ESTIMATION OF PRIMARY MEMORY REQUIREMENTS
OF PROCESSES IN MULTICS

by

DAVID PATRICK REED

Submitted in Partial Fulfillment
of the Requirements for the
Degree of Bachelor of Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1973

i e

ctrical Endineering, May 25, 1973

Certified by \/Lhnv, “:ZX, ELVJCF;ZT_—
-‘ 7 Thesis Supervisor
Accepted by <i/$> 1:20"“/

————

Chairman, Departmental Committee on Theses

Signature of Author
Department of E

ESTIMATION OF PRIMARY MEMORY REQUIREMENTS
OF PROCESSES IN MULTICS

by
DAVID PATRICK REED

Submitted to the Department of Electrical Engineering
on May 25, 1973, in partial fulfiliment of the
requirements for the Degree of Bachelor of Science

ABSTRACT

This thesis presents a simple, effective algorithm for predicting
the primary memory needs of in execution on a demand paging,
virtual memory computer system such as Multics. The algorithm is
based on linear extrapolation of the relation between page fault
rate and allocated primary memory to determine +the approprriate
amount of primary memory needed to sustain a specified "optimal"
page fault rate in each process. Applications of the algorithm
to primary memory resource management in such computer systems is
discussed. Experiments with an implementation of the algorithm
in a special version of the Multics system are presented,with
results that indicate that the algorithm has some promise to be
useful in optimizing throughput.

THESIS SUPERVISOR: Jerome H. Saltzer
TITLE: Associate Professor of Electrical Engineering

II.
III.
Iv.
V.
VI.
VII.
VIII.
IX.
X.

XI.

Table of Contents

Introduction

Details of the Problem

Historical Perspective

Yardsticks for Evaluation of the Algorithm
Simplicity

Basic Principles

The Proposed Algorithm

Parameterization

Implementation of the Algorithm

Tests of the Algorithm

Summary and Comments on Further Work to be Done

BIBLIOGRAPHY

Figures and Tables

Figure 1

Figure 2

Table I

11
13
14
17
24
25
27
33
36

20
31
28

I. Introduction

A simple adaptive control mechanism for predicting the primary
memory demands of an ongoing computation in a virtual memory
environment can be utilized in several ways to manage memory
resources in a system such as Mu1tics(bl,02]. These uses can be

classified according to purpose in three classes:

1. System performance optimization.

2. Enforcement of system management policy goals related to
control of primary memory resources.

3. Providing information to programmers‘ about their primary

_memory resource utilization.

In this thesis I will discuss an algorithm which can be used in
all of these ways, and show the results of some experiments in
which I have attempted to demonstrate the effectiveness of the
algorithm in "real" system tests performed on a version of

Multics.
IXI. Details of the Problem

In‘ the Multics virtual memory implementation, primary memory is
divided into equal sized blocks known as pages. A computation's
apparent address space is then mapped into a set of blocks of
storage, which are moved into main memory upon demand. Due to the
fact that a fairly large delay is incurred while waiting for
transfers of pages from secondary to primary memory, the Multics

4

operating system takes advantage of page waits to run other
processes (this technique is called multiprogramming). Since
enough pages in the newly started process must be present in
primary memory to run that process at all, and due to the finite
size of primary memory, only a small subset of the processes
ready to run at a particular time can be made eligible for
rmultiprogramming at once. The number of processes thus made

eligible is called the degree of multiprogramming.

In the current Multics implementation, the degree of
multiprogramming is limited to a fixed number, which has been
determined by experiment to give good system percentage
throughput[i] and good average response time. It has been clear
for a 1long time that this is not a sufficient mechanism =--
particularly because the primary memory demands of individué1
compuations vary widely. For exémp1e, five processes performing
editor requests do not generate the same demands on primary

memory which five large data base inquiry systems do.

An algorithm which predicts the primary memory demands of a
computation can be used to automatically control the degree of
ﬁu]tiprogramming so that performance 1is optimized. In the

current Multics implementation, in fact, there is an attempt to

[l] Percentage throughput is a measure of system effectiveness
computed by determining what percentage of the processors' time
is spent processing user computations, as opposed to automatic
operating system management functions not directly requested by
the user.

5

do this, by predicting a working set size for a computation, but

the algorithm used for this prediction has never worked at all
well, I will discuss some of its problems in a later section.
The algorithm developed in this thesis is also an attempt to

predict the primary memory needs of a process, and seems to work

better than the already existing algorithm.

The first two purposes noted in section I, performance
optimization and enforcement of policy goals are normally closely
related, One normally talks about optimizing system performance
within the constraints of a particular system management policy.
Consequently, I would also like to briefly discuss the problems
of enforcing system management policy as related to memory
resource management, Policy goals can be distinguished from
simple performance goals by the fact that policy goals are
normally preferential -~ i.e., certain resource usage patterns
are encouraged while others are penalized. These preferences are
usually based on considerations external to the computer systen,
such as the relative importance of certain types of computer

usage at a particular installation.

Having an effective algorithm for predicting memory demands of
computations allows certain system management policies regarding
memory resources to be enforced. For example, processes with
small memory needs might be given scheduling priority over

processes with large memory needs. Another possibility is a

policy of allowing some users to obtain more use of primary
memory than others -- this could be gotten by giving them more
memory than the system determines as their fair share when they
are scheduled. A particular management policy which I will take
as necessary in the development of this thesis is the policy of
equal percentage overhead for all classes of users. I have
already noted the necessity of automatically controlling the
degree of multiprogramming in order to prevent devotion of
excessive resources to page fault processing. Control of
multiprogramming is important from the operating system's point
of wview in order to maximize the effective use of the available
hardware resources. Were this the only goal, however, the task
would be much simpler; a very preferable policy goal for a
multiprogramming control is to allocate primary memory resources
fairly among user processes. It is easy to ignore the variation
in usage patterns among user programs and design a scheme which
works for the average programs on a particular system, and
performs poorly for exceptioha] classes of users. The exceptions
which I am concerned with now are the ends of the Imemory usage
scale: the small wusers, such as the SIPB [1] Experimental
Calculator Service, which offers a cheap, interactive subset of

BASIC to all MIT students, and the large users, such as data-base

[I] The MIT Student Information Processing Board, which is a
student organization at MIT dedicated to the purpose of supplying
computer time to students in order to make it relatively simple
for such students to become used to using the computer as an
everyday tool.

7

management systems, automatic programming systems, and so on. A
fair scheme for allocating primary memory resources should
allocate primary memory to users in proportion to their need for

primary memory, so that large users of memory will have enough
memory to run with an acceptable level of overhead due to page
faults. On the other hand, a small memory user should not be
allocated more memory than is necessary to run him efficiently,
for any excess resources might as well be assigned to others

waiting in the scheduling queues to run.

In order to manage primary memory effectively, taking into
account the variations among classes of usage, the traffic
controller must be able to predict the memory requirements of
processes and use this prediction in its scheduling decision.
Unfortunately, until recently there was no easily tractable model
of a process's memory reference behavior which could be invoked
to assay a process's memory needs at a particular instant of
time. Consequently, in the current design of the Multics primary
memory scheduling algorithm, the control of multiprogramming is
achieved by an algorithm which has been observed to show several
anomalies (in particular, it performs very poorly for some
programs with larger than average "working sets"). I believe,
however, that Saltzer's linear model of demand paging
performance[SZ] does lend itse1f to a simple, easily implemented
algorithm for dynamic multiprogramming control. For my thesis, I
have developed such an algorithm, and determined experimentally

8

its performance.

III. Historical Perspective

As far as I could determine, there is very little information in
the 1literature which deals directly with the subject of dynamic
control of the degree of multiprogramming in a demand~-paged
virtual memory system. There is, however, a great deal of
information on closely related subjects such as the analysis and
measurement of performance in such conmputer systems and the
analysis of program behavior with regard to memory reference
patterns. I survey here some of the more interesting literature
in those areas which bear closely upon the topic under discussion

in this thesis.

Smith [?4] gives a fairly primitive model of multiprogramming in
a demand paging computer system. He speaks briefly about
optimizing the level of multiprogramming to prevent overloading
the 1I/0 queues for secondary storage media. He does not discuss
any means of dynamically adjusting the level of multiprogramming
based on instantaneous program behavior. Wallace and Mason Dwﬂ
speak about obtaining optimal degrees of multiprogramming under a
kind of "linear model", However, again no attempt is made to
discuss dynamic control of the level of multiprogramming; Wallace
and Mason discuss only static optimization of the level of

multiprogramming. This paper also gives some attention to the

effect of the bursts of paging activity begun upon activating a

computation.

Saltzer [}1], in his doctoral thesis, deals with some of the
problems of scheduling processor and memory resources. The basis
of the current implementation of the Multics traffic controller
is discussed, although no really relevant information related to

control of the degree of multiprogramming is discussed.

Sekino [33], in his doctoral thesis, develops a comprehensive'
model of a demand paged, virtual memory computer system, which
includes some discussion of static optimization of the degree of
multiprogramming. For the case of fixed degrees of
multiprogramming, he develops analytic models which closely
approximate the behavior of the current implementation of

Multics.

Saltzer [Sﬂ , in an internal Project MAC document, describes a
simple linear model of the paging behavior of a demand paged
computer system, in which he directly relates primary memory size
and system page fault rate. Experimental results which indicate
the validity of this model over a wide range of primary memory
sizes are presented. He indicates that this might be generalized
to cover individual processes, and shows how this model can be

useful in predicting system performance.
Frankston [Fi}, in work on the Multics system, deals with a

10

method for allocating costs of primary memory among users

competing for that memory by using Saltzer's linear model.

Hunt [H1], in work on the Multics system, has evaluated the
predictions of Sekino's model with respect to optimal level of
multiprogramming and found them to be fairly accurate. He also
pointed out the fact that the currently implemented working set
estimation algorithm fails tov work to stabilize the paging
behavior of the system. In doing this work he has developed a
standard benchmark load for Multics, which I have used to conduct

the experiments described in a later section.,
IV. Yardsticks for Evaluation of the Algorithm

Before discussing particular algorithms to achieve the purposes
hinted at above, it seems important to enumerate several
criteria which I think must be met by any primary memory
scheduling algorithm. First, the variables most important to
heavily loaded interactive systems, response time and system
throughput, must be optimized. Second, the algorithm must
properly respond to the variation in memory requirements among
different classes of wusers =-- not penalizing large users
excessively, and giving the small user his fair share of
resources, It is under this criterion that the current Multics
memory management algorithm seems to be deficient. Thirdly, the
algorithm must be stable wunder fluctuating 1load conditions.
Although the algorithm is primarily used to prevent excessive

11

ééée faﬁit §Verhead, a condition occuring only under a
significant load, light loads should not cause the algorithm ¢to
operate incorrectly, and transient 1loads due to interactive
processes should not cause the algorithm to oscillate, or
otherwise perform suboptimally. Finally, the parameters by which
the algorithm is tuned should be independent of system
configuration as much as possible. In other words, once a system
is tuned for one configuration, it should be correctly tuned for
any other configuration. I am particularly interested in the
configuration with respect to.the size of primary memory and the
number of CPU's. It 1is interesting to note that the current
algorithm on Multics causes the following anomaly: if the
parameters are set for a 1 CPU, 256K system, then the performance
of a system such as a 2 CPU, 256K system ié very poor. This
probably means that the second CPU is causing thrashing, and
should remain idle more of the time, since a second CPU should

not cause degradation of system performance on the same amount of

memory.Cﬂ

[1] Barring such effects as memory interference and data-base
interference, both of which can be minimized by idling the
additional CPU more frequently.

12

V. Simplicity

I devote a separate heading to this topic simply (!) because it
is worth emphasizing., It is all too easy to design algorithms
which are more complex than our understanding of the problems
they intend to solve. Since the difficulty in maintaining
programs is primarily due to the time required to understand

them, simplicity is an operational virtue.

In the context of a discussion of primary memory management
algorithms, simplicity has several applications. | Our
understanding of programs' memory reference behavior is limited,
so it would be unjustifiable to assume that a complicated
algorithm has any better chance of working Qe11 than a simple
algorithm would. A simple algorithm is much easier to explain,
thus allowing others who must understand the algorithm (such as
specialized Multics installations who have need to tune their
system for their own purposes) to achieve the necessary knowledge
with a minimum of difficulty. Also, since the multiprogramming
algorithm is a basic part of the operating system, a simple
multiprogramming algorithm has the virtue of easier verification,

an important consideration in a system striving to be provably

correct,

13

VI. Basic Principles

For most of this thesis, I will sketch the development of an
algorithm based on Saltzer's 1linear model, which I hope will
satisfy the above criteria, along with the criterion of
simplicity. Towards the end of the thesis, I will discuss the
techniques which I used to investigate the performance of the

algorithm experimentally.

Before I begin describing the details of my proposed algorithm, I
would like to note the basic concepts of the current
multiprogramming control mechanism., First of all, since we are
primarily concerned with obtaining effective use of main memory,
the degree of multiprogramming depends directly on the size of
primary memory available for paging (I will henceforth use the
symbol M for this). The number of processors is not germane to
this discussion, since addition of a processor has the effect of
increasing the rate of references to memory, which effect will be
factored out by considering time as an axis measured in memory
references.[f] In order to characterize a process's memory
requirements, the current]Y implemented algorithm attempts to

compute a value, called the working set estimate, which indicates

the amount of primary memory which must be available to that

[1] Of course, I oversimplify here...in fact there are important
effects such as sharing of pages and overloading of I/O channels
which do come into play in determining the 1load on primary
memory. For a first order conceptual model, I will explicitly
ignore these effects.

14

process to prevent excessive paging. This is basically computed
from the size of a subset of the recent page exceptions (those
which correspond to pages which have been referenced recently,

according to the hardware and software reference bits).

The scheduler then makes processes eligible wuntil the sum of
their computed working set estimates is as large as possible, but
not exceeding the amount of primary memory available. An
additional constraint is added which places 1lower and upper
bounds on the number of eligible processes. This constraint is
present to counteract the inconsistency of the results provided
by the working set estimator, and in fact the major control of
the degree of multiprogramming is currently obtained by the

setting of the upper bound of eligible processes.

In practice, the working set estimation algorithm has not been
made useful, as is shown by the fact that the computed working

set estimate is multiplied by a fraction, called the working set

factor, before summing the eligible processes' working set
estimates, and that this fraction has in practice been set to a
value which is too small to allow the working set estimates to
influence the scheduling decision at all (increasing the working
set factor causes performance to degrade significantly -
indicating the algorithm does not calculate a working set

estimate which is useful in scheduling).

This algorithm has been observed to have several deficiencies.

15

The first is poor parameterization, which does not carry from one
configuration to another. More importantly, the working set
estimate has shown some obvious incorrect behavior for certain
programs with large working sets. The symptom of this is that the
working set estimate remains very small even though the user's
program is taking over 100 page faults per cpu second (a mean
headway between page faults of several instructions). This has
been observed by people in the LISP project[i] and by

Gumpertz [Gl] at the Multics installation at Honeywell Bull,

Paris, France.

Finally, the currently implemented algorithm fails on the
criterion of simplicity. It bases its decision of whether to
include a page in the working set on a complicated calculation
based on 5 bits of information ébout each recent page fault. The
time eligible is not taken into account, and page faults which
are too frequent to be recorded in the page fault trace table are
not taken into account. In addition, there are complicated
interactions with other processes, the core allocation algorithm,

and the system call, hcs_$reset_working_set,[2] all of which

[1] A project, currently in progress, to implement a version of
the LISP programming language on the Multics system. This
version of LISP is specifically designed to handle 1large Data

Base applications, requiring large amounts of primary memory to
operate efficiently.

[2] This call is supposed to allow the user some control over his
paging performance., It allows him to notify the system of large
discontinuities in his page reference pattern.

16

modify the page usage bits which the working set algorithm

depends on.

VII. The Proposed Algorithm

I have tried a somewhat different approach in synthesizing an
algorithm here, with the hope that the resulting algorithm will
be simpler, and more amenable to analysis and verification. I
have also tried to define a set of Jless ambiguous terms for
describing concepts, since such terms as "working set estimate"
are apt to be confusing, because they have many possible

interpretations in current usage.

The following analysis is not intended to be mathematically
precise; instead, it is intended only as an argument to justify
the plausibility of the resulting algorithm. The correct
analysis would depend on elaborate statistical analysis of the
algorithm's interaction with a complex model of general program
behavior. Since such sufficient models do not really exist, this

type of study is beyond the scope of this thesis.

To begin the discussion of my proposed algorithm, I would like to

define a function, p(h,t), which is called the partition size of

a process with respect to a particular mean headway between page
faults (mhbpf, measured in memory references), h, at a particular
time t. This partition size function is defined to be the amount
of primary memory required for that process to run at time t in

17

its execution with a specified 1local mhbpf, h. Given this

function for all processes, a near—-optimal multiprogramming level

can be determined.

One way of preventing degradation of each process's performance
due to excessive page faulting is to place a lower bound on each
process's mhbpf, h_opt. Given h_opt, a near optimal
multiprogramming strategy is to schedule as many processes as
possible under the constraint that the sum of their instantaneous

partition sizes is < M:

E p(h_opt,t) < M.

Of course, if the load 1is sufficiently heavy, the inequality
becomes an equality, and the page fault rate is held to the level
determined by the mhbpf, h_opt. On the other hand, if there is
not a sufficient load, the mhbpf for each proéess will be greater
than h_opt. Of course, fixing h to h_opt does not guarantee that
we will prevent bursts of excessive page faults; this depends

also upon how steady p(h,t) is with respect to small changes in

t.

The problem of implementing this strategy is that p(h_opt,t)
cannot be computed without foreknowledge of the process's
behavior. Consequently, a practical algorithm must use a function
which is capable of estimating p(h_opt,t). The working set
estimate above can be seen to‘be an attempt at this, however, it

18

is not a very effective estimate for the reasons noted above. In
the following analysis I will attempt to create an estimator for
p(h_opt, t) which is better at tracking the actual value of

p(h_opt,t) than the working set estimate currently used.

Saltzer's linear model1[1] states that p(h,t) can be approximated

closely by a linear function of h:
p(h,t) = k(t)*h,

where k is a function only of the program behavior around t. As
a consequence, if we know the value of p for some specified value
of h, h0O, we can determine p for all values of h:

h
p(h,t) = === * p(hO,t)
ho

Figure'l illustrates this model of partition size behavior. In
the figure, the solid curve represents the actual relation of
p(h,t) and mean headway between page faults. The dashed line is
the 1linear approximation to this curve obtained by taking the
actual partition at time t, p(ho,t), and. the observed mean
headway between page faults, hO, and constructing a line from

this point through the origin. The approximation to p{(h_opt, t)

[1] I am assuming that Saltzer's model can be applied to single
processes, an assumption which is plausible but not yet
experimentally verified. The linear model does not have to apply
exactly in order for this scheme to work, but I develop the
argument from this statement of the linear model for the purpose
of conceptual clarity.

19

can then be obtained by interpolating to the required mean

headway between page faults on this line, as shown in the figure.

Figure 1

Using the Linear Model to Estimate p(h_opt, t)

partition size
p(h,t)

p(hO0,t)

p(h_opt,t)

h_opt ho mean headwa¥ biEween
page faults

In particular, assuming that k(t) has a bounded first derivative,
and that we have the value of p(h0,t), we can get a good estimate
for p a short time later by assuming that k(t) does not change
significantly over that short period:

h

p(h,t+dt) = === * p(hO0,t)
ho

20

It can easily be seen that this last equation can be used as the
basis for a rather simple multiprogramming control. If we take
p(h0,t) to be the partition size which we 1last allowed the
process to run with, and h0 to be the observed mean headway
between page faults for that period, than we can easily obtain an
estimate for the immediate future of that process of p(h_opt,t)
by that equation, setting h = h_opt. We thus have the following

jiterative algorithm which tracks the partition size of a process:

pe = ======= * pa (A)

where pe is the new estimate of the required partition size of
the process for an mhbpf of h_opt, h_obs is the observed recent
mhbpf, and pa is the amount of main memory which was assigned to
the process during the recent past (ovér which we measured
h_obs).

This algorithm is actually more powerful than the assumptions
indicate. Even if Saltzer's linear model does not hold for a
single process, this iterative algorithm will track p(h_opt,t) as
long as the rate of change of p with time is small, and p is a

relatively well-behaved function.

The only problem with implementing this algorithm is that it is
somewhat difficult to determine a value for pa, the amount of
memory actually assigned to the process, since several processes

are competing for main memory, and pages do not inherently belong

21

to particular processes because of sharing. Under a sufficient
load, of course, the constraint that the scheduler tries to make
as many processes eligible as possible will force pa to be
approximately equal to the previous estimate of pe. However,
under lighter or more transient loads, this will not be the case.
Since we would wish pe to be relatively independent of 1load
fluctuations, we have to handle this case, and also the case in
which for some reason we are forced to multiprogram more
procesées than will effectively fit into primary memory. This
latter case could occur for individual processes whose partition
sizes are too large to fit in main memory, or under some policy

decision which requires a minimum number of eligible processes at

all times.

Under a light load, the scheduler will not have enougﬁ processes
to wholly utilize main memory resources. Consequently, each
process's pa > pe. When there are processes whose partition
sizes, pe, do not fit in primary memory, it is possible to have
situations where a process's assigned memory, pa, is less than
pe. This latter condition can also arise from constraints, such
as the current lower and upper bounds on the number of processes
the scheduler can make eligible. 1In order to'keep the partition
size estimates, pe, stable through transient loads and
independent of time, it is thus important to get an accurate

estimate of the memory assigned to the process to compute new

22

values of pe.

Making the assumption that the effective partitioning of memory

among the eligible processes is proportional to their partition

size, we can say then that

pa = —=—- (B)

where u is the average fullness of primary memory. This fullness
is determined by the function u(t), which is the ratio of the sum

of all eligible processes' partition size estimates, and the size

z : pe(i,t)

i€$eligible
processes}

of main memory:

This is basically a primary memory usage factor. Combining

equations A and B, we get the iterative algorithm for computing

the next pe value, pe':

I have not yet specified over what sample U is an average of u.
For this purpose, an approximation to the average will suffice,
since the value is not particularly critical. Consequently, the
system will sample the memory usage fraction at each page - fault

23

since the prev1ous computatlon of the partltlon size estlmate,

computlng a runnlng average over tlme.

For the purposes of my experlments, the, computatlon of pe is

1terated each tlne the process can 1ose e11g1b111ty, since the

va1ue is needed no more frequent]y than that
VIII. Parameterization
Parameterlzatlon of h opt ,and pe init is a more dlfflcult
prob\em. Determlnatlon of h opt's re]atlonshlp to memory size is
rea11y a po11cy deClSlOn. If we wish the level _of overhead seen

by 1nd1v1dua1 processes to ref]ect the added memory, then setting
h opt proportlona1 to memory 31ze,

h_opt =ch * M

where ch 1s a tunlng parameter, w111 have the de31red effect. On
the other hand, system management ,mlght want added memory to
a11ow the support of more processes, wh11e malntalnlng the same
1eve1 of paglng overhead 1n whlch case,> h opt shou1d be set

1ndependent of prlmary memory capa01ty. Some strategy in

between these extremes should be used,

h opt = ch * M + ch1l
where ch and chl are tuning parameters. chl can be viewed as a
basic minimum mean headway between page faults, while «ch
represents a measure of the rate of improvement of individual
processes' performance as the system configuration increases in

24

size.

The most important thing the algorithm offers here is that it can
be used to control the paging rate of the system over a fairly
wide rangé of values, thus effectively controlling the paging

overhead seen by the system as a whole.

In contrast, pe_init is much more easily parameterized, since it
just reflects as estimate of the average process's partition
size. We can thus easily compute pe_init from the optimal mean
headway between page faults by the linear model:

pe_init = cp * h_opt

where cp is a tuning parameter. It could be possible to set cp
from a global long term average of system page fault behavior,

but I could not test this out very well in the time allotted for

the thesis.

An important factor in the parameterization of h_opt is the
limiting I/0 channel capacity for page transfers. An optimal
policy might be chosen to maintain the peak channel demands at a

sufficiently low 1level to prevent frequently exceeding the

maximum channel capacity.

IX. Implementation of the Algorithm

In order to test the partition size estimation algorithm detailed

in the last section, I have implemented it in a special version

25

6f Multics hardcore system 18-11, This system runs on the
Honeywell 645 processor, and does paging I/O from a multi-level
secondary storage hierarchy consisting of a "firehose drum" and
several kinds of slower disk storage. Several modifications to
the software were required, most of which were simple clerical

changes. The interesting software changes will be detailed here.

First of all, the pre-paging mechanism was removed from the
system. This algorithm attempts to guess which pages will be
needed by a process which is being made eligible for
multiprogramming, and causes I/0 to be initiated to bring those
pages into primary memory. I removed the mechanism for two
reasons. .First of all, the pre-paging mechanism is obsolescent
in Multics since it is quite dependent on the characteristics of
the "firehose drum® for its operation. Secondly, since the
pre-paging algorithm is yet another algorithm trying to guess the
primary memory needs of a process, its operation would very
likely affect the operation of my partition size estimator very
strongly. For these reasons, I felt that the work involved in

trying to take pre-paging into account in the implementation of

the algorithm was not justified.

The second change made was to modify the Multics traffic
contro]]er(l] to compute the partition size estimate at each time

quantum, and to use the partition size thus computed to determine.

[1] See Saltzer's paper on traffic contro][Sl].
' 26

if the process can be made eligible for multiprogramming. The
algorithm thus implemented is a slightly rewritten form of the
algorithm described in section VI, The one particular
modification made is to count the end of the time quantum as a
page fault. By doing so, two important goals are accomplished:
first, the limiting case ip which no page faults are taken during
the time quantum is made to work (h_obs would be undefined
otherwise), and second, the 1ikelihood of overestimating h_obs
with consequent gross underestimation of pe is reduced. This
last can result from the large probability of error in estimating

mhbpf caused by the relatively small sample of page faults.,

The page fault handler was modified to add code to compute the
running average of memory fullness, u, on each page fault. This
average is kept on a per process basis to save problems with
attempting to use a system value which might not quite correspond

to the time quantum under observation.

Other changes were made in system initialization and process
initialization to set wup the algorithm in each process. Some

metering commands were changed.

X. Tests of the Algorithm

For my thesis, I investigated the characteristics of this
algorithm experimentally, wusing Hunt's standard Multics load
programs[Hl], and compared performance with the current

27

ﬁﬁ1£i§rogramming algorithm. The basic test performed was the
comparison of fixed degree of multiprogramming as a
multiprogramming control, as in the current Multics system, and
the automatic control based on the partition size estimator. By
comparing the stability of the paging rate in both tests, and the
system throughput and response times under both sets of
conditions, a reasonable estimate of the feasibility of the

proposed partition size estimator is obtained.

The first tests performed were a series of tests of the
consistency of the partition size estimates under varying 1loads.
This was accomplished by running various commands with standard
data repeatedly, and obtaining the partition size estimate at the
time of completion of the command. The commands used were the

following three:

pll get_ps == which was a small PL/I compilation.

submit_abs_request -- which touches a fair amount of data in its

operation.

lisp == the lisp subsystem was entered and then immediately

exited.

The results of these tests seem to indicate that the estimator is
pretty consistent. Table I gives these results in tabular form.
More extensive tests would be desirable, but these tests seem to
be sufficient to prove the effectiveness of the estimator.

28

Table I

Test: pll submit_abs_request 1isp
Number of samples: 7 7 3

Mean partition size: 271.6 109.1 26.0
Standard Deviation: 160.0 8.4 1.0

The results of the PL/I test are somewhat suspect here because
the PL/I command takes a fairly 1long time to complete. The
history of the partition size is thus more prone to being upset
by variations in the size of the last "quantum" of time assigned
by the system. Since I am interested in the value during the
last quantum in the results noted above, this mav explain the
large variability of the partition size. This large variability

is accounted for almost entirely in one particular extreme

sample,

The second set of tests consisted of running a standard,
Iight-to-medium benchmark 1oad on a large hardware HMultics
configuration. The partition size a]gorithm was turned off, by
setting h_opt to zero, and control over the degree of
multiprogramming was maintained by the normal means of 1limiting
the number of eligible processes to a number, max_eligible. This
number was varied to obtain a number of sample experiments, and

system throughput and page fault rate were measured, to obtain a

29

érééh of system performance related to max_eligible. After
completing this first phase of the experiment, max_eligible was
set to 10 (a very large, essentially infinite value), and h_opt
was varied to obtain a second graph relating system performance

and h_opt. The graphs are presented in Figure 2.

30

System

System percentage throughput, percent 'useful work''

0]
o

o))
(=)

s
o

20

Figure 2

Under Fixed Maximum Eligibility
Control

seful work

paging rate

- 50
40
o
- 30
°--
- 20
NOTE: dashed portion
of curve is unreliable'_lo
since the experimental
conditions were difffgdnt.
4 1 t ¢ + $ + —
2 4 6 8

upper bound on eligibility,
max_eligible

page fault rate

Performance under Each Multiprogramming Control

(faults/sec.)

Figure 2 (cont.)

System Performance under Each Multiprogramming Control

System percentage throughput, percent 'useful work"

(o]
o
3
L}

N
o
3
Y

&

(=)
rd
L

Under Partition Size Control

useful work

measured paging rate

expected paging
rate

4] 3 1 1 [[

4
L)
(6]
o

10

] 3 J T : < \

20 30 40 50 60 70 80 96

"optimal" mean headway between
page faults, h_opt (msec.)

page fault rate.
(faults/sec.)

I must admit that the results given by the graphs are somewhat
confusing. The graphs do reflect system performance pretty well,
as the variation in system performance over the period of a
particular setting of h_opt or max_eligible is approximately
2-3%. Each test lasted for 10 minutes, with a sample of the page

fault rate and throughput taken each minute.

In Figure 2, there is a noticeable improvement in the "optimally
tuned" system under the partition size control of about 5%. This
performance improvement is Jjust above the level of noise, but
does seems significant, especially since the benchmark 1load
programs do not include much variation in their demand on primary

memory.

The page fault rate graphs do not seem to reflect my model
however. In particular, though the page fault rate under the
partition size control seemed to be slightly more stable, it did
not stabilize to the rate prescribed by h_opt. More experiments

will be necessary to determine why this is not so.

XI. Summary and Comments on Further Work to be Done

In this thesis, I have presented a justification for a simple,
effective estimator of the partition size or primary memory
"competitiveness" of a computation. The algorithm proposed has

been discussed from a theoretical viewpoint, and some experiments

33

with an implementation of the algorithm have been tried and noted
here. The success of the implementation must be qualified by the
fact that certain of the experimental data seem to be
unexplainable; in particular, the stabilization of the page fault

rate seems to occur at the wrong value.

Since these tests have not been a total failure, I think it will
be interesting to find out if it is possible to wunderstand why
the results obtained did occur, and perhaps modify the

implementation of the algorithm slightly to make it work better.

A test which was not carried out due to time limitations was one
in which the benchmark load was changed to include processes with
extremely 1light and extremely heavy demands on memory.
Presumably, the partition size control algorithm will optimize

system performance significantly in this case.

A major stumbling block in implementing the algorithm for the new
version of Multics to be run on the Honeywell 6180 system is the
fact that the primary paging device used is so fast that it is
not worthwhile to multiprogram while doing I/O to that device.
Since this will drastically reduce the amount of multiprogramming
being done, the conditions under which the partition size
algorithm operates will be quite different from those on the
Honeywell 645 Multics. Tests of the operation of this algorithm
on such a system will have to be done before anything can be
known about the performance change obtainable by wusing a

34

partition size contro1 $1g$£i£hﬁ;

Another set of tests whlch seem to “be worthwhiTe hou1d be an
attempt to determlne exact1y how the system reacts to various
types of memory usage, from the user's v1ewP01nt. In these
tests, the percentage overhead lncurred by various c]asses of
menory usage in computatlons wou1d be compared, under the current
max e11g1b1e contro1 and then under a partltlon 51ze' contro1
It is hoped that the» partltlon size contro1 wou]d reduce the

lnherent dlscrlmlnatlon agalnst 1arge memory requlrenents whlch

is currently incorporated into the system.

The estimator as described here 1is potentially capable of
generating extreme values of partition size estimates on
occasion. The primary cause for this behavior is a too short
time quantum\used in calculating the recent mean headway between
page faults. This can cause a few closely spaced page faults to
indicate a rather high paging rate, thus making the algorithm
believe that the process needs a Tlarge partition to operate
efficiently. To partially counteract this effect, some kind of
damping could be used; for example, one might take the average
of the last two estimates to be the next estimate used in
scheduling the process. Carrying this to an extreme would reduce
the effectiveness of the algorithm drastically, however, since
the estimate would not really respond well to changes in the

memory requirements of the program.

35

Cl

Cc2

F1l

Gl

H1l

Sl

S2

S3

sS4

BIBLIOGRAPHY

Corbatd, F. J. and Vyssotsky, V. A., "Introduction and

Ooverview of the Multics System," Proc. AFIPS FJCC 27, 1965,

pp. 185-196.

Corbaté, F. J., Saltzer, J. H., and Clingen, C. T.,

"Multics--The First Seven Years," Proc. AFIPS SJCC 40, 1972,

pp. 571-583.

Frankston, R. M., and Saltzgr, J. H., internal memoranda.
Gumpertz, Richard H., personal communication.

Hunt, D. H., internal Project MAC memo.

Saltzer, J. H., "Traffic Control in a Multiplexed Computer
System,"” Sc.D. Thesis, MIT Project MAC Report MAC-TR-30,
July 1966.

Saltzer, J. H., "A Simple Linear Model of Demand Paging

Performance," submitted to Comm. ACM,

Sekino, A., "Performance Evaluation of Mul tiprogrammed
Time-Shared Computer Systems," Ph.D. Thesis, MIT Project MAC

Report MAC-TR-103, September 1972,

Smith, J. L., "Multiprogramming under Page on Demand

Strateqy," Comm. ACM, Vol. 10, No. 10, Oct. 1967, pp.
636-646,

36

W1l Wallace, V. L., and Mason, D. L., "Degree of
Multiprogramming in Page-on-Demand Systems," Comm. ACM, Vol.

12, No. 6, June 1969, pp. 305-308,

37

