THE MITRE CORPORATION

BEDFORD, MASS.

MEMORANDUM
To: E. L. Burke DATE: 27 February 1975
FROM: K. J. Biba MEMO NO.: D73-M799
SUBJECT: Multics Design Note #13 - Kernel Levels of Abstraction
coPiEs TO: Distribution
h Multics Design Note #13, Kernel Levels of Abstraction, is attached.
K. J. Biba
Intelligence and
Information Systems
KJB: jk1
Attachment
Distribution:
S. R. Ames, Jr.
D. E. Bell
_ E. H. Bensley
K. J. Biba
E. L. Burke
C. S. Chandersekaran
M. Gasser

C. D. Jordan
L. J. LaPadula
S. B. Lipner
J. K. Millen

R. D. Rhode
W. L. Schiller
D. F. Stork

J. C. C. White

FOR CORPORATION USE ONLY

e o e P i A . - et i st

P

Attachment 1
Context of Design Note

This design note documents a revision to the Multics' kernel decom-
position proposed in Multics Design Note #2. Recent work on the Multics'
specification has resulted in a reorganization and compression of the pre-
vious decomposition. Seven (7) levels are now suggested where Level 0
represents the hardware and Level 6 represents the security kernel perimeter.

The presentation of these levels is in a "bottom up" manner. While the
top level (Level 6) is defined "first", since it represents the desired and
observable (neglecting timing) behavior of the kernel, the "lower" levels may
be defined in any convenient order. The presentation viewpoint illustrates
how the kernel perimeter functionality may be incrementally constructed, in a
well-formed manner, from the hardware base.

Level 0: HIS 68/80 Hardware

Level 0, as in the previous decomposition, specifies the kernel's hard-
ware base. However, the hardware considered will be the HIS 68/80 rather than
the HIS 6180. The major difference, for the specification, appears to be the
existence of per-processor cache store. The encacheability of segments is
determined by a 1-bit field in each segment descriptor (SDW). It is antici-
pated that the kernel's read only data bases (particularly instructions) are
encacheable, while read/write data bases (particularly global data bases as
the APT and AST) are not.

Level 1: Primary Memory Management

Level 1 defines a segmented memory environment utilizing a single
(physical) level of memory. Provision is made for two virtual - real address
mapping algorithms: for paged and unpaged segments. The necessary constructs
for the management of this level of memory are provided. Primary memory is
considered as a set of memory frames (each 10244, words) which may be assigned
(allocated) to a segment. - Primitives are provided to add and remove primary
memory frames and segments from their respective free (unallocated) pools.
Refer to Multics Design Note #10 for a preliminary specification of this level.

Level 2: Processor Management

Level 2 defines a set of primitive processes and the mechanism by which
they are bound to (physical) processors. A resource pool of processors is
defined, and primitives for the addition and deletion of processors from this
pool are also defined. Primitives for the synchronization of these processes
are provided as well as primitives for their creation and deletion. Above this
level, these processes will constitute a ''virtual processor'' resource pool upon
which other processes (specifically user processes) may be defined and allocated.
This abstraction is similar to a virtual processor implementation recently pro-
posed by D. Reed at MIT. g

Leve1>3: Multilevel Storage Management

Level 3 defines resource pools and allocation primitives to provide for
multiple levels of physical storage. Pools of pageframe resources are de-
fined both for secondary (probably bulk core) and tertiary (probably disk)
physical storage. The concept of segments whose (physical) storage is not
(entirely) in primary memory is defined. This level defines sufficient pri-
mitives such that pagefault handlers can be constructed.

Level 4: Active Segment Management

Level 4 defines the concept of inactive segments: segments whose
attributes are not currently in primary memory. A resource pool of active
segment names (all of whose attributes are in primary memory) and resource
management primitives are defined. The concept of a directory as a set of
inactive segments (and their attributes), of which some may be themselves
directories, (ordered as a n-ary tree) is defined. This concept allows the
addressing of the attributes of an inactive segment (including its associated
data) by an m~tuple, where each element, k, is a local name within the k-1th
element denoting an attribute set of an inactive segment. A segment termed
the root is an implied zero-th element. All elements k (o £ k < m) must be
directories. This level provides sufficient mechanisms so that segment faults
may be resolved (through the activation of the segment labeled by an m~tuple).

Level 5: SFEP Interface

Level 5 defines the inter-computer communications protocol to be used
between the kernels of Secure Front End Processors and Multics. Sufficient
information and operations are defined so that SFEP (Multics) interrupt handlers
can be constructed.

Level 6: Security Kernel Perimeter

Level 6 defines the user observable behavior of the Multics security
kernel. Multics Design Notes #6, #7, and #11 define the component specifica-
tions for external I/O, process control, and storage control.

