clﬁl.‘l.l'l

L Honeywell O fed Ve

_ PROJECT GUARDIAN
| TECHNICAL COORDINATION LETTER

| ‘.Datei 30 January 1976

TO: Contracting Officer TCL No: 15
HQ/ESD/MCP : : . .
Hanscom AFB Contract No: F19628-74-C-0193

Bedford, Mass. 01731

Attention: C. E. Fenton, Captain, USAF

Subject: Prototype Secure Multics - External I/0
Functional Description - .

The attached technical note describes a preliminary study
of I/0 services in a prototype Secure Multics System. Work
in this area will continue during the next phase of the

Guardian Project. . .

'If there are any questions, please contact the undersigned or
Mr. N. Adleman at our Cambridge, Massachusetts office.

. Very truly yours,
HONEYWELL INFORMATION SYSTEMS, INC.

R. L. Carlson '
Contract Specialist

Attachment

cc: ESD/MCI (S) ,
"~ MITRE/D73, Mr. E. Burke (5)
RADC/ISM (3)
NSA/R14 (3)
AFDSC/XMS (2)
JTSA (5)

J

PROJECT GUARODIAN

PROTOTYPE SECURE MULTICS

EXTERNAL I/0 FUNCTIONAL DESCRIPTION Mﬂwﬁv /,

oAlid s

Technical Note
Preliminary Oraft

January 31, 1976

prepared for

Department of the Air fForce
Electronic Systems Olvision
Hanscom Air Forca Base
Bedford, Massachusetts 01731

contract Noe F19628-7§-C-0193

Honeywell Information Systemss, Ince
Federal Systems Operations
7900 Hestpark Orive
Mclean,y, Virglnla 22101%

Honeywell. | Lo a-praft 1-31-76

Contents

1. Introduct1§n to Secure Mult1¢§ External I/0 -
1.1 Purpose
iei.1 Model Development
112 Top-Level Kernal Design Descriptlohs
1.2 Scope
1.2.1 External I/0 only - -

1¢2.2 Networks not covered

2¢ References

3. External 1/0 In a Secure Multlics
3.1 General Definitions
3.2 General Security Prlnclples
3.3 General Englneering Princinies
3.4 SFEP External I/0
3e4e1 Scope
3«42 Baslic Concepts
3.4.2.1 Kerne! Provides Virtual Devlice Interface
3.4.2.2 All Devlice-to-Process Asslgnments by Kernél
3e.4e2.3 Single-Level Communication
" 3ehe2e.4 No Sharing of Devices

3s4¢2.5 Multiple Devices Per Process

3.e2.6 Namlng ot Devices

Honeywell Oraft 1-31-76

- 3ele2¢7 Kernel Valldates References
3.u;z.a Transparency of Functlonal Spllt
3ehe2.8 Multics - FEP Communication 1s Internal I/0
3ehe2.9 vCode Coﬁverslon Outslde Kernel
3e4e2.10 Stream Orlentation and Synchronlzation
3e4ke2+41 Read Dellmlters |
| 3e4e3 Functlional Description
3e4e3.1 Attributes Malntalned by Kernel
3e4e3.2 1Initial State |
3e4¢3.3 User Process Operations on Virtual Device
Jele3+3.1 Read
3ehe3+3.2 Hrlte
3elke3.3.3 Abort
3elUe3e 34 Unasslgn
3e4e3e3e5 Control
3eke3e3.6 Status
3i4e3.4 Virtual Device Operatlons
Jelkte3e4e1l Hakeup
3elhe3elte2 Slignal (Qult)
3.5 1IOM External I/0
351 1I0M Deflnitlons
3e5.2 IOM Princliples
3.5.3 I0M Model -
3¢5e¢301 Descflpflon of IOM Model
3¢5.3.2 Top-Level Soeciticatlon of IOM Model

305e30201 'Functlons avallable to a Multlcs proc

Honeywe 1 - Draft 1-31-76

iy

g 3.5.3-2.2.VFunéf16ns ;Qallaﬁié fo a'bﬁoéé;s 6h 1
3.5.3.3 Block Diagram of IOM Model it
3.5.4 IOM Implementation o
3.6 Performance Evaluation Estimate

3.7 Impact on Existing I/0 programs

Honeywel!l o ' Oraft 1-31-76 °

‘4o INTRODUCTION TO SECURE MULTICS. EXTERNAL I/0

41¢1 Purpose

1¢1e1 Model Development

The Initial step In developing a design to support secure
external I/0 for a secure Multics lIs to develop abstract
models ftor how external I/0 |s to be performed. From an
englneering viewpoint, these models must provide adequate
functionatity to altow externat 1I/0 fto be performed
efflciently, economically, and convenlentliy. from a
securlty viewpolnt, these models must provlide complete
medlation of all references to Information In the system
virtual memory and to external I/0 devilcess, must ldentlfy
the functlons performed by the protected kernel to ensure
thls medlation, and must lead to a kernel implementation
that iIs simple enough to be certlfled by currently avallable
nethods. : :

This - document . presents abstract models that satlisfy these
requlrements. These are not the only models possible.
- However, they do lead to deslgns and Implementations that
" are minimatly different from the current Multics
implementatlion, and therefore have demonstrated thelir
usefulness and feaslbility in a real environment.

Speclflcally, two dlfferent approaches fto secure external
I/0 are modefed separately, because they provliage
fundamentally different primitive operationse. For many
types of external I70, partlcuilarily those 1Involving

 hlgh-speed perlpheral storage devices, high bandwidth
channels and tltow-level program control! need to be avalable

. at the user lnterface. For other types of external 1/0,
particulariy communications-oriented 1I/0, simpilcity of use
and economlc sharing of scarce system resources are the
overriding requirementss These two sets of requirements are
sufficiently dissimilar that a common model and mechanlsm to -
handte both nould requlre excesslve generatlty and
complexlty withln the kernele.

1e1.2 Top-Level Kernal Deslén Oescrlptlon.

Glven models that are sufflclent, the next s tep in
developing secure external I/0 ls to specify in some detall
the semantlcs of kernel functions avallable at the kernel
- Interface to uncertlifled actlve agents, such as Multlcs

-~

Honeywell Oraft 1-31-76

processes and devlce control code on auxlilary processors.

Descriptlions of all necessary kerne! functions are
presentede. The descriptlons are Intended primarlly to
demonstrate the sufficiency of the functlons choseny from
both securlty and englineering viewpoints. Therefores they
Include both Interface detalls and some Indicatlons of
expected use and Implementatione.

1.2 Scope.

"4e2s1 External I/0.only.

The models and descrlptlions apply only to external 1/0,
whlch lIncludes the movement of Informatlon between the
uncertiflied user environment {(running in the virtuyal memory)
and I/0 devices outside the system sSecurlty oerimeter.
Other 1/0 operatlons within the kernel, between kernel and
user processes only, and between kernel and exfernal I/0
devices are not external I/0 operations and are outslde the
scope of these modelse.

1202 Nétworks not covered.

Secure communication and Inter-computer networks are on the
technical horizon. However, the fuynctional and security
" requlrements for integrating such netnorks 1Into a secure
Multics system ‘are not yet suftlclently well understood to
make modeling network functlons cproductive. Therefore,
there ls no expllclt mention of networks or network
functlionallty. : :

These desligns do not, however, preclude the bullding of
securey, multl-tevel or slngle level network functions on top
of, or as an adjunct to the secure I/0 deslgns presented.

Honeywell

*2¢ REFERENCES

In preparatione

Draft. 1-31-76 -

Honeywell Oratt 41-31-76 ~
3« EXTERNAL I/7O0 IN A SECURE MULTICS
3¢1 General Definitlonse.

External 1/0

All 170 requested by uncertifled (non-kernal) software.
For the purposes of thls report, external I/0 s spllit
Into two typest IOM I/0 and SFEP 1I/0. A dlistinctlon
may also be made between the two togical types of
external I/0s namely, communlcatlon I/0 and peripheral

1/0.

I0OM I/0
All I/0 performed by the I/0 Multiplexer (IOM). The
IOM 1ls peripheral-orlented (lits protocols are optimized
for perlipheral control) but not restr icted to
perlpheralse.

SFEP I/0

Alt 1/0 performed by the secure front-end processor
(SFEP). The SFEP s communlcation=-oriented (its
protocols are optimized for communlcatlon control) but
not restricted to communicatione '

Communicatlons I/0

All I/0 pertormed for the opurpose of communication
pbetween Multics and an iIntetligent (thinking, not
smart) device or person. Thils Includes terminals,
networks, programmable terminals, etce.

s —————————

Per ipheral 170

Atl I/70 pertormed for the purpose of transfering stored
Information to (from) a recording medium from (to)
Multlcse.

170 Processor

A stored-progranm controlled machlne speciflcally
designed to control the transfer of datg batween main
memory ana I/0 devicess It is a separate processor for

‘.Honevuell Draft 41-31-76 °

reasons of efflclency; the maln c¢cpu can run In
paratlel wlth the I/0 processor. In thls report, the
I1/0 processor lncludes all hardware between Multlcs and
‘the actual device (i.eey Lt Includes both the IOM and
MPC*s). : . .

I7/0 Progranm

The sequence of Instructlons to be executed by an 1/0
processoras

I/0 Process

The comblnation of an address space and executlon
polnt. The address space has a princliple ldentitler, a
securlty tevely an integrity levely, and a ring number.
The objects In the address space are maln memory
Jfocations and devlce Jocationse An I/0 process ls to
the 170 processor as a Multics oprocess 1Is to the
Multlcs processors

I/0 Device

Any electronlc devlce capable of receliving and
transmitting data to and from an I/0 processore

Secure 1/0

I/0 Is secure If and onty if any I/0 program can be
executed by the I/0 processor without violating the
securlty model (no unauthorjized access to IiInformation,
no unauthorized release of informatior).

Mul tlplexed I/0

A type of 1I/0 In which several I/0 devices share the
same physical connectlon to the I/0 processory and the
I/70 processor can distinguish each of them. It is not
multiplexed I/70 If the I/0 processor cannot distlingulsh
each devicee. o

Honeywell ' Draft 1-31-76
3.2 General Securlty Principles.

3.2.1 External I/0 devlices lnherently read/write from agl,ov
securlty viewpoint. a Auwm£¢b

We are speclfically excluding from thils study read-only or
wrlte-only devices because we do not belleve they existe In

order to have effective control over a device (or to ‘ j -
communicate effectively with a device) some sort of(5§52§§§<_§yzwx
protocol Is necessarye. As soon as such a protocol 1s edy

both readlng and writlng ls taklng place. .

3.2.2 No simultaneous sharing of external I/0 devices
‘between processes.

. Thls report restricts I/0 davices to be attached by a slngle
process at a time. This [Is done (1) Dbecause the current
Implementation does so, 3and (2) 1t does not seem to be .
necessary or useful. This res i restly sl esY,z,Aézw
the securlty model as well. :

—

3¢2¢3 Valldatlon of media handling (l.e.s tape mounts) done
outside system. :

While the software may make some simple valldity checks on
tape reels and disk packs mounted by the operator, there is
no foolproof way to be certain that the operator has not
mounted the wrong onee. Approprlate installation procedures
will have to be used to enforce security constraints on tape
reels and disk packss

3.2.4 I/0 program must be valldatéd by hardware onlye.

The Is the most stringent requlrement of the deslign.
Experlence has shown that I/0 programs are difflcult to
vallidate In software, and so even though we might, in
theory, be able to prove that we can correctiy valldate all
possible I/0 programs, we have ruled It oute Another reason
for requiring that the hardware do the validatlion is that it
avolds dupllicatlon of functlon? the hardware s already
performlng (some) valldatlon of the 1I/0 program, and any
software mwould have to duplicate (possibly incorrectly)
these hardware checkse Thls requlrement also forces wus to
devetlop a clear model of exactly what must be valldated, and
hows so that we can direct the hardware designerse

Honeywell - Dratt 1=31-76
w.3e2¢5 1/0 design must be provables '
In order to meet Guardlan®s goal of a provably correcf'
kernel, we must be able to prove the correctness of that

part of the kernel that manages external I/0. The purpose
of this report ls to develop a deslgn that meets thls goal.

10

Honeywell Oratt 1-31-76

" 3.3 General Englneering Princlples.

3.3.1 Two mechanlsms needed for efflclency and .]
compatibliityt SFEP & IOM. ' .‘ P
U

mechanisms are needed to handie external 170 efficlently and
wlth as litfle change as possible to the existlng hardware /et
and software of Multics. Any design that Is less efficlent ' adm
that the present one Is wunacceptable In terms ofy f“,ﬁv
performance, and any deslign that ™ requires major hardwareéwfiég¢§
changes ls unacceptable in terms of tlme and money. Multicswﬁ”g@
currently uUses—an—IOM for high-speed, perloheral-orlentedé¢oﬂw]
I/0, and a DataNet 355 for jow=-to=-medium speedy
communication-oriented I/0. A front-end processor Is needed
‘because the IOM cannot handle termlinal channels, and because 43//
there is no other -GIOC-like device that can. But the ¥’
front-end processor cannot handle per ipheral I/0
efficlently; 1t cannot handle the bandwldth required for

dlsks and tapese

A fundamental polnt of thls deslgn Is that two orimitlve),,;N,ZZ
et

3«32 IOM provides effl;lent direct 1/0.

The I0M primarlly handles hlgh=-bandwldth,
perlpheral-orlented devicess It Is capable of handlling any
device that can be plugged into ity whether u,lt be
communications or peripheral. Multics allows Jser-ring /
programs to wrlte I/0 programs that are executed by the IOM.

3.3.3 SFEP provides efflclent communicatlon-oriented 1/0.

The SFEP handlies fon=to-medjium bandwldth,
communlcatlons-orlented devices.s It ls capable of handilng
any device that can be plugged Into ite whether 1t be
communicatlons or peripheral. 8ut It s definitely not
deslgned for high-bandwidth devices. At this time It iIs an
unresofved lssue as to whether Multics will atlow user=ring
programs f(on the Multlcs end) to write programs to be
executed on the SFEP. But, no matter who writes the SFEP
user-ring programs, the SFEP kernel wlil treat them 3all the’/ﬁ gLy

SaMmee.)
| W75 1
. m =
3.3.4 Few modifications fto IOM. s&?> o

The scope of the present Guardlan effort does not allon the
design of a completely new I/0 processor. Slince thls Is a
prototype system, and since both tlime and the budget are
severely constralned, we want to make only those changes

11

Honeywel | ' . Oraft 1-31-76 -

‘ ¢+hat are absolutely necessary to the IOM hardware. The IOM
is suftliclentiy flexible (and suftfliciently correct) that
only a few minor modificatlons will be needed. But they
wlil be neeaed} without them we cannot achleve the goal of
no software valldation of 1/0 programse It ls hoped that
these changes nill be useful for the stindard IOM, and wlll

€ nto Ity but thls cannot be guaranteed.
—_—

3¢3.5 No modlflcatlons to I/0 devlices.

Hhile the 1/0 devices (In particular, the microprogrammed
I/0 devices) wilt have to be certlfled to be non=-mallclous,
1t would be uneconomlcal to propose a design that required

* modlfying exlisting Honeywell peripherals and terminalse.
Fortunately, such changes are not necessary, and none are
proposede.

3.3.6 Few changes to the user Interface.

Since there 1s a large lnvestment in exlsting software for
Hultlcs, and since these programs depend on the current user
Interface (the lox_ level, primarily) we want aftl changes to
be Invisible at this level. Thus, we will not Introduce any
incompatible changes to the user Interface of 1/0.

3.3.7 Other considerations.

Ne would tike the deslign to be slmple. We would 1tlke to
remaln compatible with the Standard Product\Mulflcs.

(4
.2 /./

Honeywel ' braft 1-31-76 °

3.4 SFEP Exter~nal I/0

B . BES .
Thls sectlon describes Dbaslc .éoncepfs and presents a
_functlonal! aescriptlion of a kernel Interface for pearforming
external I/0 between an uncertified Multics user process and

an external I/0 device vla a tront-end processor. The

deslgn supports user and supervisor Interfaces that are\ﬂuﬂwgé
?lgg;¥,~slm1|acﬂ to the current Multlcs user and supervisor
Interfaces for communlicatlons external I/0. : A

3e4e1 Scope

g’,%,/m

N

There ls no fundamental reason why a secure external 1/0
mechanlsm using a front-end processor (FEP) could not be
deslgned to handle both comrmunications-oriented and
perlipheral-orjiented external I17/0. However, another secure
mechanism not involving a FEP is avallable that is ftlexible
. and efficient (because of hardware valldatlon) for

perlpheral external I/0. Theretfore, the deslgn presented iIn
thls section is intended only to sup ot Ccommun-tcations

orlented external I/0 operatlonse o

The function of the security kernel In communfcatlions
external I/0 Is that of trusted intermedlary actling on
behalf of and at the expliclt reauest of two untrusted
active agents: the uncertifled user process in Multics and
the uncertlfled device control code 1In the FEP. This
functfional descrilption wili focus on the Multlcs
process~-to-kernel interface onlye. The kernel-to-device
control code Intérface ls descrlbed elsewhere.

In the course of Its other functions, the kernel performs, ,Zéé;
on Its own Initlative, many I/0-ilke operations wlth
communlcatlons devlces; namely dlalup, logln/dlal, user-=|d
authentication, security level valldationy and telephone
hangup processings It s important to note that these
activities 3are not external I/0 because they do not Involve
the transfer of data orlginating outslde tre kernal between
an uncertlfied user process and a device. Therefore, this
deslogn 1s not Intended to support these activitiese.
Clearly, these operatlons Involve the transfer of data on
whlch security declsions are based, and therefore must be
done securelye. However, these lssues are substantlally
dlifferent from those of actual external I/0.

3.442 Baslc Concepts
This sectlon Is Intended to provide an overviewx for the

speciflc design describede.

13

Honevnéll(Oratft 1-31-76'

" Belhe2e1 Kernel Provldes Virtual Oevice Interface

The functlon of the kernel In FEP external I/0 Is to present Awﬁ?§7

a “virtual device" Interface to a user process, as deplcted
in gig;;ﬁfi_ﬁ;ggjgi;_ The user process may communicate with
thi Ual device vlia a restricted protocol ot direct
calls to kernel functlonse. The virtual device may
communicate with the process by changing the process®
executlon state and/or control polnt 1In ways that _ace
defined outslde the external I/0 path. The operatlions

“across —this interface deflne the nature of Mul tics
communicatlons I/0 via a FEP.

Thlis Interface is somewhat asymmetrlical. Tha process is
viewed as being In control of the device. The kernel and/or
device control code on the FEP must provide all bufferling
and prlority routing necessary to support thls inter face.

Jelke2e2 All Device=to-Process Asslgnments Performed by
Kernel

: mmunlicatlons external I/0 there Is no concepnt of a
user proces ing to have a device asslq_gﬂ_lg_L__

w4

“This function Is perfor v within the kernel as "
part of logln/dlal processling. ’ L'/
3e4e2e3 Single-Level Communication ;:f .

The communlcations external 1I/0 interface suoports onlvz)

single-security-level communlications. That s userf?’b

process may always perform all avallable functlons,
particulary reading and writing, on a communlications devlcefi
assigned to It by the kerneles Put another way, the securlty
and ntegrity| levels of a communications device are always ’
equal_to the corresponding levels of the process using It.

3ebe2e4 No Sharing of Devices

beling used by any process, or being used by one processes A
device may not be used by more than one process at a timee
(Sharling of devices Is accompllished outslide the kernel via
Interprocess communicatlon between Multlcs user processess)
The kernel —guarantees that only one orocess may use each
"device at a time. o —
M

3e4e2e5 Muitlpie Devices Per Process

A communications device is always In one of two states! noszzgzg
l‘ 14/ ¢

The kernet! will allow one process to wuse more than one
communications devlice simultaneousiye All devices used by a
process -have the same security and Integrlty levels as the
processSe : ‘

14

Honeywell Oraft 4-31-76 °

3.402.6 Naming of Devices

The kernel performs all asslgnments of communlicatlons
devices to processes., No process may use & device currently
being used by another processs Thus, globally unlque device
names do not need to be visibie to Mul tics user processeSey*
Each process maintains Its own 1ist of (possibly) tocal L)

names of communications devices It ls usirngy to distingulsh“ il a /
between the devices at the kernel Intertace. Efflclencyzpﬂ],

.__-—-—\' ; [
Jssues dictate whether or not the device names at the kernel o Ly
Interface are in fact globale [égﬂ. '
3.he2.7 Kernel Valldates References , Ad,ﬂaﬁL

The kernel valldates each raference to a device by a process
by verifying that the process has oeen previously
established as the using process of the device. The kernel
valldates each reference by a device to a process by
directing all references by a device to Its previously
established using processe.

Transoarencv of Functlonal Spilt

4/ The split of functlon betmeen the Multlcs and FEP kernels ls
Invisible, except for performance, to the Multics user
process and the FEP uncertified codee.

The spllt of functlon between the kernel and FEP uncertlfledl/ yﬁ
code ls transparent to the Multlics user process.

Multics - FEP Commynicatlon s Internal I/0

hagement of channels and buffers for communlcaflon’déﬁ
. between the Multics and FEP kerneis 1Is hidden entirelydhf
within the kernel. Avallable hardware, and efflclency and7ww,ym
code slze and complexlity issues determine the character of

thls Interfaces ;{

" 3eke2.9 Code Converslon Outside Kernel

All conversion betwen Multics standard ASCII character code
and other character codes, canonlcallzatlions, escaping, and
Insertion of spacing and timing characters can be done
outside the kernel. Efficlency issues determine how these
functlons are spllt between the Multlcs user process and the
FEP uncertlfied codee. .

Good human englneerlng for fogln and authenticatlon
dlalogues between the kernel and communicat fons devices may
require that some code converslon be performed wlthin the
kernel. The extent of common code and tables between this
- function and user code conversion depends on the slze and

15

\ .) . ‘e

Honeywell ' | Lo e ‘.3;”4«~Draft 1-31-76

certiflablilty of code converslon algorithms, and whether 5 :

tayering ls possible to allon some code converslpn in thg_

kernel.

3ebe2.10 Stream Orientation and Svnchrbnizétlbn

The Interfaces for reading and nrltlng data are'

stream=orlented. That 1ls, characters are read by the
process ln approximately the order input on the real device,
and characters are output to the real device 1In
approximately the order wrltten by the processSs

The data (read, wrlte) Interfaces are partly asynchronous In
that read-ahead (input characters are buffered behind the
kernel-to-process Interface before the process requests
them) and write-behind (output characters are butfered untll
they can actually be written) are supporteds

The control Interfaces are hilghly svnchronous. There Is no

notlon of queued control operations = they take effect
. before the requesting process regains control.

3e4e¢2411 Read DOellmlters

For data reading operatlons, the kernel wlil recognize a
wgetlmeter®™ character to dellimit loglically separate units of

Input so that they may be read one at a time by the Muitics ’
i+

processe.

16

W,

/1,4

v

v

Honeywell Oraft 41-31=76 ~

Flgure 3.4s2.1.1 The kernel presents a
virtual device Interface to a user grocess

17 L

noneyuezt oraft 1-31-76 ~

<. -Selted Functlional Descrliption

3e4e3¢1 Attrlbutes Malntalned by Kernel
' ; (o
The kernel malntalns several security-retated attributes ¢ﬁ/ Ldé
usea“Tn the valldatlion of communicatlons external Iloéﬂﬁ%dpt
operationse. :

d - This unlquely identltles a process at any
Instant of tlime, and Is constant tfor the (lfe of the ;
© processSe.

device ld - Thls unlquely identlfles a device (or lts;

connection point to the system for dial=-up tines), and ls‘

“constant for the duratlion of lIts use by a process {al though

1t may In fact be constant for a longer time). (Thls'__;‘ﬁg ‘&

not-be the process-local name for the device.) pqﬁ;JW
a .

j
uslog orecess_id_for each device id - This 1s the routlng fgi
Information against nhich the kernel valldates I/0 1;3*

operatlionss

4

1

event_channel number_for each device ld = This 1Is the IPC "

event channel over whicnh the device may stimulate the using
processSe :

Process lds and device Ids may be vislble outslde the
kernele. There IS no reason why the using process ld or
event channe! number of a glven device ld should bde vislble
outslde the kernel.

Other securlty ‘and access control related attrlbutes of
processes and devlices are malntalned by the kernejd, but are

not used in the valldation or routing of actual 170
operatlionse.

3e4e3.2 Injitial State

Process and device may not communlcate with each other until
the kernel has completed the setup of an initial state.
This state holds untll the process or device makes 3 non=-I/0
request to the kernel to end the asslgnmente.

The Inltial state ls defined by the following?

1e The usling process ld is establlshed for the device ld.

2. The event channel number |s establlshed for the device
lde '

18

Honeywel ' L . Draft 1-31-76

3. The process has a name by which it may refer to 'the -

device at_the kernel Interfacee.
4he The process‘has a handler for signais (quits).

s, For code converslon and mode functlons pertorhed by the
kernel, inltlial tables andg values have been
estabtllshed. '

6. A read dellmeter has been chosen for thls devicee.

3.4e3.3 User Process Operatlions on Virtual Device

The Multlics user process may perform the foltowlng functlons on
the virtual device:

read (some data)

wrlte (some data)

" abort (some concurrent data read or wrilte)-
unasslgn (termlinate the connection)

control

status

These are described 1In detal(below both intormajily and In a
Parnas-llke verbal notatlone.

All tunctlons take a device name as a parametery, and have 3
common exception condlitlon for valldatlor abbreviated as
NOT-ASSIGNED, deflined as elther the device name suppllea 1s not
valld (does not correspond to a device), or the callilng process
is not recorded in the kernel as the ‘uslng process for this
device. :

Selhe3e301 Read h

Ihls OV-functlon reads some data from the virtual devlice. The
max imum amount of data to be read iIs speclified as an argument,
The functlon returns to the calter any pending lnput from the
device up to and Including the flrst read dellwmeter character
encountered, If the kernel does not yet have a complete unit of
data yet {(no read dellmeter in lts butter for thls device vyet),
the call returns with no datae If the supplled buffer iIs smaller
than the flrst unit of data, 3s much data as wlll flt is read.
(It Is assumed that the supervisor will map this Interface Into
the more natural user Interface read call that returns only when
a unit of Input aata 1ls readys.) ' ’

19

-

Honeywell Dratt 1-31-76 °

More formally

Q¥-functlont read
parameters? device name : - . : :
buf fer address 46;?/

butfer size

exceptlonss NOT-ASSIGNED 29
no input from thls device vet _
zero length buffer d%;a—
Jo
yvalyest atll characters of pending lnput up to and/, yzouj
. : Including the flrst dellreter, or mﬁﬁ,&#f /
. _ : puffer size, whichever ls smalfere. é;’%%iL;Jy

'a status code Indlcating whether the & Mﬂﬁmj

the number of characters read Eb”“ QAL .o

ﬂ%%l g

' ' Iy J}h

effect? the number of characters read are dlscardej/%jZijd

buffer was large enoughe

from kernel buffers.

elhe3e3e2 Hrite

Thls O-functlon wrltes a buffer of data to the virtual devices
This tunctlon returns to the caller when the virtual device ;i
/
ey

(I-e.:/hgﬂﬂgL_nuilacg)_Qgg_lgg_ggla. —

Q=tunctiont wrlfte

parametecs? - devilce name
puffer address

buffer slze jé
exception? NOT-ASSI GNED - | 2o %
o S : ;ﬁéd«xgnw
effects the butfer of characters 1ls queued °9hlndgﬁ=..14
characters for previous write calls, and(&

1,

Is eventually output to the device.
3.“.3.3-3 Abort

This generlc O-function ls really three similar O-functlons *to
abort pending read operations, write operatiors, or nothe Thls
function recognizes that actual input and outout operations go on
In parallel with the intended or requestling processsy and aborts
them, flushing out any Qqueued data. Whether these functions
extend to buffering outslide the kernei{ In the FEP depends on the
nature of the FEP kernel Interface.

20

‘e

Honeywel | Draft 4-31-76

Q=tunctionst - abort_read
. abort_write
abort_al i
pacameter! device name ' g
! P
exceptlon!? NOT-ASSIGNED V@ @Lﬁ,
effects al! pending operations of the Indicated udﬂ- kifﬂj
type for this devlce are stopped, A% ﬁbo A

all reltated queues are flushed, and)
kernel resources used by these operatlons
are freed.

Selbea3e3els UhaSSIQD

Thls O-functlon Is a request by the process to the kernel to
_destroy the communication path with a device. It 1s 1ncluded
here because It is an explicit request made by the process
(unllke login/dlal etc. that are requested by a device before |t
Is connected to the user process environment).

Since a device may be assigned to only one process at a time,
thls functlion returns the device to the state where 1t must
re~negotlate wlth the kernel to be assigned to a new processs
Tno verslons of thls may be necessary, a strong one whlch also
hangs up the telephone line and/or powers down the devicey and a
weak one that simply returns the device to the kernel wlthout

physlcally dlsconnecting it.

Formally,
O=tunction? unassign
paraneters? devlice name
exceptiont NOT=-ASSI GNED
eftect!t the device no longer has a using process
or user process event channel assoclated
with lt. .

The device may be hung up or powered off.

3e4e3e3«5 Control

This generic O-function lncorporates all mode, transliation tableoQ2$ﬁ%L,
and device control functlons supported by the kernel. (Other

devlice control functions can be coced in data interpreted only by
non-kernel code at elther end of the kernel.)

21

Honeywell ' o _ . Draft 1-31-76_'“

O-functlon? control

pacameters? ; devlice name

control operations and data

. X

gxcentlonst NOT=-ASSIGNED

Ilnvalld or unsupported control operation
effect? the Indlcated control operatlonls) ls

performed . .

3el4e3e3s6 Status
This generic‘v-funcflon may actually be several v'funcflons
return parts of status Information about a particutlar cevlce é

asslgned to the processy Such as current modes, transtfations, 4}
carrlgge and paper posltlons, wrlte-behlnd and read-ahead Stu/f nadt
74

¥=function? status \\ dwu/, /aw/% w—ﬂa%f %mmZ[
" parametert device type ”iﬂa# { @Mpé/(/m /’Lh/)

g NOT=-ASSIGNED
szceotlan NOT=ASSI | _, QZC«Z /
yatues? status Information for the particular reqgGest.

3.403.4 Virtual Devlce Operations

Even though a communicatlons device ls largely under control of
the user processy It still must be able to stimulate the process
at its own initlation in order to indicate situations that the
process must respond to.

This stimulatlon is highly restricted, and is limited to

- Informing the process of a oending unlt of Irputy which the
process should read when It gets a chance; and ' o

- lndlcating exceptlonal events which fhe process should be
made aware of lnstantaneousiy (in virtual time).

The common exception for these ls NO-PROC, defined as the kernel
does not have a valld usling process [d recorded for thls devicey
elther because none has been asslgnedy or because the process is
deade Generally, thls exceptlon will cause the kernel to become
involved In a non=I/0 capaclitye.

Both these operations pass control to pre-arranged non-kernel

code in the usling process to perform the ooeratlons necessary to
. gort out the reason for the stimulus. : ’

22

‘e

Honeywell ' ~ Draft 1-31-76 -

For ' abstractlion purposess these are best viewed as O-functlons
per formed by the virtual device on the process.

The kernel "valldates'"™ both these 0-functlons by directing them
always to the using process for the device. (There ls no way for
a device to Indlcate any other processe)

Jelhe3elsel Hakeup

Thlis O-functlion queues an IPC wakeup for the uslng process over
the recorded event channel In response to the recelpt of a
read-delimeter from the device. The standard response
(presumably In non-user supervisor code) Is for the process to
Issue one or more read OV-functions on the virtual device
assoclated with the event channel on whlich the wakeup was
recelved.

Formally,
Q=functlont wakeup (no parameters)

exceptions NO-PROC

effect? queue an IPC wakeup for the uslng process
, . over the pre-specltled event channel.

Zebe3elke2 Slgnal {Quit)

Thls O-function causes the process to Immedlately (In virtual
time after all critical sectlons In the supervisor are completed)
execute a well-defined block of code to handle thls slgnal. The
"actual block of code Iinvoked may change wilth changing process
states and deslred Interpretation of slgnals, but one such block
ls always deflned.

The standard response for a process that may be the uslng process
for severa! devices Is to ftlrst lssue status V-functions to
determine which device sent the signal, and then to perform
pre-defined actlons assoclated with the oprocess state. (A
process that knows it ls using only one devlice can sklp the
device identitication step.)

Formally,
O-functlon signal (no parameters)

exceptliont NO-PROC

etfect?t cause the process to execute lts slgnal
: handler lmmedlately (in virtuatl time)e.

23

‘

Honeywel i Oratt 1-31-76 *

3.5 IOM External 1/0.

This section describesy In turn, some deflnitlons that are
unique to the description of the I0M, some englineerlng
- conslderatlons that are unique to the IOM, an abstract model
of the operation of the IOM, an [mplementation of the model,
performance estimates for ¢the iImplementatlons and an
evaluation of the lmpact on existing programs (both within
the supervisor and outslde [t)e.

3e¢5¢1 IOM Definltions.

'§ee sec?lo' General Deflinltlons.

OM Principlese.

See sectlons3«Z and 3.3, General Securlty Princlples, and
Cﬁenena+*ﬁﬂ§1neering Pri

3.503 IOM Model.

This section of the report descrlbes an abstract model of é?
secure external 1I/0. Initlaliy, a very slimple model Is
describedy an I/0 processor that serves a single devicey
and executes a single I/0 program at a timee The concept of
a reference monitor is Introduced, to vallidate alt
references to main memory by the I/0 processors. He show
that, no matter what the I/0 program doesy, 1t cannot
reference any portlon of maln memory outslide the {imits
enforced by the reference monltore. :

Next, the model 1Is extended to cover an I/0 processor that
can serve many f(non-multliplexed) devices securely. Thls
model 1Is in direct correspondaence to the operatilon of the
IOM, We show what values must be assoclated with each
device channely, and what tasks must be performed when the
170 processor suitches from channel to channels

Flnally, the mode! 1s extended to cover multiplexed I/0. HWe
add the concept of a device number reference wmonitor, and
show how thls enforces access to a single device on a
mul tiplexed channel.

24

Honeywel | ' - Dbraft 1-31-76°

.oy

3e5e3¢e1 DOescrlption of I0OM Nddel.V

The elements of the model are a Multlcs processy an I/0
buffer segment In Multlcsy an I/70 program in the buffer
segmenty the Multlcs kernet, the IOM reference monltor, the
IOM ltseify ana the device. ’

The Multlcs kernel malntalns a3 table that descrlbes each
device (1lsting all of Its attrlbutesy and [ts temporary
qualltlies). (THESE SHOULD BE DESCRIBED IN DETAIL). Every GD
devlce has an assoclated I/0 buffer segment (located In tre / /Jf
user®s process directory). The user constructs the I/0 (K
program in the buffer sagment. -

The only maln memory addressable by the I/0 program s the
buffer segment) It must read (or write) directly into the
buffer segment ltself. It ls the program®s onn
responsibiity not to overwrite jtselt. :

The user cails the kernel, passing the device to be started,
. and the offset of the I/0 program to be used.

The kernel validates that the device 1ls Indeed attached to
thlis process, and that the device ls not currently running
{another I/0 program)e. T ; ;

The kernel then load reference_monitor with the offset Z
and leng) he (nwired) bufTer segment—iT maln memory, and
the device numbere. : v .
The kerne! then starts the I/0 programe

As Interrupts aré recelved from the device, the karnel! sends

nakeups to the user®s processs. Status from the device IS
stored directly Into the buffer segment,

3¢5¢302 Top-Level Speclticatlon of IOM Mocdel.
This section descrilbes, in (Informal) = Parnas-type
speclficationsy the functions avallable to a process

executlng on Muttlcs {first sectlon)y and a process
executing on the I/70 processor (second section)e.

3e5e32:1 Functlions avallable to a Muttics processe.
Ass ign (devno, uproc)
Description?

Asslign a devlce to a processSe

25

Honeywell Draft 41-31-76 ~

Exceptlonst ,
no_access! check_security (uprocy, devno)
no_access! check_lntegrity (uoroc, devno)
no_access! check_acl (uproc, devno)
already_asslgned! device (devno) sassligned =
True : . v
Effectt
device (devnol.uproc = uproc
device (devno)eassigned = True
devlice (devnoleattached 3= False
device {devno).buffer_seg 1= nutl
device (devno).buffer_size 3=]
. devlce (devno).butfer_absaddr 1=
device {(devnol.event_chn 1= 0
device (devno).status_offset 3= 0
devlce (devno).running t= False

| /’/,/,'.M 7
Attach (devno, buffer_sizes event_chn, status_offset) ”/.}%Wﬂ/'tygn-°

R
Descriptlont
Attach a device to 3 process
Exceptions?
not_asslgned! device {(devno) .uproc “= cur_proc
: already_attached! device {devno) .attached =
True -
‘ Invalld butfer size for this devlice i
Effect! : _ v
| device (devno)eevent_chn $= event_chn .J&
device (devnole.buffer_seg t= create_seg '

(buffer_slze) _ /W%NJ—
gevice (devno).buffer_size 3= buffer_slze .
‘ device (devno)e.status_offset 1= status_offtset '
device (devno)e.attached = True

Detach (devno)

Description?)
Detach a device from a process

Exceptlonst
not_attached! device {devno).ugroc = cur_proc
not_attached! device (devno).atfached = False
device_running! device (devno).running = True

Effect?
: destroy_seg (device (devno)e.buffer_seg)

device (devno)ebutfer_seg 1= null

devlce (devnole.attached = False

Unassign (devno)

26

Honeywell .0 . - Draft 1-31-76

Descriptiont L T ‘
Ynasslgn a device from a process.
Exceptlons?
not_assligned! devlce (devno).ugroc = cur_proc
not_asslgned! devlice (devno).assigned = False
not_detached! device (devno).attached True

Effect! ,
device (devnol).uproc 1= {
device (devno)e.assigned $= False

Connect (devno, lo_program_offset)

Description?

Start I/0 program on a devlce.
Exceptlons: :
not_attached! device (devno).uproc == cur _proc
not_attached! device (devno)e.attached = False
devlice_running! device (devno).running = True /J
Effect: :

' device (devnol).running 3= True
' wire_lo_segment (device (devnol.butfer segh/ %/Qk

device (devno)e.bufter_absaddr 3= absaddr “a/

(devlce (devno) .buffer_seg))7/
" mallbox.base t= device S L

(devno).buffer_abs_start

mal lboxe.bounds = device (devno).buffer_ leng?hqtﬂ

’ majitboxe.status_offset (= device : aé 75'6
{devno).status_offset #

mallboxe.devno 3= devno
mallboxe.program_offset 3= lo_ program offsef

start_device {mailbox) ob
‘ v Por & fﬂ% 2;

3e5e3i2e2 Functlons avallable to a process on the 1/0 4
processore

: U
Transfer (malilbox, target_address) éﬁ W

' ‘ B meﬂﬂd
Descriptlont :

Change program counter of I/0 grogranms.
Exceptions? JQ'
address_negatlve! target_address < 0
address_too_blg! target_address ¢+ mall boxe.base
> mailboxe.bounds -
Effect?
cur_lo_pc $= target_address

Generic_oevlce_cperaflon {mallboxs devno, ooeraflon)

2?7

. ‘.

Oraft 1-31-76 °

Honeywell
Descriptlont _
A typlcal I/0 Instructlion that atfects the
device.
Exceptiont
wrong_device! mallboxe.devno “~=" devno
Effect?

perform operatlion

Transfer_to_Device (malibox, devno, addressy tally)

Description?
Typical memory~-to-device transfer.

Exceptlon?
- , Wrong,_ devlce! mallbox.devno == devno !/’ #A
negative_taliy! tally < 0
- Effects /120%/

for offset 1= _tally to 0 by =1 begln
temp_address := address + offset

value t= Fetch (mallbox, temp_address) ﬁyﬁ
shlp_to_device {(devno, value)

end »

- Transtfer_to_Memory {(mailbox, devnos, addressy tatly) -

Description? :

Typical device-to-memory transfer,
Exceptiont

"wrong_device! mailboxedevno == devno

negatlive_tally! tally < ¢
Effects 6“5;%//‘@4/

for offset ¢= tatiy to 0 by -1 begin
temp_address 1= address + offset 4% v
value 1= get_from_device (devno) /Zgﬁﬁ 44 2'0
Store (temp_address, value)

end

Terminate_Program (maifbox)

Descriptlont
: Stop I/0 program on a devlce.
Exceptions?
nones
Effect? _ -
devno := mallboxe.devno
msg t= *“term™ ! devno
Store_Status (mallboxy msg)
- . Interrupt (mailbox)
unwire_seg (device (devnol.bufter_seg)
device (devno)e.buffer_sbsaddr t= @

28 e

S

Honeywell : ' Draft 1-31-76

device (devno).running 1= False

Store_Status (maliboxs status)
¢

Description?

Store status from device In buffer segment.
Exceptionst .

nonee.
Efftect?

status_address 1= mallbox.base +

mallbox.status_of fset
' Store (mallbox, status_address, status)

Interrupt {(mallbox)

Description?
Map interrupt Into wakeup

Exceptionst
nonee

Effect? _ :
devno $= mal lbox.devno - 1i;;
pid $= device (gevno)e.uproc 1

T chn $= device (devnol).event_chn e .ﬂ'

msg = 0 }m,w 3 o5
send_wakeup (pldy chn,s msg) 40 audhé \;fB-""

Store (mallbox, virtual_address, value) fo ¥2kd;b

Description? A
Store Into maln memorye

Exceptlionst
negatlve_addrass! virtual_address < 0
address_too_blig! virtual_address ¢+
. mallbox.base > mallbox.bounds
Effect:
absolute_address $= virtual_address ¢+

malliboxebase
write (absolute_address, value)

Fetch (mallboxs virtual_address) Returns (value)

Descriptlion? . o
Read maln memory.

Exceptiont
negatlive_address! virtual_adaress < 0

address_too_blg! virtual_address +
mallbox.base > mallbox.bounds
Effectt

29

Honeywell '.‘Dratt 1-31-76)

absolute_address 1= vlcfuaj;éddressA¥f_ '

majiboxebase
value t= read (absolute_address)

-3

30

Honeywell Draft 1-31-76'

‘ 3.5¢3e3 Block Dlagram of I0OM Model.

FUNCTIONAL BLOCK DIAGRAM OF ICM MODEL

31

Honeywell Draft 1-31-76

' 3e5.4 IOM Implementatlion.

In preparation.

32

Honeywel | Oraftt 1-31-?6

36 Performance Evatuation Estimate.

In preparatione.

3.7 Impact on Existing I/70 Programse.

In preparatlion.

33

