s firat sublicld centaing a segment naxas. The remaizing symbole

zxe symbole the user expecta t» be in the specified segment. The
& statement is not required for symbols which are slways

declared in use as belng ext .rm.;o Tx«un, if the external symbol X
iz alwaye refe r:d uo as BEGD Q E’z'j t is zot necessaxy that X also
appear in a SEC"? tztement. The gymbel, X, not bracketed and
oot meniioned in a F‘ C.&u.o&‘ statement would be considered an infernal
gymbol. if X appears in more than one segment via SEGREF statements,
its unbrackoted use would cauvase the assembler to select the cne first

ewpearing in the asacmbly.

Charactors .

£A1% inpul ¢ the assembler will be in the forrm of 9-bit characters.

However, cerizin limitations will be placed in the fozrm of a limited

character set for symbolic information and remarks. The full ASCHU
set will be allowed in literals and date deiining pseudo ops, but other

regivictions ave placed on the use of da%:a ﬁelda.,

The exioting 6-bit data capability of GEMAP wm. be retained. Cor-
reeponding capubility will be added for 9~bit data., Thus, the following

language additions.

1. ACI and ACC pseude operationag.
2. The foliowing VFD subfield bas been added:
An/C!Czo ° s CI’_

This subfield for ASC.&X correaponds to the existing H subfield but
doas not replace it

3. Litexal type A for ASCYH hag been added and is similar to type
H. When count is missing, 4 is assumed. Countmusthe <4

4. A liteval type V subfield has been added which corresponds 0

2 &b‘do‘, So

ASCT literals and subfields are limited to one word of generated
information.

¥ either ACYK or ACC appears in a macyo definition regicm it must
contair no gubstitutable arguments (). '

)

Character

RTINS S B

0
3
A
R
4,
5
6
K
8
g
e
4
.
W
@
=
(&

§

&

Y
Fnb

6-bit Gode
¢o
o1
G2
3
0%
85

G7

PO Y, T
o QLA
e PR 20
ATy QAlls &

Guhit Code
FANSA el

%Nl .
iitewvals,

[&]

3

2

=3

1 e
G 3 &

o

e X
§ 3 g
@ i
Qe ¢
Q% o]
o] I k2 “
& o a
8 52 b
63 W) o8y g : ;
R R R e e B B R N - s B B - 3 N
R R R I R T R B A S e A R R R R D e I 2
PR T I o T o T« B S S we BTSN B O B B R S S ™ B o I v o] Ata.w o mw
-ty [.ﬂ._
[~ o
A g 5 =
Ub ﬂu ta? =i = nw
g3) " 5)
! o £ & a
& ¢ o £y £y A2
®» @ £ o 4 =
o = O HCT BN 1 S
By 3 o B
s -3 »
e i | For B v A
i ¥ X iy gun 4 o]
G 2 o P & W g
i 5 2 broope B M
€3 et 63 ey gt WY A0 Do 3 et (3 Y R D e D o 0§) WD ;& ; . @y ;
) S W W U W) U D O D D D D D D D B Om e = o wm Mw o % m,mwcm = WM“ 5
: do
9
. . ;
W«W .«..mw m.w AMMEF .ﬂ\rmla. Aﬁ.ﬂ.ﬂ. B
' b ere} p A
2 AT B AN
< i [e f.u 0
=3 ..m 2 PeS &
3 P Liged g s
R o Wy o m,w
G ot \¥4 Vooe
DR 2 B
.un..- .) :
& 4 E o
M o]
g 3
mu <
B - t s 4 &) m & . U& w”wf. m»» $
Eel e s ene A DMD P E RPN % 0z & O G 0 M..m
X d
. ﬁy
o
=]
e
°] °]
i) ™ AR Sy

OF

o

e

£ . b § h S Lo - <cwre 1% .
fie generated lnkoge information will bes

Auwilisry Information
Ansiliary migrmaiion

Loz \ w

RTINS Y S
TWIEEPRS

1]
v
!
i
et
=

i

i

SYMP 1
!

i

!

27

ey
] 24

T EX PR

!
]

§~s

TVYERE 3 M

SEGP

ave definzd by
STMEP ALC "gpame of symbsol”

SEGP. ACC '"name of segment'’

Linkage will transform the "ITB/ITS" pairs to

<
{2
b

b
3
b

v
v

Su

.

B
]
rath
t

34
L]
o

(PR

A
A
¥
b

»

Dot
-]

SR S
i
;
i
¢

Facsmcomas evanor o2 cormec st anc

09

Qe

ol

ithin
for

4
)
.

s
£
argurne
W
IO

3 1
e g 8 B
!ﬁm 3 /
& .mm % .m . el B4 w.w
u Dmv nm.uu ﬂam poe o Aﬂm
] .nw =T & g 2 o
a w Q [])
a o £ e 0
o BB o PR S
o ¢ o 53 &
[L I (% < 0 v
& o g W o ® b
g &4 P Bh L:+1
@ = R | n b n
w 250 o 9
g g G b o 2 d
qe.um Lo ﬂm,.u sm.\m Ced <] ._m m
IO B B m = 4
e g 3 3 ;
D Ek > @ 8 43
g9 3 M g
Jooth g px 8 o ¢
R il el i "
@ H o E & o o
e s @ M.. .WM s B2 0
o wlig ¥ N
p g B g 3 o8 4
f e) Lo mu =t . I #3 el
. [ind < 6] & oo 3 I . e 3
o L = &4 w & o m = o o < o g &
i . $oc, Prest P (22 et b=y = by £
3 AT TN e N ST R 4 ¢ 4) [&, ! ws.w o et
K o . & i et o] wu\ bl @ =
G e S o4 " . 3
3 W@ @ £l g c. ©
; @ I =4 £y 0% o
. & LY mu Jn.w Q 43 &~ a ﬁ
& . L) & @ b s A o f
"~ 3 S 5
b o oo 8w o M2 0, P
5 a e N > &y + gy W 82 {2
v 4 g w ¢ > g 9 oe i
m,& Va“ s & g n 0 d ﬂd Dr.. =T] a.m ..wf m 6
el D &3 4y b e B 1
s - o] bt g, “ “ gy EAY qm .
G - it mmm & Pl e L] ¢ . s
G Dok v fa. sty = KO @ 5 o
£ o3 5o ot bewd < 2% e [Y Vo] e
o B s b 5 Hoop mad B
i = oy ug @ e U2 o4 LG e o o
ot S5 A e o et & o € Pee X 5 i e HH
4 % o o & i) L S oy g @2 o "
i P eh g kow IR AN bag e @ P
vy 2 L4 R N b a - . A.H
FES e p A ﬁ.w M.» o vw m..M e - 0 =
ot S a @ S % 8
= .y . I N N i s G
] Vo, ¥ 3 9
i v =7 o o 7 (3 ry @ ; i3 ¢ v vt
= - feabd 2V oE WV < 5ow g &
R T £ “ G B
¢ ow oG R I mu o e -) - H Q H o3
[t} J 2 Wwv v Pagen) & nw
5 g 4 a
3 b} St “ &
l . i . : A
4 .s.,, £ - 3
"t g @ ot
5
e e
. “ i
.
-

“ :
: !
i 0 © o nm
: e n % a .
: O e & o 4 o .)
R ﬂ.u .v.m RO) et 5 i
: c & © o & b o -t
Y BN D) o] £)
o~ > @ % o “c p b
i o ©a : : " I
. ug @ g & & G oo
12“ LW m.., 6 g @ vl
: = G ow W esd ' @ '
e 4 0 e § e &] g £
s g 2 6 € g g 2
. L [K> g 5 =] Mm
. [s+] s o] $a 1]
: B o m O m nO .m.w @ o 8
G AR WP a g W
: (8] wu Q QMMJ & @ e o m)
v R e 2] 9 o
B . R o B e =i - w f L
; s Mot % e o ¥
£ @ TR o t 5 G d 5
/ = .0 .Mu o o [I @ S = S
i {1 " & ta 0usd W O .
» e g8 8 o o 2o 9 o :
o; Oy i T £ S
w O SR e a5 8 @
: I 3
A o]

r le/\‘\rlz %7..3.\\/.(»3/ L :
: e P,
¥ e, o e : .
Y 7 e 7 .
. [A
~ e [
. o= =
: et N Rm
ERE I
5 ~ .
: O L)
4 S
ol e wl o wd
c cat [=
=) < - n bt b B .
« - -, -
Lot i vl
TR v medd d
¢ g (3 g [% .. - o
o S S %? aE ZESY
PR . 2.5 5. P 7 - i
. . is Th) o S B o &
s o o sor MM yed Y pg = o mw ol MMN] wfe” ru e Wl .?x
o = I .V P A BIRCARE A8 B o2 a L& VX
m% Mww e 3 WM H & N I R &5 P Mmm a3 W&M mra.m .-
ARRY 2 by TE BN - - 33 T PARNE LI o4 3
fug AT © a9 ..”4. m.“m ek R sk S m?.w 20 m.rm fog s
o e oY e 6 E0 SUbgkg ARsE &
LR e R ™ 24 > kar > M - ARG EEH =
IR B i DE O bEbmaow #@abii B
£y ﬁ.ww P & ork ’ w28 = o8 0w = -
. " IASHER i o1 . . .-
PRy S e [EAE e LY ey oLy i PR - -
G 0 5y Rt - e £ ot oy bt B E) A o B3 T LD LD~ 05
s § & ¥ so w e RN
<G oo BN Gt aft b2 <5 PW m..w SECEAR SRS RS ES IR &
< B I T e i e -
3 T] :M~ w4y mﬂw & “ n\m Amw
o .
o PO FaS) g e
. S I T . 3
£y w03 Y o2 L3 £ . Do - ma
(%34 Pl e 0L 7
: {1
» * .
.
.
.
TN
7N

i ESERPES

N
53[5

BOOTSTRAP ASSEMBLER
REVISION I

The linkage section format has been revised to include sufficient

information to unlink segments. The content of the new linkage section

is as follows:

LK.IN references to this segment are to be defined by following this

LK.0U

ID

INT.N

pointer

unused at present; however, this pointer is intended to describe

information concerning external references made by this segment.

code identifying the class of information its associated pointer

is referencing.

pointer to a block of symbol pointers and their associated values.

The symbols are used as references to symbols in this segment.
number of words in the block pointed at by INT.N

pointer to an internal symbol possibly referenced in another

segment.
value associated with internal symbol

indirect reference generated by a reference to an external symbol
or segment. The general form of the indirect reference is:
oP LPQ»Z‘L , %

location of auxiliary information associated with Z;. For the
bootstrap assembler there will be exactly one Wi generated for

each Z. .
t
fault code which causes an immediate interrupt
vacant address to be filled by the linker during execution

address modifier coded with a reference to an external symbol

or segment.

location of a triplet of words identifying the type of linkage

required and containing pointers to external segment and symbol

names. Duplicate triplets will be suppressed. A pointer indicat:- .

ing the last occurring W; referencing the triplet will also be

stored in the triplet.

-

 V(EXFR ()

el

TYPE
SEGN;

SYMN

Wye

"name"

d o B2k M*M.,.mww i ardomsin e %

|
} J k
o ! Vo & i ol

value of the expression coded with a reference to an external’

. segment or. symbol.

location of auxiliary information making the last previous

reference to a triplet Pwg . By using the pointer, Wye » in the Pwy- '
triplet and successively following the pointers, Wi.; » a trace

can be made through every reference to the triplet Pwi. ‘fhe last

W;,' in this chain is zero.

code indicating the required linkage for the triplet

~ segment name pointer

symbol name pointer
pointer to the last occurring reference to a triplet

literal value of the indicated name. The format is:

B Sy Sy - Sg

where /3 is a binary character count in a 9-bit subfield and

the _Sé are the 9-bit characters withﬁ £6.

LK. IN

INT.N

PS

PS

SEGN;

SYMN

<«

LINKAGE

symbol"

i

FT HALF RIGHT HALF
LK. IN ' 1D=0
1LK.0U ID
INT.N K
PS, Vs,
PS, VS,
PS, Sy
N
1% FI
ok My
Wo FI
*% M
zi Ff’
Mg
Pw, ‘ Z)
V(EXFR,) Wit
Pwy. Zy
- Pwg Zs
\' (EXPR:,) W3- I
TYPE Wy,
SEGN
SYMN,
TYPE Wy
SEGN o, '
"Internal
symbol"
"Internal
 symbol"
"External
segment"
VExternal

636 System Standard CALL, SAVE, and RETURN Macros

June 14, 1965

The standard CALL, SAVE, and RETURN macros use & stack,

The usage

of 'vcrious locations in the stack is shown in the diagram, For the pdrpose
of the diagram<calls B, p calls y, and y calls 6.

..A

24
22-23
20-21
— 18-19
~—16=17
8~15

SP vhen in y - =07

LN

24
22.23
20-21
- 18-19
16-17

L> 8-15

—> Q=7

SP vhen in B =~

24
22-23

)

| temporary storage for y
)

used by SAVE macro vhen y called
Teturn vhen calling &

next SP, e.g., SP when in §

last 8P, e.g., SP vwhen in g

save registers when calling §

save bases when calling)

MMMMM‘\MA.

t
temporary storage for B
H
used by SAVE macro when f called
return when calling vy
SP when in vy
SP when in oA
save registers vhen calling Yy
save bases when calling vy
e e S B SR I U SR W T D W R S Y
1
temporary storage for ol
i

next SP, e.8.,
last SP, e.g.,

used by SAVE macro when eCcalled

A, The CALL Macro
The standard CALL is:

SICD sP|20
TBA ENTRPT
TRA *42,
EAPAP AL

where ENTRPT 1is the entry point of the procedure being called and AL
is the location of the argument list. In BSA there are three variations
of the CALL, '

1) No Argument list,
CALL <SEG>|[ENTRY],M

expands to:
STCD SP|20
'TRA <SEG>|[ENTRY],M
TRA ®42
EAPAP SP|0,%

2) Argument list explicitly constructed,
CALL <SEG>|[ENTRY],M(% ALST)

expandé to:
STCD SP|20
TRA <SEG>|[ENTRY],M
TRA w2
EAPAP ALST

ALST is the location of the first argument in the argument list,
The argument list must have been constructed prior to execution
of thi.s mo

3) Argument 1list comstructed by BSA.
CALL <SEG>|[ENTRY],M(ARGL,?i, ...,ARGn)

expands to:
EAPBP ARGl generate pointer)
STPBP SP|K to ARGl
LDAQ AP|2%(i~-1) transfer pointer
STAQ 8P |k+2 to ith input arg | prologue
EAPBP ARGn generate pointer
STPBP SP|K+2%(n-1) to ARGn

STCD SP|20

TRA <SEG>|[ENTRY],M
TRA %42 :
EAPAP srix

The prologue generates the argument list. The generation of the
pointers which go in the argument list is the same for all address
types except the form 7?1, which is merely the transfer of an
existing pointer, '

B, The SAVE Macro

The standard SAVE is:

STRS sp|8

STB selo

BAPAP SP|29,*

XEC APII } get argument pointer

LDAQ sp|18
LDX0. 16,DU
ADQ T,DU
STPSP SP|18,%0 |
EAPSP SP|18,%
STAQ SsP18
STCD spi22 " |
LDXO sp|22) set linkage pointer
LBRLP LB|0,*0

go to next stack level

-/

b=

T is the amount of temporary storage which this procedure uses in
the stack. The BSA SAVE macro expands into the above sequence, T
is known to BSA and is the sum of the explicitly declared stack
storage (TEMP and TEMPD pseudo-operations) and the stack storage
used for argument lists generated by the prologue.

C. The RETURN Macro
The standard return is:

LDB SP|16,*
LDR SP|8
RTD SP|20

There are two variations of the RETURN in BSA,
1) Normal returnm,
RETURN
expands 1nto.the above sequence
2) Return to an optional exit,
RETURN ™n
expands to:
LDAQ AP|2%(n-1)
LDB SP|16,%
STAQ SP|22

LDR sP|8
TRA SP|22,%

This variant returns to the caller at a location vhich was given,
at the call, as the nth argument,

