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1. Introduction



History

Fall

Spring

Fall

Fall

Fall

1965:

1965:

1967:

1968 :

1968:

1969

1970:

MIT/GE/BTL Joint Development Pro ject
FJCC Multics Papers
EPL Available; New PL/I begun

"One" user system--virtual memory
credibility

"Five" user system

"30" user system--CTSS-like response (bad).
New PL/I
Multics "public"

40 load-unit system--better than CTSS

response :
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Currently Underway:

New Features

- Version |l PL/I

- APL

- GECOS environment

- Absentee batch processing -
- etc.

Improving User Interfaces

- Better error messages
- Simplified commands
- etc.

lmproving Capacity and Performance

- Expandable configuration

- Performance monitoring and analysis
- Software improvements

- Hardware improvements
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Examples of Significant Software Development Achievements:

1.  PL/I
Began: 4Q67
First Release: 4069

/. Programmers

2. File System Redo
~~ 50 modules "Opened Up"
~w> /-5 months

2 Programmers




2. File System
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Multics Directory Hierarchy

Root
Libraries | Pro ject Directory
Hardcore Commands - roject 1 Project n
|\ \ ‘ User A User N ser M User Z
<,) e . \;) °
Dir 1 Dir N X ///
70
/
\\\ —//
A Dir 2

O

= directory

<T> = non-directory




Multics Directory Hierarchy:

System directories and files treated

same as user directories and files

- Pathnames uniquely identify files

root>project_directory>projeét1>userA>dir1>A

- Working Directory (Abbreviation)

cwd root>project_directory>pro ject1>userA
A

- Links (Indirect Addresses)

X ("Indirect Pointer" to file in another directory)




Directory Structure and Segment Attributes

-Directory
Segment
Name Attributes
. T
Usef1 Access S?ge
A User oc
2 Access | Size
oc
D; User Access 1ze
ir
Link X root>d1>d2>X

Segment Name:

User:

Access:

32 ASCI| Characters

Name.Pro ject

(Jones.Pro jA)

REWA

- Non-Directory

- Directory

Non-Directory

Directory




File System Features

- Access Control
- Quota Control

- Source Code, Listings, Documents,

Object Code, Data treated uniformly.
- Backup/Retrieval

- Commands to Manipulate Segments and Attributes:

. List Directory Contents

. Status of Single Segment

. List and Set Access Control Info
. Create and Delete Directory

. Create and Delete Non-Directory
. Rename Ssgments; Add Extra Names
. Manipulats Quotas

. etc.



3.  Program and Document

Preparation



1.

Text Editors

(QED and EDM)

Interactive

General Purpose

Line Number or Context Driven
EDM is easy to learn

QED is more powerful
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Examples of EDM

Commands

change
‘c5/abc/xyz/
delete
d10
find
f this is
locate

1 reference
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File Printing

Compiler listings and command

outputs are files.

Files are printed:

on-line (by print)
off-line (by delayed. print)
Delayed Print Features:

a. three priority queues
b. option to delete file

c. identification option

RUNOFF command creates

"type set" documentation.
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Programming Languages



PL/I

ALM

Standard Multics language
Designed for system programmers
Efficient object code

Nearly full ANSI language

On-line or off-line compilation

645 assembler
Not intended for general use

<5% of system written in ALM

APL (lverson's not GE's)

Interactive language
Dynamic attribute assignment
Compatible with IBM implementation

Implemented in PL/|




FORTRAN
- Compatible with PL/I and ALM
- Superset of ANS| FORTRAN

- Version Il compiler will use PL/l code generator

BASIC, LISP, SNOBOL, etc.

- Student projects
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Procedure Environment

a calls b calls ¢ calls b

stack linkage
s a —_—
auto(a) -1  stat(a)
b P//////)? stat(b)
auto(b) b
c
auto(c) < — stat(c)
Sp~> /,
auto(b)

standard call mechanism
standard data types
"binding"

dynamic linker

binder
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6.

Debugging Aids .



5.

Debugging Environment

Symbolic debugger
Dynamic trace

Quit mechanism
Simple 1/0 routines

Segmented "address space"



Debug

Symbolic

requests use source language

uses compiler produced symbol table

Interactive

- requests given at run=time

- no recompilation

- concise system programmer oriented requests
Capabilities

- inspect data or code

- modify data

- trace stack

- control execution

- machine language oriented features

- escape to command processor
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Example of use of debug

set break point

/calc/read=1ine<

call procedure with arguments

"calc 37 4l

breakpoint reenters debug
Break 1 in calc

print data
i
21

p->item.a.b(3l

"1101 llb
print lines of source program
dat0,2 ‘

60 x=q->a.bt7;
61 call z(x,ys;

Set new break point
6l <
Continue execution

<



Trace

Dynamic trace

Inserts procedure between called and calling procedure
Insert/remove with no recompilation

User can supply procedure

Standard procedure available

- traces call, prints argument list

- computes time spent

13

6~/



Quit

Interrupts pfocess execution

State of computation saved

Can restart computation

Can use process to execute other procedures

Permits sequence

QIT

« « soxecute commands

start

Similar mechanism used for errors
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Far-out example of quit

program output

=1
i=1
<1
i=1
QUIT

enter debugger
debug
rog/i

37

rog/calc,s?

calc: call write ("i = ",i)s
return;
use editor
,H edm prog.pli
Edit
] calc:
e
calc: call write ("i = ",i);
w
9

compile program

,, pll prog table

leave debugger

e

resume computation

- start

nnn

W W
SN0
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SoFtwaré Installation and Maintenance

- on-line capability

= library in Virtual Memory

change while system running

use standard commands

- Maintenance sequence
source from library
modify, checkout

install

- easy to use others' programs









2.

Well designed user interface

- took advantage of CTSS experience

- meaningful error messages from compilers

and system.

- dynamic linking and file creation

allow simple program execution.

Simple functional command language

- system commands and user programs

have equivalent interfaces.

- commands are callable as programs:

Example:
pl1 alpha = call pl1("alpha");
alpha beta = call alpha ("beta");
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3.

PL/! compiler options:

- sour ce, symbols, map, list

control listing output

- check - performs syntax and semantic

error analysis

- brief, severity - control error messages

- optimize - removes redundant code on a

per block basis.

- table - produces a run-time symbol table

for symbolic debugging

¢
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4e Reliability

- Multics and PL/1 have been in use for more
than a year.

- Heavy use by system developers and researchers.

- System and compiler are maintained by the
original developers.

- Bug level is pear zero.

- Failsoft design reduces system crashes due to

hardware bugs.



5, RADC experience:
- 3 days to install first system
- -runs 4 hours per day
- ran two months with:
2 hardware crashes

0 software crashes
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1. ~ Configurations

Drum

CPU Aéfk/g cPU
128K 128K < 108K
Drum
GloC OO () 6100
Secondary
Storage,
Remote Tapes,c Prin’cers, etc.
Terminals

- 256K + 1 CPU———= 1M + n CPU's

- Dynamic Reconfiguration
/ . CPU's
. Memories

- Add Datanet-300 and GECOS-111 with Time-Sharing

can run on the configuration.  (K5),
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