MULTICS DEMONSTRATION PROGRAM #1

FUNCTION: to construct an arbitrary part of a 36-level binary tree g !

What is demonstrated: How use of a large virtual memory can simplify

construction of a program. -

This one-page program constructs in virtual memory an arbitrarily
large part of a 36-level binary tree. Such a tree is an effective way
of storing for retrieval (or checking for duplicates among) a large
number of short (in this case 36-bit) information items.

In a 3-bit example, the information item "Q1Q" traces out the
heavily outlined path in the 3-level tree of figure 1. The program
would construct in storage just that portion of the tree. If now the
information item "0l1" is to be stored, the program only needs to add
~ to the tree the single additional branch outlined in figure 2. To
inquire whether the item "010" has previously been stored, one attempts
to trace that portion of the tree; success in reaching the end means
that the item has been previously stored,

For this demonstration, the program calls on a non-repeating
pseudo-random number generator to generate 36-bit information items.
After every 100 items have been stored, it reports this fact to the type=
writer and also reports the total amount of virtual storage so far consumed,
In Multics, this program runs at a fairly constant rate as the tree builds
up, even though the program may be dealing with several million words of
virtual addressable memory. This is because the frequently referenced
base of the tree is concentrated in a few pages which remain in core;
while reference to the extremities of the tree requires that the supervisor
fetch only a few pages for each new information item,

The ability of .the Multics file system to make mass storage easily
accessible to the program is exhibited by the fact that the demonstration
program is only about 1 page of code in the EPL (a dialect of PL/I)
language and includes only a very few lines of '"file manipulation",

| | | i
March 14, 1969 |

F
I
.

e

i
i

‘)
i
1

ired’

B AL |
-

L
,.,r.rh,')rU.
B S
N
D
IR N

B S
T 4
b I
o .

m
.
L]

inary tree

:

"01l1" to the b

information item

2--Addition of

Figure

