Honeywell RECEIVED _

PROJECT GUARDIAN - APR 1 6 1976
TECHNICAL COORDINATION LETTER : _
o J. H. SALTZER

Date: 26 March 1976

TO: Contracting Officer TCL No: 17

HQ/ESD/MCP :
Hanscom AFB Contract No: F19628-74-C-0193

Bedford, Mass. 01731

Attention: C. E. Fenton, Captain, USAF

Subject: A Technical Note on Discretionary Access Control

The attached technical note discusses "Discretionary Access
Control" as it relates to the Multics Security Kernel. Also
included, as an attachment, is a draft Honeywell working paper

on the "Removal of Directory Control from the Multics Security
Kernel." These technical papers are a follow-up to the technical
-interchange meeting which was held at Honeywell's Cambridge, Mass.
offices on 12 February 1976.

If there are any questions on these papers, please contact the
undersigned or Mr. N. Adleman at our Cambridge office.

Very truly yours,
HONEYWELL INFORMATION SYSTEMS, INC.

R. L. Carlson
Contract Specialist

Attachment

cc: ESD/MCI (5) -
MITRE/D73, Mr. E. Burke (5)
RADC/ISM (3)
NSA/R14 (3)
AFDSC/XMS (2)
CCTC (5)

HONEYWELL INFORMATION SYSTEMS, 7900 WESTPARK DRIVE, McLEAN, VIRGINIA 22101, TELEPHONE 703/790-3026

Removing Directory Control from the Multics Security Kernel

A. Bensoussan

INTROQUCTION.

This document is a proposal to remove directory control from the
Alr Force security kernel in the Multlcs Systems It Ils Intended
to serve as a basls for turther discussions with the various
groups involvea in prolect Guardian at the Air Force, Mitre, MIT
and Honeywell,y, In order to evaluate Its feaslibllilty. ?
The {onhg range objJective Is to show that the mathematlcal model
for securlty, developed oy Mitre, can be met by a system for
which the top level formal specifications do not refer to
directories at alle.

The short range objectlive-is to make minor changes to the Multics
verslon known as the "new storage system”™ [In orde~ to obtain a
system where the security access rules (l.eey Nno reai up and no
wrlte down) are enforced ragsrdless of how directorles are
manipulatede g

This document addresses the short range objective -onlye The term
“"securlty kernel®™ [s used to refer to the set of supervisor
procedures and data bases whilch are necessary to enforce the
securlty access rulese.

Removing the management of directories from the securlty kernel
would requlre restructuring the current ring 0 sudervisor nto
two hierarchical layerse. The security kernel would operate in
ring 03 It would provide the segment and the process entitles and
nould be responsible for enforcing the securlty access rufes.
Directory control would operate 1In ring 1, under the rules
Imposed by the kernel, and would use the abstract machlne made
avallable by the kernel in the form of a set of ring (¢ kernel
primitivess

The design of <the new storage system has, to a large extent,
achieved the separation of directory control and segnent control,
and would provide a very good basls for Implementing this
proposal wlithout a major rewriting of the currant rlng zero
supervisore

LHE KERNEL AND IHE DIRECTORY IREE SIRUCJURE.

Dne would expect the new kernel to be Jignorant of directorles.
The new storage system has the appropriate modularity to cope
with thls situation, except for the quota implementation. The
quota facillty 1Is waefined In terms of +the dl~ectory tree
structure, and the procedures that lmplement thils facllilty must
KNnow about the ftree structure. Since the [Implementation of quota
ils dlstrilbuted between directory control, segment control and
page control procedures, the knowledge of the tre2 structure,
insteaad ot being encapsulated In directory :control, has
penetrated deeper Into segment control and page ctontrol. To
elimlnate the knowled3ze of the tree structure from the new
xernel, on2 has to reimpifement the gquota facillty In such a way
as to perform Iln directory control those quota manipJliations that
take place 1In segment control and page control of the current
system (as well as the new storage system). Such an
implementation of the quota facllity poses no logical problem?
the quota Information would be stored In dlrectorles and managed
by directory control; a "™page fautt®” for a page wlth no dlsk
address would be turned Into a *“guota fault* handied by directory
control} the quota fault handler would check and update the quota
information and would call the page fault handier in page control
after having authorlzed thls page to use a disk records

Practically, however, It would require a targe effort slnce the
data structures wused in the new storage system would have to be
changed, a large number of sagment centrol and opage -control
procedures would have to be modified, and new procedures would
nave to be writtene In addlitlon, It would Introduce 3 hlgh
pverhead since the '"quota fault" hanaler, Invoked qulte often,
would induce new page faults to 0o its Job while, In the current
systemy, all data needed to do the quota checking at page fault
time ls carefully kept in core memory by page control and segment
controle.

For a long range project, or for an experimental system, one
certainly should consider raimplementing the quota facliity In
order to simpiify the kernel speclflication as well as |Ifts
Implementation and certification.

For a short range projecty what I am proposing instead, is to
retaln the present Implementation of quotay, as In th2 new storage
systemy and to retain in the security kernel "~ Just enough
knowledge about the directory tree structure to gsarantee that
the kernel would never violate the star property when pertorming
a quota opaeration.

LHE BASIC SYSTEM REQUIREMENIS.

Iin order to remove directory control from the'securlfv kernel the
system should be endowed wilth the following propertlest

ie Dlrectorles must no 1longar contaln any lftem needed to
Iimplement the segment entity or to enforce the securlty access
rules.

?e Access to directories must bve subject to the securlty access
rutes a3s [f they were user segmentse. ’

3« Dlrectory control procedures must execute In a ltess prlvlleged
mode than the kernel.

4e The kernel must guarante2 |ts Integrity without using
directories and, In particulary without wusing the ACL
protection mechanism provided by directory control

These four requirements are discussed separately below.

SEGMENY AIIRIBUIELS REQRQANIZAIIQN-

In the old storage systemys the flrst requirement was far from
being satlisfled. Afl segment attrlbutesy regardless of thelr
nature, were stored in directories. For example, the file map of
a segment, neeced to implement the segment entlity, was stored In
a dlrectoryy, making segment control vulnerable to directory
control since any directory control procedure could modify the
file map. .
In the new storage systemy Segment attrlbutes have been
reorganized into two groupse. The tirst group consists of those
attributes that directory control [s responsible for, such as the
symbollc names, the access control listy the ring brackets; these
attributes are still stored In the branch. The other group
consists of those attributes which are needed by se3nent control
and page control to Implement the segment entity and the quota
tacliity, as well as the security attrlbutes; thesea attributes
are stored In a data base manipulated exclusively by segment
control procedures. This data base is called the VT3C (Volume
Table of Contents). There [s one VTIOC for each dis<, descrlbling
all segments stored on the dlsks The VIOC for a disk 1Is stored
in the dlsk itselty, at a conventional location, and consists of
an array with one entry for each segment resliding on the dlske.
Each VIOC entry contains the following segment attrijsutes:?

- . the unjque lidentifler

- the securlty access class

- the file map

- the current and maximum segment length

the dates the segment was last used and modlfled
the directory switch (*)

the unlque ldentifler of the parent (%)

the number of records usad (¥)

the quota Information (lf directory) (*)

a few other ltems needed by the salvager

All {tems marked with an (*) are used by segment coat~ol or page
control procedures that deal with quotas. If the qudta facllity
was entirely lmplemented by dlrectory control proceduress these
] tems would be moved to the branch (or to some other non-kernel
data basely and segment control would totally 1lgnore the
exlstence of directoriess

The basic system requirement 1 is entirely satisfled by the new
storage system, due to the way segment attributes are split
between the directory branch anag the VIOC entrye.

ACCESS IO DIRECTORIES.

The second requlrement states that access to dlrectorles must be
subject to the securlty access rules. What ls meant by *access"™
ls alrect accessy hardware accass through a segment descriontor
word (SDW)e A process should never be permitted to nodify even a
single bit of a directory if the classiclation of the process lIs
not equal to the classification of the directory. A oprocess
should never be permitted to read even a3 single bit of a
directory If the classiflcation of the process 1Is not greater
than or equal to the classification of the directory.

"In the old storage system, there wWere many Iinstances where a
process could not perform under these restrictionss

A process of any classlflication had to be able to wrlte In a
dlrectory of any classiflcation In order to deactlvate a segment.
The new storage system handles the aeactivation of a segment
without reading or modifying or locklng or having fto know
anything about the parent.

A high <classification process had to be able to modify lower
classification directorles In order to actlvate a hlgh
classification segments The new storage system hanales the
activation of a segment without moalfylng any blt of any
directory.

A high classification process had to be able to modify a lower
classitlcation alrectory In order to lock 1t since the lock was a
word of the directory. In the new storage system, the lock of a
directory does not reslde In the dilrectory therefore locking andg
unfocklng a directory does not require modifylng tha dlrectory.

One could probably tind other examples where the securjty access
rules had to be violated when accessing a directory. In the oid
storage systemy a simple analysis of the varlous [tams storeag In
a directory would shon that they <can be classed Into three
"categoriesy wlith respect to securityt flrst, those with the same
classification as the directory iltself, such as th2 header, the
namess the ACLSS secondy those wlth the same classiticatlons as
the segments they refer to, suych as the slze of the segment, the
time it was moaifieas the quota information; and third, those
nith no classitication at all such as the flie mapy the AST entry
polnter. Because of the heterogeneousness of tha [nformatlon
recored in a directory, soma of the directory manipul atlions could
not be done without reading and modifying the directory
regardiess of lts classifications In the new storage system aill
items stored in directory are excliusively of the same
classiflcatlion as the directory itseif. All ltems that were not
of the same classification as the directory have been eliminated
and, as a result, ati directory operations that required
violating the security rules have been ellminated. Therefore,
subjecting dlirectory control to the securlty access rules would
still give all processes enough access to perform all operatlons
they are supposed to performy and would guarantee that securlty
could not be compromised by a maliclous or erroneous dlrectory
control procedures

The baslc system requirement 2 Is also satisfled by the new
storage systems

QIRECTORY CONJROL IN RING 1.

It Is clear thats for thls proposal to make any seas2 at atl,
directory control should not be able to change the kernel. The
most natural way in Multics to protact the kernel from directory
control s to use the ring mechanisms The kernel would execute
in ring zero and dlrectory control in ring 1« Thils means that
all directories would reside in ring 1 and all directory control
procedures would execute In ring 1. {The current ring 1 would be
roved Into ring 2, curently empty).

All supervisor ring § gates such as hcsgxxx entry polnts would
become ring 1 gates whlch mayy In turn, call upon a new set of
kernel ring 0 gates.

The kernel must present an adeguate Interface to dlrectory
control 4in the ftorm of a set of kernel primitives to create
segmentsy, to detete themy, to ftruncate thems to manioulate those
segment attrlbutes which are relevant to dlrectory control but
stored in the VTOC entry {(such as the quota), to assign segment
numbers and to manipulate the access flelds ot segmeat descriptor
nordse. The list of thesa karnel primitlves lIs glven In one of
the next paragraphsa.

The baslic system requlrement 3 1Is not satisfled by the new
storage systemy of course. Howavery, the new Storage system
provides a very good framework for lmplementing It since segment
control has been made functjonally Ilndependent of directory
controles AS a resufty, the new storage system already exhlbits the
exact moadularity one would expact the system to have for moving
directory control {nto ring 1. In facty each 2f the kernel
orimitives adescribed later is already avallable as a separate
ring g proceduree. i

SERNEL INTECGRIIY.

In the current system, the Intagrity of the kernel is achleved by
Jdsing the ring protection mechanism and the ACL mechanisme The
ring intormationy, as well as the ACL informatlon are stored In
directories and manipuiated by directory control priamitivese. :

i

It directory control iIs no longer part of the kernal, access to
all kernel segments must Dbe determinead by wusing Information
recorded in a kernel data base and manipulated by kernel
procedures. The protectlon mechanism needed to protect kernel
segments does not have to be as flexible and sophlsticated as the
ACL mechanism wused fto protftect user segments because, In most
caseSy all users are glven the same access rlghts to 3 glven
kerne! segmenty, and also bacause these access rights are not
tikely to change as often and as freely as the AGL for user
segments.

-The protection mechanism ‘I am proposing 1s only one of many
possibte mechanisms; it ls less flexible but simplar than the
ACL mechanism and can be described as follows: A kernel segment
always has the same ring brackets; It has a slilngle standard
access mode used for standard processesy and a single privileged
access modey assoclated with a single orlvijeged orocess key,
used for prlvileged processes that have requested and obtalned
thls privilege key at login time. The prlvlileged access mode
woula allow a trusted system process to call special kernel gates
that are not avallablte to normal wusers. Thesa privilteged
processes woula have to request that a glven key ba assoclated
mith them at login times This request would be val ldated the
same way the user namey project namey, and access class are
valldated at {ogln time.

This mechanlsm can easily be Implemented In tha new storage
system, The VTOC entry of a segment could Indlcate whether or
not the segment is a kernel segment, If [t is a kernel segment,
the access control informatlion would be found In the VTOC entry
and woula be used by the kernel to manutacture the access ftleld
ot the segment descriptor word for that segment,.

KERNEL PRIMITIVES.

This paragraph provides the llst ot the primitlves the kernel
should make avallable to dlrectory controly In order to make [t
possible ftor directory control to perform those functions it |lIs
responsible fore. All these primltives already exls3t In the new
storage system but they are not Implemented as kernel gates and
they do not pertorm any security checkinge The purpose of this
paragraph ls to select from the set of segment control procedures
those whlch need to be a gatey, to give a short descrlptlon of
what their functions arey, and to glive a complete dascription of
the security checking they are responsible for. Soeclal gates
avallable to only privileged processes, such as “declassify", are
not relevant to this discussion and have been omitted.

The following notatlon ls used In thils paragrapht

1.

2e

ERR = error

s = segment number

uld = unique ldentifler

ct (process)= clearance of the current process

ct (uld) = classificatlon of the segment deflined by uld
par. (uid) = parent of the segment ceflned by uli

create (parent_uidy dlrswWw, access_class) returns (uld)

This procedure creates an empty segment (l.eey 3 VTOC entry)
with the access_class defined by the inpat argument
*access_class”, The parent of the created segmeat [s deflned
by its unique ldentifier “parent_uid", and the directory
switch “dirsw®™ defines whether or not the created segment is a
directory. A nenw unlique ldentifler s assigned t> the created
segment and its value "uld"™ is returned to the cal ler.

ERR I f parent_uld does not denote a directory
ERR It cl (process) # cit (parent_uia)
ERR If (ct (process) < accass_class) = false -

ERR if dirsw = 0 AND access_class # cl (parent_ul d)
delete (uld)

This procedure deletes the segment (i.es9y the VTOC entry)
defined by 1lts unlgque ldentifler "uld".

ERR 1If uid not found or if It denotes a kernel sagment

ERR 1f cl (process) # cl (par {uld))

ERR if cl (par(uid)) < ct (uld) AND segment to be deleted |s
not empty

This oprimitilve provides a "wrlte=-down® channel when deleting
an’ upgraded directorye. This channel also exlists 1In the
current system and ls not due to the fact that dlrectory
control Is outside the kernel. It could be eliminated by

3e

o

5e

be

7e

making deletion of upgraded directorles a ftrusted process
functione.

truncate (uld, n)

Thls procedure truncates tha segment defined by "uld"y, from

the word number "n

ERR 1f ula not found or if It denotes a kernel sagment
ERR 1If cl (process) # ci (ujg)

glve_quota (uld,s, q)
Thls procedure delegates an amount of quota equal to q (g>0)
to the directory whose unicue identifier is "uld®, from |its

parent.

ERR 1f ulao does not denote a directory
ERR If ¢l (process) # cl (par(uid))

return_quota (ulds q)

This proceaure returns an amount of quota equal to q (q>0)
from the directory whose unique identifler Is "ald"™ to 1its
parent. ’

ERR If uld does not denote a dlrectory

ERR If cl (process) # ¢l (ula)

ERR 1f ctl (process) # cli (partuld)})

read_vtoce_itemgXXX (uid) return (v)

Thls procedure has one entry polnt for each ltem XXX located: -

in the VIOC entry, that diractory control may have to0 know the
value of. The entry polnt XXX reads the [tem XXX from the
VIOC entry deflned by its unique identifier "uid"y and returns
lts value *“v" to the caller.

ERR If uid not found
ERR jif {(cliprocess) > cl (uid)) = ftalse

nrite_vtoce_item$XXX (ulds v)

This procedure has one entry polnt for each ltem XXX located
in the VIOC entrys, that directory controt may hava to change
the value of. The entry polint XXX selects the VIOC entry
oetlned by its unlque ldentifler *“uld", and assioys the value
“v" to Its item XXX

ERR [f uld not found or denotes a kernel! segment
ERR If cl (process) # ¢l (uld)

8+ asslgn_segno {(uid) returns (s)

Asslgns a new segment number *“s™ to the segment whose unljque
identifler (s *“uid", and returns the value "“s" to the caller.

ERR if uld not found
ERR It (clt (process) 2 cl (uld)) = false

9. release_segno (s)
Makes segment number *s"™ invalld in the current process.

ERR 1t segment number "s™ has not been assigned by the
asslign_segno primltive in thls process

10. give_access (s, modey rings)
Setsy, in the segment descriptor word for segment number *s*,
the ring brackets to the values specified by “riigs"™, and the
access fjleld to the mode specifjed by "mode™, adjusted
according to the star propertye.

ERR 1f segment number "s* has not been assigned
ERR if any ring numbers specified by *“rilngs™ ls zero
ERR [f segment defined by “s" [s a kernel segment

11+ revoke_access (uid)

Revokes any prlor access that has been granted to that segment
by the "glve_access™ primitive in any process.

ERR If uld not found or denotes a kernel segment

The first time a process raferences a segment to which access
has been revoked, an *access_must_be_recomputed™ fault occurs,
transferring control to the "recompute_access"™ »J3rocedure in
directory controle. This procedure recomputes the access and
calls the *“give_access" kerne! primitive to set the access
bits In the segment descriptor wWord.

12« lock_dlirectory (ula)

Pertorms a P operation on 3 blnary semaphore assoclated wulth
the directory deflned by ulde.

ERR 1t uld does not denote a directory
ERR It (cl (process) > ci (uid)) = false

13« unlock_dlrectory (uld)

Performs a V operation on a binary semaphore asssciated with
the directory gefined by ulde

ERR [f uld does not denote a directory
ERR [t (cl (process) 2 cl (uid)) = false

CONCLUSION. :

It 1the aecislon Is made to Implement this proposal, the short
range project would consist of (a) giving Informal (2ut precise)
speciftlcations of the kernel functions, (b) wusing these
speciflcatlons to get a good level of confidence that they
represent the mathematical model for security, and (c) modlfylng
the Multlcs new storage system as proposed In thls documente.

The long range project would consist of (3) giving formal
speciflcations of the kernel, wlthout refering.to directories at
ally not even to the tree structure, (b) proving that these
formal specifications reapresent the mathematical model and (c¢)
lmplement a kernel that meets the formal .speclificatlonse.

I am very thankful to Jerry Stern for the long dlscusslons he had
with me and for hls valuable comments and critlcismse.

10

Totl Prolect Guardian Olstrlibution
Froms$ Je Stern
Subjectt Discretlonary Access Control

Jatesd 3715776

The question of whether or not dlscretlonary access controls
shoulc be supported by the Multics security kernel mwas discussed
in a recent meeting afttended by representatives from the Air
Forces, MITRE, and Honeywell. He, at Honeywell, sasggested that
dJue to certaln inherent vulnerabllilities of dlscretlonary access
controls and the as vyet undemonstrated ability to prove any
meaningful assertions about discretlonary access controlss there
is tlttle or no technlcal Justification for inclu®ing this
mechanism in the kernel. In the course of the discussion, it
pecame apparent that there was considerable confusion concerning
the basic issuesy is€esy the presumed Dbeneflts 2f Including
discretionary controls in the kernel and the implied costs. This
note attempts to clarify some of these lssues.

To begin with, it should be recognlzed fthat:there ls no necessity
to Justify that discretionary controls be left out of the kernel.
This 1Is the proper default assumptlon for al}] mechanlsmse. HWhat
must be jJustified Is the desire to put discretionary controlis
withln the kernel. It must be shown that some real objective ls
achleved by this action and that the costs in terms of Increased
kernel size, iIs warrantede.

The orliginal motivation for having dlscretlonary controls wasy of
coursey to enforce the need~to-know policye. Unfortunately, it is
=~tear that the need-to-know pollcy cannot be fully enforced by
discretionary access controls. This Is because dlscretionary
controls, even when implemented in the kernel, are Inherently
vulnerable to casual mistakes, program bugss, and Trojan horse
programs. The danger of a casual mistake, of course, exlists in
the paper system as well as tha computer system. donwever, the
consequences of a single mistakey €«gey a3 wrong keystroke, can be
much greater in the computer systenme. The more subtle dangers of
a program bug or 3 Trojan horsa program have no counterparts In
the paper systeme

If we simply accept the above threatss then cleariy our objlectlve
Iln providing discretionary controls cannot be enforzement of the
need-to-know policy Iin any strict sense. Thus, the purpose of
discretionary access controis must be to sartisfy some jesser:
obljective.s Notlice that In the case of the securlty and [ntegrity
policlesy we 40 not accept any of t hese th~eatse. The
non=discretionary controls which enforce these poticies cannot be

circumvented by user mistakes, program bugse or Trojan horse
programnse \
He must define precisely what we Intend to orove about
dascretlonary controlse. It has been suggested that we wlish to
prove that the ACL mechanism works correctiy. One can only prove
the correctness of a mechanlsm relative to sowne speclflc
assertlons about [ts operation. At presenty we do not have an
appropriate set of assertlons for discretlonary coytrolse. The
“discretionary securlty property™ deflned by Bell and LaPadula
1) Is one assertlon that could be proven, but In ltselfy does
not appear suftficlent to guarantee the desired operation of
discretlionary controlse. This 1Is because the discretlorary
securlty property Jlignores the hierarchical control of ACLs.
Thuse a kernel! that permits anyone to arblitrarlly change an ACL
could be proven to satisty the dlscretionary security property.
This would not be an interesting result.

et us assume, howevery, that approprlate assertlois could be
developed and that the correctness of discretiolrary controls
could be proven. What <ctlalms could we thaen make about
discretionary controls? Unfortunately, errors =zontalned In
non-kernel programs could still cause unintended release or
modificatlon of [nformatjon. One could argue that by providing a
correct kernely, we at least make It possible for some user to

produce hls own ciosed subsystem of certified programs. This- .

argument 1ls nelther Interesting nor reallistice It Is not
Interesting because we know that the vast majority of users witl
JSe uncertifiea programss both system-supplied and private. 1In
fact, It an uncertifled supervisor Is provided which must be
invoked to reach the kernet, then It becomes Impossible to
construct a certified subsysteme It Is not realistic because the
effort required to certlify even a modest replacement for the
Multics operating system is prodiglous. That ls precisely why we
nave adopted the security kernel approache.

The most Important clalm that a correct ACL mechanlism supports ls
that It cannot be directiy clrcumventeds If a user is denled
access by the ACL mechanlsmy then he cannot D2ypass this
restriction without the wiltful or unwiliful cooperation of an
authorized usere A malicious user can only walt and hope for
another wuser to fall victim to a mistake, program bugy or Trojan
norse programj but the mallcious user cannot force any of these
incidents to occure

The confidence this ctaim can glve us In the use of 3Jliscretlonary
controls Is difficult to assesse. For example, let us conslder
the operation of granting accesse A correct ACL mechanism can
ensure that the only users able to grant access to a glven
segment are those users having modify permission to the parent
directory. We cannot be certaln, however, that access to the
segment will be granted as Intended. Nelther can we be sure that
the ACL of the parent directory is correct. Essentlally, errors

in non-kernel programs can cause any ACL to be lncorrect relatlve
to our lIntentions. However, the ablilty to chayvge an ACL lIs
correctly controlled by another possibly Incorrect ACL.

To a targe extent we can expect that errors In uncertifled
programs wlill gradually be discovered over time and repalred.
Howevery, In a constantly changlng system llke Multlics, where new
errors can be inftroduceds it Ls not clear that the number of
errors will decrease In time. More Importantly, It 1s llkely
that errors of the type about which we are most concerned wlli go
uyndetected for long periods of time. Thlis Is because errors that
permit unlintended access wlll not be noticed under normal

clrcumstancese.

In the final analysis, our conflidence In discretionary controls
hinges on our bellef that errors in the uncertiflied programs we
Jse are both rare and of limited harme Given these <condlitions,
errors In wuncertified programs can be consldered suffliclently
random that their exploitation would be unllkely. Uafortunately,
Wwe simply do not know what condltions are given. - Ae can only
speculate as to the quantity and quality of errors contained In
non-kernel programse. “Therefore, even If . the .ACL . wechanism Is
certifieds the risk ot need=to-know violations still remains
JNKNOWNa Ify indeedy, errors In non=-kernel programs are
Inconsequentlal, then certlfying the - ACL mechanlism may
substantialiy reduce this riske On the other haxdy, if more
serjous errors exist In non-kernel programss then certifyling the
ACL mechanlsm may not slgniflcantly reduce this rlske The polnt
is that we have no way of measuring how much good it wil! do to
certify the ACL mechanlsme We know that no mattar how much
effort is applled, discraetionary controls witi still be
vulnerablee If the certification of discretionary controls were
a ‘trivlal tasks we could lgnore these pointse . But this does not
appear to be the case. The prospect of devoting a substantlal
portion of our time and energy to a task with uncertaln benefits
Is cause for concerne.

Let us now turn our attentlon to the lImplied costs of Including
the ACL mechanism in the kernel. The baslc ACL mechanlsm In
itseit 1Is falrly cumbersome when compared ¢to security and
integrity controls. Worse vyety, however, 1Is tha fact that a
declslon to place ACLsS within the kernel 1lsy, 17 effect; a
aeclislon to place all of airectory control wlthin the kerrele.
This 1s necessary because the ACL representation 1[5 stored in
dlrectories and because the directory hilerarchy serves as an
authorlty structure for controlling ACLse.

A recent proposal by Andre Bensoussan [2) describes a scenarlo
for removing directory control (and disgretionary controis) from
the present Multics ring 0. Tnls scheme alone could result In a
signitlcant reauctlon In kernel size. And, with somewhat more
effort, It appears that all knowladge of the hlierarchy could be
removed from the kernel (including that currently retained for

the quota mechanism).

In order to obtaln a rough estimate of the size of directory
control relative to other kernel functlons, Lee Schetfler
Investigated the composition of the present Multlcs ring @
supervisors, His Investigation showed that the addlition of
directory control functions to other antliclpated kernel functions
can result In a kernel! slze lncrease of 36 to 48 percent as
measured iIin llnes ot code. These findings ara reported In
Appendix A. It Is apparent from these flgures that a decislon to
include the ACL mechanism within the kernel wlll be costly. ;

In addition to directory controls there ls also the area of wuser
authentlicatlon. Clearly, since the basls for dlscretlonary
access controtl is wuser ldentlities, these Ildentities must be
authentlcated by the kernel. It not, any requlrement for placling
discretlonary controls withln the kernel becomes ludlcrous. We
note with Interest a recent deslgn note (3) prepared by MITRE
which asserts that user authentlication wlil not be performed by
the kernele If thls ls, Indeeds the case, then In our view, the
issue s settleds There Is no requirement for kernel-supported
discretlonary controlis. It this ls not the case, then Incluslion
of user authenticatlon and related answerlng service functlons
within the kernel will iImpose a high penaity in terms of
Increased kernel slzees Apparentlyy, MITRE has recognized thls
penalty to be unjustlitlable and has chosen to avolid [t

In summary, we see limlted benefits and hlgh costs for Including
discretlionary controls within the kernele Even It cost/beneflt
conslderations are overiooked, there Is stlil the undemonstrated
_abltlity to prove useful assertions about discretionary controls.
HWithout such assertlons and a technique for proving them, there
should be no requirement for placing discretlonary controls
within the kernel.

In view of thls concluslony, we are pursulng a karnel design
having two distinct {avyerse. The 1Inner flayver wlll [mplement
non-discretlonary controls and the outer layer wllil lmplement
discretionary controls. Initlaltly, only the Inner layer wlll be
speclfied and certltiede A declslon recardlng the outer layer
will be postponed untll we have galned more experlience and are
better able to evaluate the additlional cost of speclfylng and
certlfylng the outer Jlayere. This two-layer approach has the
advantage of conflning the certlticatlon of non-discretlonary
controls to the inner layer kernele. Thils is desirable whether or
not the outer layer |Is later certifjed for dlscretlionary
controlse. '

References

4e DeEoBell and L.JelLaPadula, "Secure Computer Systemt Unifled
Exposition and Multlcs Interpretation™, MTR=-2997, The MITRE
Corporation, Bedfordy Masses July 1975

2. A.Bensoussan, “Removing Dlrectory Control from the Alr Force
Security Kernel", to be published as an MTB :

3. HeleSchliller, "Prellimlnary Speclficatlon of the Answering
Service*, Multlcs Deslgn Note #33, MITRE

Appendix A

Muittics Kernel Size Estimates

This appendlx opresents slze estimates of a Multlics kernel wlth
and without dlscretionary access control (ACL) and directory
control functions. These estimates are based entirely. on the
sizes of programs currently implementing these functions In ring
zero of Multicse The primary intent of these fligures is to show
the impact, measured In increased code to be certifiedy, of making
dlscretjonary access controly ang therefore directory control,
part ot the certifjed Multics kernel,

These flgures were derived as follows. Each sourze program In
the current Multics hardcore libraries was extracted. For PL/1
programs, the number ot non=-declaration PL/I statements
linstances of *“3") were counted. (Nested condlitionals terminated
with a single semicolon were counted as one statement.) For ALM
(assembly language)l and MEXP (macro assembler) programs, the
number of non-comment, non=-blank and non-include statement |lnes
were counteda. For programs and data bases In other languages
(eege error_table_)s the number of non-comment and non=blank
lines were counted,

These flgures were combined in a single segmeart. For each
program, a character string was added to identlfy

i. Whether the program [mplemented a function that would be
required for kernel, salvager, or backup functions f(exclusive
ot system initializatlion); ang

2e WHhether the program®s primary function was to Implement
discretionary access control (ACLs) or directory control, or
whether a3 major part of j(ts operation depended upon the
exlstence of directory control (such as the pathname
assoclative memory programs)a.

Finally, these figures were sorted according to classification 1,
and sums taken (separately for PL/1, ALM, MEXP, and 2thers) with
and without modules in classification 2. The results are listed
in table A=-2.

The postulated Multlics kernel of <classlificatlon 1 [lncludes a

minimum of functions required for steaay state systam operatione
These functional areas are listed In table A-1.

A-1

Table A-1

Functions of a Multlcs Kernel

page control

segment control

volume management

address space management

disk I/0

peripheral I/0 (iol)

terminal I/0 (code conversion removed)
kernel 1I/0 (to operator®s console)

trafflc control and interprocess
communication (stripped down)

fault and interrupt handling
system error logging (syserr)
secbflty and Iﬁtégrlff'control
discretlonary access control

directory control

A=2

The totlowlng functlional areas were speclfically excluded because
thelr status relative to Inclusion In the Multlcs kernel Is not
¢ {eart : ’

ARPA network
resource management (rcp_)
tape and printer I/0 programs

dynamic linking

System inltlalizatlon functlons, Including both ore=-bootload
activitles (ee«gey System header and boot tape generation) as well
as bootloading, are excluded from these (ftigures for several
reasonse. Firsty initiallization functions do not oper ate ln the
steady state environments of the kernel, salvager or -backup.
They may not need the same type or aegree of certliflcatlor as
that required for certiflcation of the steady state. Secondlyy,
functlons such as initiatization header generation involve
humanss and the nature of the certlfication of such activitles lIs
not yet clear. Finally, the overall structure and scope of
system inltiallzation is not vyet <clear. For these reasons,
estimates based on current Multics inltiallzatlon would be
misleading and would not be comparable to estimates of other
tunctional areas for purposes of oprolecting prozramming and
certlficatlon effort. ’

yotes for Table A-2

The <cotumn headed *“#programs™ 1(ists the number of separate
programs ana data bases,y separately by language typesy and |In
totale.

The column headed “#statements® (lsts the total statement counts
for each languagees To make these figures comparable for PL/I and
non=-PL/1 programs, the raw statement counts for ALM progranms
{shown In parentheses) were reduced by a factor of 4. This
represents an approximation to the number of PL/I-llke statements
that would be requilired to [mplement ldentlcal functionse. Thils
tactor is lower than the normal! PL/I-to~ALM expansion factor of 6
bpecause these programs are orlglinally written in ALMy where
better code size optimizatlon is possible. The statement counts
for MEXP and other language programs wWere not so reduced because
these fanguages are macro={anguages of a comparable
tode~expansion ratio to PL/I.

{1) This line represents the programs and data bases In the
current Multics hardcore Iibrarless, excluding obsolete
programse These flgures include many fulsctlons not
necessary to kernel operation.

{2) Thils tine represents programs currently implamenting the
kernel functions Jlsted In table A-1y except for ACLs and
dlirectories. It shows tha amount of code ¢to Dde certiflied
reflative to steady state assertlonsy with the axceptions of
backup and salvaginge.

(3) This tine represents programs currentiy implemenating ACL and
dlrectory functions necessary In a kernel {ndt Including
backup and salvaging functions)e. It shows the increase over
(2) In the fotal amount ot code to be certlfled relative to
steady state assertions due to the additlon of ACLs and
directories to the kernel.

(&) Thls line represents programs currently lmpleamenting the
kernel functions (line (2)) with the addition o2f backup and
salvaging functlions. (This Inctudes physlcal volume
salvaging and segment backup functions.) Backup flgures are
based on the current (pre-NSS) backup system, and may change
with NSS backup. (Backup represents 3bout 40Z of the
increase over (2)). Figures for salvaging are 2ased on the
NSS salvageres This Iina shows the total amouat of code to
be certlfled If ACLs and directorles are outside the Kernel.
exclusive of system initlallzation.

{5) This tlne represents programs currently [mpiementlng ACL and
directory functions that would be required for kernel,
backup, and salvaging functlionse. It shows the increase over
(4) In total <code to De certlfied due to tha additlon of
ACLs and dilrectoriess exciusive of system initiallzatlon.

A-4

(z£°8%) 1808
0
(46°0% 991
(26°6) (£8) €7
(2£°65) 8062

66437
hsHh
shs
(6T.6) 0gwe
92¢eT

(76°3¢) 0shs
0
(X5°0¢8) 99t
(%9°5) (£g) €7
(49°s%) T428

sTeHT

heh

GG
{6946) 99£2
. 0SSTT

lB09S
hah
26¢£9
(86072) alés
gl6gh

(eseaJsoutry) STUSTSIETST

(z€°52)

(££°£2)
(45°T)
(#20°9%)

(%29°12)

(722°€8)
(Z29°%)
(ze°0¢)

hoe
r
S
£9
£ey

8089
S
22
w4l
PR

1ejoy
Jayio
axau
wie
T1d

jejoy
Joyio
axauw
uje
Tid
jejoy
Jayjo
dxauw

wie
Tid

ieiol
Jayio
axauw
wje
Tid

jejod
Jaylo
axauw
wje
Tia

(aseaJddutly) SUETETITE

S3yJ40}28JTp pue S1JV
JO} dnMoeq + Jabeajes
4+ |9UJd) O} judwaudul

S9714042347P
JO STJV $noyiTM dnyoeq
4+ JOSEAjES 3 [auUJdy SOTIINK

S37J4Ol2o24TpP pue STJV
4O} f(8uudy 0} juduwadadul

$37J40423J4IP 40 STIV
JNOYLTM JBuUdey SIOTLINKH

3J40OpJEY SOTSINK UBJIJINY

(96ed SNOTAdJd UO S3jou pajieiap 3dg)

SwWeJ6040 SOT4 INW $USJJND UO pISEq SSHBUWTISS BZTS JAUJdN SOTIINK

¢-y ®jqe}

(s)

(%)

(£)

2)

(1)

