e -0y

PROJECT GUARDIAN o A
TECHNICAL COORDINATION LETTER R
Date: 27 January 1976
To: Contracting Officer TCL No: 13
HQ ESD/MCP __ »
Hanscom Air Force Base Contract No: F19628-74-C-0193

Bedford, Mass. 01731
Attention: C. E. Fenton, Captain, USAF

Subject: PL/I As A System Programming Language For
A Certifiable Multics - January 26, 1976

The attached technical note prov1des the above listed report as
prepared by R. Feiertag.

The memo addresses the problem of identifying a suitable pro-

- gramming language for implementing a certificable Multics systen.
Tables 1, 2, and 3 are provided to list the acceptability of data
types, storage classes and statements, respectively.

I1f there are any questions, please contact the undersigned or Mr.
N. Adleman in our Cambrldge, Massachusetts offlce.

Very truly yours,
HONEYWELL INFORMATION SYSTEMS INC.

R. L. Carlson
Contract Specialist

RLC/meb
Attachment

cc: ESD/MCI (5)
MITRE-D73, Mr. E. Burke (5)
RADC/ISM (3)
NSA/R14 (3)
AFDSC/XMS (2)
JTSA (5)

01/26/76

PL/I AS A SYSTEM PROGRAMMING LANGUAGE FOR A CERTIFIABLE MULTICS
R. Feiertag

This memo addresses the problem of identifying a suitable
programming language for implementing a certifiable Multics
system. The language must meet the following goals: ‘

1. The language must be suitable for use in the hierarchical
structure used in proving that the system is secure. The
langquage must be able to support hierarchical levels of

"..abstraction with.interaction between the levels being
restricted to procedure and function calls only. The
language should support data abstractons, e.g., each level
should be able to create data objects that can be passed to
higher levels, but can be operated upon only by" functlons

. of the creating level.

2. Programs written in the language must be able to be proven
consistent with the system specifications, using

. contemporary program verification techniques. :

3. The language must be suitable for implementing programs of
an operating system, namely Multics, i.e., it must have
language features suitable for system programs.

_ The PL/I language clearly meets the third goal because the
Multics system is already written mostly in PL/I. However, PL/I
does not meet either of the first two goals. The remainder of
this memo discusses the possibility of modifying the PL/I
language so that it can meet the first two goals without

. sacrificing the third goal. An additional constraint to the
modifications of the PL/I language is that the modifications
should not require extensive rewriting of exlstlng Multics
programs. An alternative to the use of PL/I is to come up with
another language, be it an entlrely new, existing, or a modified
existing language. However, there is no existing language that
demonstrably meets all three goals. Developing an entirely new
language requires a large effort. Whatever new language might be
chosen, the Multics system would have to be entirely recoded.

. For these reasons, a suitably modified version of PL/I is a -
reasonable alternative.

In general, the modifications to PL/1 1nvolve e11m1nat1ng
some language constructs and restricting some others. The
eliminations and restrictions are summarized in Tables 1, 2, and
3. The philosophy of elimination is to include in the modified
language only those features which are necessary for Multics
system programming. Unnecessary features should be eliminated.
Thercfore, features such as PL/I I/0 and pictures are eliminated.
The restrictions on the language constructs will be discussed
later in this document.

Expressions
‘ Expressions are acceptable constructs. The following
operators may be used in expressions: _

+, =0 X0 /4 **, v‘r e =0 T=4 & 7< >0 ™, <=, >=, &, |

Conversions
In general,‘conversions between data types should be
allowed. However, as is the current practice, all conversion

between data types should be done explicitly using the
appropriate built-in functions. ' This makes building an automatic
verifier easier, since the verifier does not have to know the
-implicit conversion rules. Only conversions defined explicitly

.. by the PL/I language should be permitted. Implementation

dependent conversions such as the "unspec" built-in functions and
‘pseudobuilt-in and the mismatched overlaying of based variables
‘should not be allowed. ‘It is very difficult to build a verifier
which can place a proper semantic 1nterpretat10n upon these
conversions.

-The number of different kinds . of conversion between data
types should be minimized. Each conversion makes verification
- slightly more difficult. Very little, if any, type conversion
should be necessary in the Multics kernel.

- Implicit conversion between data of the same type, but _
~different prec151on, is allowed. It is 51mp1er than conversion
between types and is harder to avoid.

In all arithmetic data, fixed numbers are preferable to
floating numbers because fixed values do not have a truncation
and round-off problem. It would be nice if float could be
eliminated altogether from the kernel, but this is probably not
posSLble. ‘

vP01nters o

= In general, in order to ‘to bu1ld a- verlflet that can

>~properly interpret references using different types of based
variables qualified by the same pointer, the verifier must S

. understand the implementation of the language as well as the

- definition of the language. The necessity of using knowledge of

- the implementation 51gn1f1cant1y complicates the verification:

‘process, making verification of programs using such constructs
.nearly impossible with contemporary techniques. To make :
verification possible, pointers should be typed so that a pointer
.can qualify only one type of based variable. .To accomplish
typing of pointers, the following informally stated rules should
be added to the language regarding pointers:)

1. Any pointer value used as a qualifier in a based reference
must have a type, and that type must be identical to the
type of the based variable being qualified.

2. The type of a pointer value identified by a pointer
variable is the type of the pointer variable.

3. The type of a pointer value returned by the addr built- in

[y

function is the type of the argument to the function.
4. All pointer values must have a type.
5. All pointer variables must have one and only one type.
6. The type of a pointer variable is the type of the based
. variable whose declaration contains the pointer variable as
the object of the "based" clause. Since cach pointer
variable must have one and only one type, each pointer
variable must appear in one and only one based clause. (It
is theoretically possible for the same pointer variable to
“appear in two based clauses of declaratlons for varlables
.+ 0of the .same type.) - :
7. - A pointer value of .a given type may be a551gned only to a
~ pointer variable of the same type.

8. Pointers are primitive data types and cannot be
subdivided. Therefore, the special built-in functions

“which subdivide a pointer (e.g. baseptr, rel, baseno, and
ptr) are eliminated. (Unfortunately, this rule contradicts

~ goal number 3 above; this problem will be dealt with
below.)

. 9. - The only permissible operation on pointers and pointer
variables are assignment, equality, and qualification.
Therefore, the addrel built-in function is eliminated.

- 10. Declaration of parameter types in an entry declaration

" must include the type of any pointers passed as an

argument. For example: ,

declare doall entry (flxed binary (35),
p01nter (char (32))),

declares doall to be an entry w1th two parameters. the

- first parameter is an integer and the second a p01nter.of
type character string, i. e.r. the pointer must 901nt to a
character string. '

"The above rules are useful in that they assure that all
primitive data values of the language will be interpreted in a
consistent manner. For example, a data value of the integer 5
will always be interpreted as the integer 5 and never as a bit
string, character string, or floating point number. However,
~these rules do not prevent misinterpretation of higher level

abstract data values. For example, one such abstract data value
‘might be a directory entry. A directory entry would be
rTepresented as a structure of more primitive data values.
" "However, under the above rules, it is possible for a directory
entry to be interpreted as something else if that something else
happens to have the identical structure consisting of the same
primitive data types. Representations for different abstract

objects should be considered to be different types even if the
structures which are their representations are identical. There

is no straightforward way of introducing this distinction into
PL/1. One partial solution involves the use of the "like"
attribute. 7Two structures are considered to be of the same type

only if one is declared to be like the other or they are both
declared to be like the same structure. For example, consider
the following structures:

decl 1 a,
2 b fixed bin (35),
2 ¢ bit (36);

dcl 1 d like a; . |
dcl 1l e like a; " | - s o

dcl l1f,
2 g fixed bin (395),
2 h bit (36);

- In this case, a and d would be of the same type, d and e would be
of the same type, however f and a would not be the same type and
neither would £ and 4 nor £ and e. In order for this scheme to
work, all abstract objects would have to be represented as

- structures even if they consist of only. a single primitive
element. The main difficulty with this scheme is that all
structures would be considered as abstract objects, and this is
not always desirable. However, the flaw is not fatal.

In order to implement the hierarchical levels of
abstraction, it is necessary to allow one level to pass a
reference (typed pointer) to an abstract object (represented as a
structure) to a higher level and yet not give the higher level
the ability to access the representation of the object. For
example, page control might create an abstract object which is a
- page table. It may pass a reference to the page table to the
higher level constituting segment control, however, segment
control should not directly access the page table. Segment
control must call page control, giving the reference to the page
table as an argument, in order to gain access to or effect the
page table. This type of encapsulation of data and procedures
exists in CLU and ALPHARD and should exist in the modified PL/I.
Strictly speaking, there should be no legitimate operation which
can be performed at the higher level upon such a reference.
However, it is reasonable to allow equality and assignment of
such ‘references; qualification cannot be allowed at the higher
'level because that would permit the higher level to access the -
representation of the abstract object. Constructs to permit
identification of such references should be included in the
lanquage, i.e., constructs should be. created which permit the
compiler and verifier to distinguish those procedures which
maintain an abstract object and, therefore, may access its
representation, from those procedures which see the object in its
abstract form only and, therefore, can not directly access its
representation. o ‘ ‘

Flow of control

Two types of constructs cause difficulty in the area of flow
of control. These are: (1) labels and gotos and (2) conditions.
In verifying a program containing labels and gotos, each label
must have assertions associated with it that describe the state
of the program for all possible places from which the label can
be transferred to. The use of label variables makes the problem
much worse since a goto with a label variable could transfer to
many different labels. Labels and gotos should, therefore, be
used carefully so that the verification of the program does not
become overly complex. Legitimate uses of gotos and labels might
be as a means of fanning in to common code by a program with many
distinct but similar entry points, or to transfer to a common set
of code that returns to the program's caller with an error code.
However, gotos should not be used to program loops that can be
achieved using a do statement.

An even more difficult problem arises when using a goto to a
label in a different procedure, i.e., a non-local transfer
between procedures. The formalization and verification of such
statements must be considered a research problem. This problem
can probably be solved in the near future, however, such
verification is still likely to be difficult and.non-local
transfers between programs should be avoided.

Similar problems exist for the condition mechanism. As far
as I know, no work has been done.on the verification of programs
that have a condition mechanism. It appears impractical to
eliminate the condition mechanism from the language because it
is used significantly by the system. It is, therefore, clear
that work will have to be done in finding a way of formallzlng
and verlfylng conditions. used carefully.

Protection of levels : ’

In order to maintain the hlerarchlcal system structure,
certain limitations should be placed on a given procedure as to
- what other procedures it can call. Procedures must not call
procedures in higher levels. Also procedures must not call

hidden procedures in lower levels.
' To make it easy to ascertain that only permitted calls are
- made, each procedure should have associated with it the level of
which it is a part. In addition, each entry to a procedure
should have associated with it the highest-level procedure which
may invoke it. Levels should also be associated with entry
‘values which are passed as parameters ar assigned to entry
variables. A call is valid only if the level of the calling
procedure is ' greater than or egual to that of the called
procedure and less than or equal to that of the called entry.

In addition to protecting interlevel calls, it is necessary
to protect interlevel data references. The only legitimate
interlevel data references should be through arquments. Any
other interlevel data references are illegal. One way of
eliminating such interlevel data references is to require that
all data declared in programs be declared internal. This

Prevents any interprocedure data references except through
pointers (the pointer problem has already been dealt with). This
.solution is acceptable, but is more restrictive than necessary.
Two procedures in the same level may legitimately share data. To
accomodate this sharing, external data should be permitted, but
each item of external data must reside at a level. 1In order for
an external data reference by a procedure to be legitimate, the
level of the procedure must be equal to the level of the data.

: ~Note that levels need not necessarily be integers. Names may
. be used to denote levels as long as there is some ordering :
relation for the names. Also the level information need not be
(and probably should not be) included within the progranms
themselves. The level information can be kept separate from the
programs in a separate document. This is useful because the
level information is part of the specifications as well as the
implementation programs and can be used to verify both. Also,
having the level information in a separate central document makes
‘the structure of the hierarchy easier to modify. .

In order to complete the protection of levels, the PL/
lanquage must assure that only legitimate linguistic references
are permitted. This means that array references must be within
array bounds and string references must be within string bounds.
- Therefore, array bounds and string bounds must be checked when
- the arrays and strings are referenced. : _

Built-in functions :

Unless stated below, all the PL/I built-in functions may be
used. However, only those functions which are necessary should
be retained. This is because each function retained must be
formally described to the verifier. If a function is not
necessary, there is no reason to have to formally describe it.
The built-in function "unspec" and the special pointer functions
should be eliminated for reasons stated above.. Elimination of
the unspec function should not create any serious problem,
however, some of the pointer functions are necessary. For
example, the purpose of the Multics "initiate" operation is to
generate a pointer to a segment. The "initiate" operation
requires at least one of the pointer built-in functions in order
to gencrate a pointer. Hopefully, there are very few operations
that need know the internal representation of a pointer, and
these will have to be verified in a special way. Also, since
pictures and PL/I I/0 have been eliminated, built-in functions
relating to these features (such as valid, onfile, and onkey) are
also eliminated. v
' Finally, a few words on the "defined" attribute. The
"defined" attribute permits certain types of. overlaying of data
structures. In general, overlaying should be strongly ,
.discouraged because it is difficult to semantically interpret an
overlay. However, the types of overlaying which can be done
using the defined attribute are limited, so a verifier might be
able to interpret it without excessive difficulty. If the

.defined attribute is necessary, work will have to be done in

6

finding a good formal semantic interpretation for it. The
ultimate retention of the defined attribute will depend upon

whether or not such a good interpretation can be found.

Conclusion

This memo has discussed the problems of mod1fy1ng the PL/I
language so that it is suitable for programming a version of
Multics that can be proven secure. Solutions for some of these
problems have also been discussed. Although not all of the
‘problems have been resolved, the design and implementation of a
modificd PL/I to meet the goals stated at the beginning of this
memo should be possible. Since the modifications discussed here
consist only of restrictions to the language, compliance with the
restrictions can be checked by a preprocessor and no changes to
the PL/I compiler are necessary. However, it may be simpler to
modify the compiler to include the restrictions than to build a
suitable preprocessor. A verifier will have to be constructed to
demonstrate the consistency of the restricted PL/I programs with
the specifications and the level information. Clearly, there are
some difficult problems yet to be resolved and many detalls yet
to be worked out. .

fixed
float

bit string
char string
"offset
pointer
"label
format
entry

file

array
-structure

Acceptability of data types

retained

retained if necessary

retained

retained

eliminated
restricted
restricted
eliminated
restricted
eliminated
restricted
retained

Table 1

automatic
static
controlled
based
parameter
defined

Table 2

Acceptability of storage classes

retained

restricted

eliminated

retained

retained

retained if necessary

allocate
begin
close
~default
do

entry
“free
goto
locate
on

procedure

read

revert
signal

‘_Acceptability of statements

retained
retained.
eliminated
eliminated
retained
retained
retained
restricted
eliminated
restricted
retained
eliminated
restricted
restricted

Table 3

10

assignment

call
declare

delete

end
format
get

if

null
open
put
return
rewrite
write

i

retained
restricted
retained
eliminated
retained
eliminated
eliminated
retained
retained
eliminated
eliminated

~retained

eliminated
eliminated

