THE MITRE CORPORATION

BEDFORD, MASS.
MEMORANDUM

TO: E. L. Burke DATE: 3 February 1975
FROM: K, J, Biba, W. L. Schiller ' MEMO NO.: D73-M750

SUBJECT: Multics Design Note #8 - A Specification Language
COPIESTO: Distribution

Context

The proliferation of "styles" within the Multics security kernel specification

has lead to an attempt to standardize (and formalize) a syntax for specifications.

Further, the anticipated size of the hierarchical kernel specification requires the

existence of automated tools to cope with its management and analysis. Such tools
require a precise language definition. Current work is addressing the formal de-
finition of such a language, as well as the identification and construction of
necessary tools. This note addresses a rather informal (and preliminary) defini-
tion of the proposed specification style (and language). Examples corresponding
closely to the style advocated in this note may be found in the specifications of
Multics Design Note #7.

Style Description

A specification may be considered as a series of clauses; each clause defin-~
ing one portion of the specification. Each clause is composed of one or more
statements; each statement defining a boolean relation appropriate for the clause.
Each clause begins with a clause label (identifying the type of clause) followed
by a statement list.

<specification> ::= <clause list>

<clause list> ::= <clause> |
' <clause> <clause list>

<clause> ::= <clause label> ':' <statement list> ';'

<statement list> ::= <statement> |

<statement_ list> '

;' <statement>

Eight clause types have been identified:
1) function identification,
2) statement of purpose,
3) initial value definition,
4) possible value (range) definition,
5) explicit value definition,
6) statement of effect,
7) abbreviation declaration, and

8) statement of exceptions. .

FOR CORPORATION USE ONLY

P - . -

E. L. Burke 3 February 1975
Page 2 D73-M750

While no clause ordering is apparent above, we require the head of a speci-
fication to be a "function'" clause. Function clauses serve to delimit one
function from another. No nesting of function specifications is thus per-
mitted, ’

The function clause expects only one component statement: a
<function name> statement,

<function name> ::= <name> I
<name> '(' <parameter list> ')'

<parameter_list> ::= <name>|

<name> ',' <parameter list>

The <clause_ label> may have one of four values (at this time) denoting the
type of function being specified:

1) "V_function" denoting a value returning function;

2) "Hidden V_function" denoting a value returning function which
may not be invoked by the user of the specified module;

3) "0 _functions" denoting operations which effect changes of
state (defined by V_functions); and

4) "OV_function" denoting a function which both effects a state
change and returns a value.

The purpose clause provides a narrative description of the function's
purpose. Its <clause label> is "Purpose'" and the <statement> is any character

string not containing ";".

The initial value clause defines the initial value of all types of
V_functions. Its <clause label> is '"'Possibly'. The single statement of this
clause is an uninterpreted character string which defines the function's range.

The value clause defines the value of a V_function. It should be consti-
tuted by a single statement composed of an expression of function names and
parameters yielding a value in the range specified in the possible value clause.

The abbreviation clause (whose <clause label> is "Let'") acts as a set of
text macro definitions. Its intent is to allow the substitution of short,
locally (within a single function) defined names for longer expressions of func-
tions, liberals and parameters. This clause is composed of one or more state-

ments each of the form:

<statement> ::= <name> '=' <expression>.

E. L. Burke , 3 February 1975
Page 3 : D73-M750

The exception clause defines conditions under which the associated func-
tion will abort (before performing its intended function, either value :_return-—
ing or state change). The clause label is "Exception if'". The clause is
composed of one or more statements of the form:

<statement> ::= <text label> '!' <expression>.

The token <text label> represents a symbolic name for the particular exception
which may be interpreted as an error case. <Expression> is a boolean valued
expression composed of function, parameters, literals and operators. All ex-
ception conditions must evaluate to boolean "false'" if the associated function
is to be invoked.

The effect clause‘defines conditions that must hold at the termination of
an O _function. The ,<clause label> is "Effect"., It is composed of one or more
relational statements which express conditions that must hold upon the value of
V_functions at the termination of the O function. Variants of "if'" and '"case"
statements are specifically proposed to express implications.

Literals (including "'true'" and '"false'") are expressed as:

<literal> ::= '"' <texting string> '"'.

Integers do not require enclosing quotes.
Function and parameter names are defined by:

<name> ::= <letter> |
<name> <letter> |
<name> <number> |
<name> ' ' |
<name> '.' |
<name> '#' |

No specific rules for capitalization are proposed. Both upper and lower case
are acceptable. Likewise, no specific rules for indentation will be formulated,

though its judicious use is highly encouraged.

The following words (in any combinations of case) are reserved.

0_function let
V_function exception if
OV_function if

hidden then

purpose else

initially endif (fi/end)

R oy Honges e etk s

E.

I.. Burke

Page 4

possibly
value

effect

KJB/WLS: jk1

Distribution:

S.
D.

e}

ZomR

-

C-cUS?ULqU)l"O

R. Ames, Jr.
E. Bell

H. Bensley
J. Biba

L. Burke

S. Chandersekaran
Gasser

D. Jordan

J. LaPadula
. Lipner

. Millen

. Rhode

. Schiller
Stork

C. White

OHPPOR®

3 February 1975
D73-M750

caseof

endcase (esac/end

Intelligence and
Information Systems

W. L. Schiller
Intelligence and
Information Systems

