MULTICS DEMONSTRATION PROGRAM #1
March 4, 1970
FUNCTION: to construct an arbitrary part of a 36-level binary tree

What is demonstrated: How use of a large virtual memory can simplify
construction of a program.

This one-page program constructs in virtual memory an arbitrarily
large part of a 36-level binary tree. Such a tree is an effective way
of storing for retrieval (or checking for duplicates among) a large
number of short (in this case 36-bit) information items.

In a 3-bit example, the information item '"0l0" traces out the
heavily outlined path in the 3-level tree of figure 1. The program
would construct in an open-ended storage area a list structure describing
just the appropriate portion of the tree, using non-null branches in the
list structure to correspond to branches so far placed in the tree. If
now the information item '"Ol1" is to be stored, the program only needs
to add to the tree the single additional branch outlined in Figure 2.

To inquire whether the item "010" has previously been stored, one attempts
to trace the list structure corresponding to that portion of the tree;
success in reaching the end means that the item has been previously
stored.

For this demonstration, the program calls on a pseudo-random number
generator to generate 36-bit information items. After every 100 items
have been stored, it reports this fact to the typewriter and also reports
the total amount of virtual storage so far consumed. In Multics, this
program runs at a fairly constant rate as the tree builds up, even though
the program may be dealing with several million words of virtual address-
able memory. This is because the frequently referenced base of the tree
tends to be substantially filled out by the first few storage items and
thus tends to be concentrated near the beginning of the storage area in
a few pages which remain in core; while reference to the extremities
of the tree requires that the supervisor fetch only a few pages for each
new information item,

The ability of the Multics file system to make mass storage easily
accessible to the program is exhibited by the fact that the demonstration
program is only about 1 page of code in the PL/I language and includes
only a very few lines of "file manipulation'.

This program was suggested by Edward Fredkin, and is based on his
“trie memory".

1 Fredkin, E,M,, "Trie Memory" Communication of the ACM, Sept. 1960,
p. 490.

MULTICS DEMONSTRATION PROGRAM #1

o

(j/March Vo9
i \\" |

FUNCTION: to comstruct an arbitrary part of a 36-level binary tree

What is demonstrated: How use of a large virtual memory can. simplify
' construction of a program, -

This one-page program constructs in virtual memory an arbitrarily
large part of a 36-level binary tree,

number of short (in this case 36-bit) information items, ‘ %*M’

In a 3-bit example, the information item "010" traces out e
‘heavily outlined path in the 3-level tree of figure 1. The pfogram

would consCrucE—Tﬁ"htozage{Eﬁef—fhat-portion of the treeré/if now the

Such a tree is an effective way u9£¢3
of storing for retrieval (or checking for duplicates among) a large Sy

information item "011" is to be stored, the program only needs to add youn

to the tree{Ehe single additional branch outlined in figure 2. To

| inquire whether the item "010" has previously been stored, one attempts

' to traceVthat portion of the tree; success in reaching the end means
that the item has been previously stored.

Lovr Shewdle e Cevdes (""4"“\ ﬁ)

' For this demonstration, the program calls on a

pseudo-random number generator to generate 36-bit information items.

After every 100 items have been stored, it reports this fact to the type~

writer and also reports the total amount of virtual storage so far consumed

In Multics, this program runs at a fairly constant rate as the tree builds

up, even though the program may be dealing with several million words of

virtual addressable memory. This is because the frequently referenced

base of the tree 4 in a few pages which remain in core;

while reference to|the extremities of the tree requires that the supervisor

fetch only a few pages for each new information item.

The ability ¢f .the Multics file system to make mass storage easily
accessible to the/ program is exhibited by the fact that the demonstration

program is only About 1 page of code in the FPI~a—diatect—of PL/ Iy

RSV language and iptludes only a very few lines of "file manipulation",
\«N? : - !
P : !
v

umﬁQ““ w ' | Tewds 1 be
§ubl . .
ety & b Bt o8 b e Gt o Sty S e e, ot

'\«A‘LS W’\«_ [P Wc) L_, & dnand 'F/‘-b““\u, stk & bed onn \A;Y "ty e Wt r o , 1

1 Credbw, EA, “Trle Mewee, " QMMUu(Q}mj dz'\’L A(M, Seph. 1960, . 940 .

¥

red to|

-requil

i
i
i
t

fgbihaty;tféé

ion o

»
B
.

u;e‘i-fPort

'
v

i

- L

. ——— - - — +
o SRR
T

P
]

' Fig

'

"011" to the binary tree

item

ion

Figure 2--Additiqn of informat

\%wsa £ tvree] v "‘

- .] ’____. | l,/)’v /»L~ /’ :
\'M—aﬁ:ﬂ‘““"\ q QYC&&_%/; S f ' (Y ,ML 4
S r:\}_ O : g ~ A N
rszw ,1 \-C“)ow-

!
f
!
|
|

o

Cocies W'“‘\ List e‘}"vny_ < Froctu te

o} \ w
L%asc_ o ’\'ve:\ 1 ’ 3

.)
¢ \um'm.\ free .
| ;?‘M» QM“‘ L 2 { b

31

QDV(CSWA\.W\ st 5+on,.,y styveMdure

