INTERDEPARTMENTAL

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS. 02139

| from the office of

November 10, 1970
To: Those called upon to produce impromptu demonstrations
of Multics
From; J. H, Saltzer
Subject: A Multics Demonstratiom

It is possible to give a demonstration of Multics which
is very revealing to an experienced ¢omputer professional, merely by
using available system commands, with no preparation, and avoiding
artificial "game-playing' exhibits. The following selection of exhibits
takes me about half an hour to perform on a fully loaded system;

I describe them because you may wish to borrow some ideas or suggest others-

1. Log in, explaining login ritual, message of the day, and
. the ready message.
2, Type who$long to get a list of users

3,_ create xyz

fo xyz; who$loug, co

P

print xyz "~ 7 7{Quit after a few lines)
' dprint Xyz (Pick up the output after the
e demonstration)

(Point out that any console output may
be so handled, also console input)

4. help runoff

print runoff.info (full tree name is obtained from
. the help file)

Quit after a few lines, then
" dprint runoff.info (pick up later)

5. help (no arguments - go through a step or
two to show top of information tree).

6. 1list your directory with
list -a
7. cwd to a subdirectory and list it.

8. cwd to the root and list it,

9.

10‘
11.

12,

13,

-2 -

cwd to system control dir, list it. Compare the access
modes of the accounting files, the "who' table, ("whotab")
and your own files. (Extra activity for real pros: list - -
some acls and cacls.)

Attempt to copy one accounting file. (Shows protection.)

mail (Empty your mailbox, then have someone
send you mail while you are logged in.)

Demonstrate a gate error: type "hcs_$terminate file alpha" as
a command

(Shows "a very helpful system.) T
Demonstrate Source Language Debugging in PL/I:

type inbwith edm:

edm blowup.pdl

blowup: = procedure

declare (i,j) fixed;

declare a(10) fixed;

do i = -1 to -10000 by -1;
j=a();
end ;

P11 blowup table
When you compile this, PL/I will give 2 warning diagnostics:
a. Too few end statements

b. A(i) is referemced but not set.

Ignore these and proceed: (Be sure you got a symbol table) '?v{'r

blowup
(causes out of bound fault on stack)
debug
insert here the offset given in the

/blowup/&t+25,s
S out of bound diagnostic.

debug will respond by printing '"j = a(i);", the statement
which caused the trouble. type "i'", and debug will print the value
of "i", for you.
type "|q" to leave debug and

g0 on to the next demonstration.

- 3-

14, Demonstrate programming in BASIC:

bsys foo

10 doi=1to 10
20 print i, {%*{
30 next i

40 . end

run

This will get you two diagnostics: 10 is 111 formed, and
30 steps a variable without a "for'" statement.
Fix program with
10 * fori=1to 10
run
and get your answers. Compare compilation time of PL/I
and basic,
Leave basic with "quit".
15. (Optional) 1If you have a Multics number, and the visitor is
looking for more, try- »
tem -all
ttm
fom -all N
' You can then spend the rest of the morning explaining the
meaning of all the data printed by the metering commands,
16, Check the status of your two print requests:
list -dtm - z -p >DDD>idd>q3
17. lLog out. '

Hints:
1. Leave your visitor with
a. A copy of "Highlights of the Multics System', MPM section
1.1.1.
b. A copy of the Multics Bibliography, MPM section 1.1.2,
c¢. The printed console session output of the demo.

d. The output from the printer daemon,

-4 -

Use full command and file names rather than abbreviations
wherevef possible, since your visitor may wish to reexamine
the console output later and he won't remember the abbrevia-
tionms. '

Be careful not to get deeply into impromptu side tracks
unless you have carefully thought them out in advance. The
tricks one frequently uses to get around minor problems are
often very obscure to an outsider, and are not worth the
explanation they require. It takes a resonable amount of

planning to make sure that a sequence of operations does not

_ include some obscure trick.

Respect your visitor's time: make the demonstration brief but
telling. Don't allow long printouts to waste time.
Point out after the demonstration that some of Multics most
important features are not apparent in a short demonstration.
For example,

- 22 hours/day, 7 days/week service

- dynamic reconfiguration of cpu and memory

- decentralized project administration

- sharing of files while building up a large

subsystem of programs,

- programming ease of a fully supported PL/I
_ language. |
Assuming that the demonstration was successful, it is appro-
priaté to point out that one of the most significant features
of Multics is that a single system has all of the demonstrated
features in one place. The same tuned human interface which
permits this demo to be completed in 30 minutes on a loaded
system permits any programmer a wide range of tools at his

fingertips.

'Qg'sure to practice the demonstration once by yourself before

trying it on a live visitor, Undoubtedly you will discover at

least one item that I have explained poorly enough that the

demonstration comes out differently than you expected.

