MULTICS DEMONSTRATION PROGRAM #1

March 14, 1969
FUNCTION: to construct an arbitrary part of a 36-level binary tree' |

What is demonstrated: How use of a large virtual memory can. simplify
construction of a program, - :

This one-page pProgram constructs in virtual memory an arbitrarily
large part of a 36-level binary tree. Such a tree is an effective way : !
of storing for retrieval (or checking for duplicates among) a large
number of short (in this case 36-bit) information items.

In a 3-bit example, the information item "010" traces out the
heavily outlined path in the 3-level tree of figure 1. The program an
would construct in storage just that portion of the tree, If now the L
 information item "011" is to be stored, the program only needs to add _‘k‘
- to the tree the single additional branch outlined in figure 2. To ‘
inquire whether the item "010" hasg previously been stored, one attempts ‘ L
to trace that portion of the tree; success in reaching the end means
that the item has been previously stored.

For this demonstration, the program calls on a non~repeating }
pseudo-random number generator to generate 36-bit information items. ,i
After every 100 items have been stored, it reports this fact to the type= BN
writer and also reports the total amount of virtual storage so far consumed, ‘r"
In Multics, this program runs at a fairly constant rate as the tree builds |
up, even though the program may be dealing with several million words of oL
virtual addressable memory. This is because the frequently referenced Co
base of the tree is concentrated in a few pages which remain in core; S
while reference to the extremities of the tree requires that the supervisor ‘~iﬁ
fetch only a few pages for each new information item. o

The ability of .the Multics file System to make mass storage easily j!f
accessible to the program is exhibited by the fact that the demonstration N
program is only about 1 page of code in the EPL (a dialect of PL/I) -
language and includes only a very few lines of "file manipulation", " f”




mat]

for
i

y
|

+

inar

b

'f i

u ,
Sigi
L Bl
st e

BN = S

SR S
Qe
s
[« T
- -
s .
‘o -3
P
B~ SRR R
C@TTE
i -
o - ot
= JRI
R v M 4
I S
M
| B
PR | R

B
BELT

4-Port

!

i
1

'

i

- Py oI

tree

inary

Figure 2--Addition of information item "011" to the b



