Multiplexed Information’

And

Gomputing Service

Multics
as a

Software Factory

Topic of Session:

Use of Multics for the

Maintenance

and
Extension
of
Multics,
PL/| and

all user software

completely on=line with minimal

system interruption.

Overview

1.

2.

10.

Introduction

File System

Program and Document Preparation
Programming Languages

Run-time Environment

Debugging Aids

Software Installation and Maintenance
Software Quality and Ease of Use
Other System Features.

Configurations, Capacity and Performance

ii

1. Introduction

History

Fall

Spring

Fall

Fall

Fall

1965:

1965:

1967:

1968 :

1968:

1969

1970:

MIT/GE/BTL Joint Development Pro ject
FJCC Multics Papers
EPL Available; New PL/I begun

"One" user system--virtual memory
credibility

"Five" user system

"30" user system--CTSS-like response (bad).
New PL/I
Multics "public"

40 load-unit system--better than CTSS

response :

1-1

Currently Underway:

New Features

- Version |l PL/I

- APL

- GECOS environment

- Absentee batch processing -
- etc.

Improving User Interfaces

- Better error messages
- Simplified commands
- etc.

lmproving Capacity and Performance

- Expandable configuration

- Performance monitoring and analysis
- Software improvements

- Hardware improvements

1-2

Examples of Significant Software Development Achievements:

1. PL/I
Began: 4Q67
First Release: 4069

/. Programmers

2. File System Redo
~~ 50 modules "Opened Up"
~w> /-5 months

2 Programmers

2. File System

2-0

Multics Directory Hierarchy

Root
Libraries | Pro ject Directory
Hardcore Commands - roject 1 Project n
|\ \ ‘ User A User N ser M User Z
<,) e . \;) °
Dir 1 Dir N X ///
70
/
\\\ —//
A Dir 2

O

= directory

<T> = non-directory

Multics Directory Hierarchy:

System directories and files treated

same as user directories and files

- Pathnames uniquely identify files

root>project_directory>projeét1>userA>dir1>A

- Working Directory (Abbreviation)

cwd root>project_directory>pro ject1>userA
A

- Links (Indirect Addresses)

X ("Indirect Pointer" to file in another directory)

Directory Structure and Segment Attributes

-Directory
Segment
Name Attributes
. T
Usef1 Access S?ge
A User oc
2 Access | Size
oc
D; User Access 1ze
ir
Link X root>d1>d2>X

Segment Name:

User:

Access:

32 ASCI| Characters

Name.Pro ject

(Jones.Pro jA)

REWA

- Non-Directory

- Directory

Non-Directory

Directory

File System Features

- Access Control
- Quota Control

- Source Code, Listings, Documents,

Object Code, Data treated uniformly.
- Backup/Retrieval

- Commands to Manipulate Segments and Attributes:

. List Directory Contents

. Status of Single Segment

. List and Set Access Control Info
. Create and Delete Directory

. Create and Delete Non-Directory
. Rename Ssgments; Add Extra Names
. Manipulats Quotas

. etc.

3. Program and Document

Preparation

1.

Text Editors

(QED and EDM)

Interactive

General Purpose

Line Number or Context Driven
EDM is easy to learn

QED is more powerful

3-1

Examples of EDM

Commands

change
‘c5/abc/xyz/
delete
d10
find
f this is
locate

1 reference

3-2

File Printing

Compiler listings and command

outputs are files.

Files are printed:

on-line (by print)
off-line (by delayed. print)
Delayed Print Features:

a. three priority queues
b. option to delete file

c. identification option

RUNOFF command creates

"type set" documentation.

3-3

Programming Languages

PL/I

ALM

Standard Multics language
Designed for system programmers
Efficient object code

Nearly full ANSI language

On-line or off-line compilation

645 assembler
Not intended for general use

<5% of system written in ALM

APL (lverson's not GE's)

Interactive language
Dynamic attribute assignment
Compatible with IBM implementation

Implemented in PL/|

FORTRAN
- Compatible with PL/I and ALM
- Superset of ANS| FORTRAN

- Version Il compiler will use PL/l code generator

BASIC, LISP, SNOBOL, etc.

- Student projects

S Ooea
PU?‘&‘:

ertieen

Other ressurc

dacmorn

frestrnlh

Procedure Environment

a calls b calls ¢ calls b

stack linkage
s a —_—
auto(a) -1 stat(a)
b P//////)? stat(b)
auto(b) b
c
auto(c) < — stat(c)
Sp~> /,
auto(b)

standard call mechanism
standard data types
"binding"

dynamic linker

binder

5-2

6.

Debugging Aids .

5.

Debugging Environment

Symbolic debugger
Dynamic trace

Quit mechanism
Simple 1/0 routines

Segmented "address space"

Debug

Symbolic

requests use source language

uses compiler produced symbol table

Interactive

- requests given at run=time

- no recompilation

- concise system programmer oriented requests
Capabilities

- inspect data or code

- modify data

- trace stack

- control execution

- machine language oriented features

- escape to command processor

6-2

Example of use of debug

set break point

/calc/read=1ine<

call procedure with arguments

"calc 37 4l

breakpoint reenters debug
Break 1 in calc

print data
i
21

p->item.a.b(3l

"1101 llb
print lines of source program
dat0,2 ‘

60 x=q->a.bt7;
61 call z(x,ys;

Set new break point
6l <
Continue execution

<

Trace

Dynamic trace

Inserts procedure between called and calling procedure
Insert/remove with no recompilation

User can supply procedure

Standard procedure available

- traces call, prints argument list

- computes time spent

13

6~/

Quit

Interrupts pfocess execution

State of computation saved

Can restart computation

Can use process to execute other procedures

Permits sequence

QIT

« « soxecute commands

start

Similar mechanism used for errors

6-5

Far-out example of quit

program output

=1
i=1
<1
i=1
QUIT

enter debugger
debug
rog/i

37

rog/calc,s?

calc: call write ("i = ",i)s
return;
use editor
,H edm prog.pli
Edit
] calc:
e
calc: call write ("i = ",i);
w
9

compile program

,, pll prog table

leave debugger

e

resume computation

- start

nnn

W W
SN0

6-6

SoFtwaré Installation and Maintenance

- on-line capability

= library in Virtual Memory

change while system running

use standard commands

- Maintenance sequence
source from library
modify, checkout

install

- easy to use others' programs

2.

Well designed user interface

- took advantage of CTSS experience

- meaningful error messages from compilers

and system.

- dynamic linking and file creation

allow simple program execution.

Simple functional command language

- system commands and user programs

have equivalent interfaces.

- commands are callable as programs:

Example:
pl1 alpha = call pl1("alpha");
alpha beta = call alpha ("beta");

8-1

3.

PL/! compiler options:

- sour ce, symbols, map, list

control listing output

- check - performs syntax and semantic

error analysis

- brief, severity - control error messages

- optimize - removes redundant code on a

per block basis.

- table - produces a run-time symbol table

for symbolic debugging

¢

8-2

4e Reliability

- Multics and PL/1 have been in use for more
than a year.

- Heavy use by system developers and researchers.

- System and compiler are maintained by the
original developers.

- Bug level is pear zero.

- Failsoft design reduces system crashes due to

hardware bugs.

5, RADC experience:
- 3 days to install first system
- -runs 4 hours per day
- ran two months with:
2 hardware crashes

0 software crashes

;
I

aj
on) H

iy

O 33 nge

gon -~ niode

ol rontrol

o . Uroprietary/

ne wwelgn supervisors.

.

Al

1. ~ Configurations

Drum

CPU Aéfk/g cPU
128K 128K < 108K
Drum
GloC OO () 6100
Secondary
Storage,
Remote Tapes,c Prin’cers, etc.
Terminals

- 256K + 1 CPU———= 1M + n CPU's

- Dynamic Reconfiguration
/ . CPU's
. Memories

- Add Datanet-300 and GECOS-111 with Time-Sharing

can run on the configuration. (K5),

10-1"

AV

i

mittent batch streams

SAN compiler)

“ting users

