QV'Y"‘L"’\
PROJECT GUARDIAN
TECHNICAL COORDINATION LETTER
Date: 27 January 1976
To: Contracting Officer TCL No: 14
HQ ESD/MCP '
Hanscom Air Force Base Contract No: F19628-74-C-0193

Bedford, Mass. 01731
Attention: C. E. Fenton, Captain, USAF
Subject: Preliminary Modularization of Multics - January 26, 1976

The attached technical note provides the above listed report as pre-
pared by R. Feiertag.

Table I and II have been provided to list the "Hierarchical Modu-
larization for Multics" and "Comparison of Multics Hierarchy to
SRI Hierarchy', respectively. A bibliography has also been pro-
vided.

If there are any questions, please contact the undersigned or Mr.
N. Adleman in our Cambridge, Massachusetts office.

Very truly yours,

HONEYWELL INFORMATION SYSTEMS INC.
R. L. Carlson

Contract Specialist

RLC/meb
Attachment

cc: ESD/MCI (5)
MITRE-D73, Mr. E. Burke (5)
RADC/ISM (3)
NSA/R14 (3)
AFDSC/XMS (2)
JTSA (5)

01/26/76

‘Préliminary Modularization of Multics
R. Feiertag

"The following pages describe a preliminary hierarchical
modularization for Multics. Although Multics is fairly well
modularized, the modules are not organized hierarchically. The -
hierarchicalization is desirable in order to permit the proof
methodology (2] to be applied to Multics.

The organization described below represents an attempt to
formulate a hierarchically structured Multics with minimum change
to the existing Multics. The design proposed is, therefore, not
as neat as it could be if one were starting from scratch. Some
areas present especially difficult problems that will be
discussed later in the description.

At this early stage of design, each level is named with a
character string rather than a number. This is because the
levels will change a great deal and numbers would only be
confusing.

The Design , .

The modularization of the system is summarized in Table 1.
Although there appears to be a large number of levels, it is
expected that many of these levels will be combined in the final
design. They are presented separately here so that no important
functions are hidden inside a level. Each level will be
discussed starting with the lowest level.,

Directly Addressable Memory (dam)

This level consists of random-access memory addressable
directly by the processes. The operations are read, write, and
write-conditional. The latter operation is necessary for test
and set instructions. This level is entirely hardware.

Usual Instruction Set (uis)

These operations are simply the standard arithmetic,
logical, transfer, and conditional transfer instructions of the
processor. This level does not include special system
instructions such as those that load the descriptor base
register, or set or mask interrupt cells. This level is entirely
hardware.

Primitive Segments (pseg) :

In Multics all addressing (with the exception of a handful
of instructions in the very early bootstrap stages) is done in
terms of segments. Therefore, some primitive form of
segmentation is necessary at the lowest software level. This
level provides for segments which are contiquous and resident in

primary memory (i.e. non-paged segments). This level must,
therefore, manage descriptor segments. The operations of the
level will include read and write for segments. Since each
Multics address space contains only one descriptor segment, this
level must allow higher levels (namely sseg and seg) to access
some descriptors; however, the descriptors which higher levels
~are allowed to access must be carefully controlled. One
_fundamental problem with the implementation of this level in
Multics is that descriptor segments are paged and the first page
of the descriptor segment for a process is made primary memory
resident only when the process is running. This makes the
implementation of this level very tricky and difficult since both
processes and pages are several levels higher in the hierarchy.
Much thought will be needed about this level. 4

In addition to providing primitive segmentation, this level
will also provide primitive protection. This is done by setting
the ring number fields of the descriptor segment entries for all
primitive segments to 0. This assures that nonsupervisor
programs cannot access the primitive segments. Access control
within ring 0 will have to be accomplished by other means
(perhaps by suitable language restrictions). This level is
implemented as both hardware and software.

‘Interrupts (int)

This level includes the Multics interrupt and fault
mechanisms. These are the means by which processors and other
devices may interrupt processors. The Multics interrupt
‘mechanism is somewhat complex and will probably take some effort
to specify properly. This level will also include some of the
low-level software for handling interrupts and faults such as the
. fault interceptor ‘and interrupt interceptor modules.

Primitive Input/Output (pio) «

The input/output hardware for future Multics has not yet
been precisely determined, however, it should be specified at
about this level. ‘

Low-Level Traffic Control (lltc)
This level corresponds roughly to level 2 of the SRI secure

operating system [l1}. It provides a fixed number of virtual
processes independent of the number of physical processors. It

provides some kind of primitive wait and notify mechanism for
these low-level processes. Hopefully all interrupts, with the
possible exception of the quit and stop interrupts, will be.
invisible above this level. Interrupts will be converted to
notifies. This level is software. '

Low-Level Input/Output (llio) : .
' This: level contains the software for the secondary memories
(e.g. bulk store and disk). It provides sufficient I/0
facilities to perform paging.

The next five levels describe the Multics storage system.
The storage system could be described as a single level, but the
level would be so large in implementation as to be virtually
unverifiable. The breakdown into five levels is an attempt to
find a reasonable modularization that will not necessitate
rewriting the entire storage system. To attain this
modularization, several hard problems will have to be solved
(e.g. quota) and these levels will probably be the most difficult
in the system to design. . c

Paging (pg)

This level implements paging. It is responsible for
allocating and removing pages in primary and secondary memory and
maintaining file maps and page table entries. This level is
implemented as both hardware and software. ‘

System Segments (sseq)

This level has the same purpose as level 3 of the SRI secure
operating system. It provides segments which are used by higher
levels of the supervisor, but not available to users. This
allows higher levels of the supervisor to be paged. This level . -
is both software and hardware.

Segment Access (sacc) :

This level is responsible for maintaining the access
attributes of a segment, namely ring brackets, access control
lists, access isolation mechanism information, etc. These
“functions form a separate level because a sizeable amount of code
is involved and it isolates the security policy, with respect to
segments, in one level. This level is software.

Segments (segq)

This level implements user visible segments. The operations
of the level include read, write, create, delete, etc. on
segments. This level will be responsible for maintaining much of
the information currently kept in the AST, KST (not including
reference names), and descriptor segments. This level is both
software and hardware.

Directories (dir)

This level maintains directories. The operations include
creating, deleting, addlng, removing, and modifying entries, and
searching. This level is implemented as software.

High Level Trafflc Control (hltc)

This level provides user processes and is analogous to level
10 of the SRI operating system. User processes are implemented
in terms of low level processes. Processes can be created,
deleted, blocked, and awakened. This level is implemented as
software.

Input/Output (io)

This level includes the software necessary to maintain the
remaining I/0 devices (i.e. those not reserved for the storage
system). This level is expected to be software and hardware.

The description of the levels is at this time necessarily
vague. Some of the harder problems of the modularization, mainly
the levels of the storage system (dir, segm, sacc, sseg, and pg)
and the int and pseg levels, need much more investigation.

Several important functions of Multics have not been
discussed in the above design. These are reconfiguration; error
detection, correction and reporting; initialization and shutdown;
salvaging; BOS; and accounting and resource management. The
functions of reconflguratlon, error handling,, initialization and
shutdown, and accounting and resource management are largely
distributed through many levels of the operating system with each
level being responsible for these functions as it applies to the
level. Each of these functions will require some kind of central -
facility which will either be a separate level or included in
some other level. The salvager and BOS need to be handled
separately since they do not execute as part of Multics, but they
still need to be verified since they have access to data used by
Multics.

It is interesting to compare the modularization described
above with the SRI operating system. The comparison is
summarized in Table 2. The 1I/0 in the Multics design has no
correspondence in the SRI design because the I/0 part of the SRI
design has not yet been formulated. The significant differences
in the design are due to the different access mechanisms for the
two systems, access lists for Multics and capabilities for SRI.
Levels 8 and 9 of the SRI system have no correspondence in
Multics because, in Multics, dynamic linking is performed outside
the supervisor. There are no extended objects in Multics so
there is no equivalent to level 5.

Level

io
hltc
dir
seg
sacc.
sseg
Pg
1lio
1ltc
int
pseg
pio
uis
dam

Table 1
Hierarchical Modularization for Multics

Brief Description

user visible input/output facxlltles
user processes, :
directories

segments

segment access control

supervisor only segments

paging

input/output facilities for storage system devices
system processes

interrupts and faults

primitive (primary memory resident) segments
input/output hardware

usual instruction set
directly addressable linear memory

. Table 2
Comparison of Multics Hierarchy to SRI Hierarchy

‘Multics SRI

io no correspondence .

hltc level 10

dir level 6

seg levei 4

sacc no correspondencé
sseg level 3

Pg level 3
ilio no correspondence

l1ltce level 2

~int level O
pseg no correspondence
pio no correspoﬁdencé
uis level 1
dam - levei 0

Bibliography

{1 Neumann, P.G., Robinson, L., Levitt, K.N., Boyer, R.S.,

[2]

Saxena, A.R., A Provably Secure Operating System, Stanford
Research Institute, Menlo Park, Ca., June, 1975 -

Robinson, L., Levitt, K.N., Neumann, P.G., Saxena, A.K., On
Attaining Reliable Software for a Secure Operating System,
Proceedings International Conference on Reliable Software,
SIGPLAN NOTICES, vol. 10, no. 6, June 1975, pp. 267-284. A
revised and extended version is being published under the
title, A Formal Methodology for the Design of Operating
System Software, in R. T. Yeh (ed), CURRENT TRENDS IN
PROGRAMMING METHODOLOGY, vol. 1 (Prentice-Hall, 1976).

