Programning Staff Note 25 Computation Center
Hay 27, 1964

From: J. H. Saltzer, T. N. Hastings, and R. €. Daley

Subject: Unified control of enabled user traps, including
memory protection and relocation.

There are now avallable to a foreground user a number
of “traps" which are requested and enabled by the user via a
variety of supervisor subroutine calls. These traps include
a high speed 1/0 (data channel) trap, clock trap, interrupt
button trap, and the floating trap mode. The various con-
ventions used in these enabling calls can be simply collected
into a single call to a2 supervisor program, including provisions
for specifying operation of the protection and relocation mode.
The supervisor subroutine which is called would be an inter-
preter, and would be used typically as follows:

TSX $ENABLE,4

LPI A
LRI B
ENB C
AXT ®& 4
TRA &%

The calling sequence begins in location 1,4 and ends with the
TEA instruction; in between are any number of trap ensbling
ingtxuctions or NOP's in any oxder. The supervisor subroutine
would enable all (permittedg requested traps and modes and
interpret the AXT and TRA instruction thereby providing an
automatic grace perlod before any traps or modes tske effect.
{The AXT is optionel.) Following a trap of any kind which was
enabled by the ENABLE sequence, all traps avre inhibilted; if

a data channel, clock, or interrupt button trapping signal
occurs it is remembered until the next ENABLE sequence, which
enables that trap. Instructions permitted in the calling
seguence ave:

LPI LFIM ETM
LRI EFTM LT

ENB T¥H LIST,,N (the TXH i3 a pointer word to
an enable list of the form
specified in CC-226.)

Pape 2

Note that a basic philosophy in the speeclification of the

ENABLE subroutine ie that the original havdware trapping

procedures are imitated as eclosely as possible. Two new

modes have been introduced with this cell; their proposed
opération is described below.

Two “supervisory" applications of the time-sharing system
have need for some sort of core memory protection and collection
of othexr protection mode violations; no doubt other szuper-
visory applications could use these features. The two applic-
ations yeferred to here are the grading and monitoring of
student class programs, and the operation of debugging programs
such as FAPBUG or MADBUG. In both of these applications, an
objective i3 for & core B supervisory program to maintain
contrel no matter what an undebugged program happens to do by
mistake. In the caseof a class an additlonal objective is to
maintain security, say, of grades, aund avoid cheating or
similar malicious actions by a student. '

Memory Protection Mode.

Following a call to ENHABLE which specified a setting of
the protection wmode register, the operation of the computer as
seen by the user's program would be modified: g1l memory protect
violations including illegal Instruction traps and core-A super=
visor calls would cause gll traps to be disabled and control to
pase to the appropriate lower core location (33,). Following a
trap actual memory protect would still be in opgradﬂn.with MEMOYY
bound returned to its earlier position and core-& supervisor
subroutine calls honored normalliy.

Sfince the core-A supervisor 1s normally in the business
of sorting out the meaning of protection traps, it would be
convenlent 1f it cculd do such a preliminary sorting beforxe
returning to core-B simulating a trap to the user program; a
trap code could be placed in the decrement of location 32 along
with the ILC at the polnt of violation. The following memory
protecitlon vioclations might be distinguished:

TIA to a legal supervisor subroutine.
Other TIA's and illegal instructions.

Core protection viclation.
HIR encountered. (%)

B py e
®a @ & @ ©

Page 3

Relocation Mode

If a call to ENABLE speclfied s setting of the relocation
register, all addresses beginning with the address of the
TRA at the end of the calling sequence are relative to the
new relocation setting.

Lf a trap of any kind occurs while in relocation mode,
the unrelocated ILC is stored, the relocation register is
reset to its value before relcocation mode was entered, and
the trap made to the user’s apparent absclute lower core
locarion. Thus it is possible for a controlling program to
get back to the interrupted program b%Rglacing the contents
of location 32 in the address of the at the end of the next
ENABLE sequence.

Other desirable features: Although it would probsbly
require a littie more effort to add, the following feature
would be very useful to a supervisory program attempting to
interpret snother program or permit the other program certain
supervisor calls. If the TRA instruction in the calling -
gequence 18 a TIA to a supervisor subroutine name, this would
signify that the supervisor subroutine should be called after
IR4 is reloaded from the address of the AXT, but that the
return from the supervisor subroutine should be considered
to be a protection violation. (That is, a trap occurs after
the subroutine has finished). The supervisor subroutine would
respect the core-B user's setting of the relocation and
protection registers.

Wher this specisl kind of ‘"delayed” trap occurs, the ILC
location would be filled with the relative locatiom to return
in the core-B program following the permitted supervisor sub-
routine call. It would be useful to add two more trap codes
to the decrement of the ILLC location:

5. Returning from a supervisor subroutine.
6. Error return from a supervisor subroutine.

Relation to older trap-enabling procedures.

Unfortunately, a number of traps have already been
inplemented in the time-sharing supervisor, with diverse
techniques of specification. Here, therefore, ave several
suggestions for unification which will have to be reviewed
very cavefully in the light of the amount of reprogramming
of user programs they wmight cause.

Page 4

Glook trap.

The clock trap should be a precise imitation of the
7094 intexval timer procedure. A call to supervisor sub-
routine CLYCEN causes location 5 to begin incrementing, but
unless the clock is enabled overflow only causes a trapping
gignal, not a trap. 7This signal is remembered until the
next ENABLE sequence which specifies an ENB instruction which
engbleg the clock (bit 17 of the enable word}. Supervisor
subroutine CLOCEF stops further incrementing of cell 5. Thus
CLECHN and CLECEF act only as the console on-off switch.

Congole interrupt button trap.

With the above technigues in mind, the console interrupt
button feature can be easily incorporated into the sequence

by enabling it with an unused bit in the enable word, such as
bit 18. The trap return locations would be set by a call to
SETBRK, and such a call would cause all future interrupt signals
to either csuse a trap or be remembered, depending on whether

or not an appropriate ENB instruction had been received.

Since the user program has both memory protection and the
ability to remember and put off interrupt button traps until

it is able to handle them, the need for interrupt levels is
eliminated.

