/
MASSACHUSETTS INSTITUTE OF TECHNOLOGY ?

Laboratory for Computer Science

M. L. Dertouzos, Director (formerly Project MAC) J. Moses, Associate Director
' 545 Technology Square
Cambridge, Massachusetts 02139
(617) 253- 6016

July 15, 1976

Mr. R. M. Carlson, Contracts Administrator
Honeywell Information Systems Inc.

7900 Westpark Drive

McLean, Virginia 22101

Re: SDRLO0O4, M.I.T.-HISI Contract of July 1, 1975.

Subject: Annual Progress Report

Enclosed is our annual progress report. The work reported
therein was sponsored in part by Honeywell and the Air Force under
our research and development contract for engineering of a computer
system for which security can be certified by auditing.

g N @le

arome H. Saltzer
hd, Computer Systems Research Division

xc: N. Adleman, HISI/FSO
L. Verdery, HISI/FSO
R. Schell, AF/ESD
S. Walker, ARPA/IPTO



M.I.T. Laboratory for Computer Science July 12, 1976

Computer Systems Research Division

ANNUAL REPORT TO HONEYWELL: July, 1975-~June, 1976
by J. H. Saltzer, M. D. Schroeder, D. P. Reed, and D. D. Clark

The Computer Systems Research Division of the M.I.T. Laboratory for
Computer Science completed several key parts of its information sharing kernel
design project during the 1975-76 year. The following section from the

Division’s Annual Report describes the work in this area.
THE INFORMATION SHARING KERNEL DESIGN PROJECT

About three years ago, we entered into a subcontract with Honeywell
Information Systems Inc. to perform engineering studies on strategies for
simplifying the design of the resource- and information-sharing kernel of a
full-scale computer system, with the goal of making the security aspects of a
system simple enough that certification of correctness might be possible.
Multics is the laboratory in which these experiments have been performed.

This year, significant progress occurred on several key aspects of this work:

. Development of the use of type-extension as a strategy for

systematic design of the kernel itself.

. Organization of processor multiplexing in two layers, with
memory multiplexing sandwiched between, to untangle these

two complex mechanisms,

. Organization of memory multiplexing in identified parallel

processes rather than in a central structure.

. Organization of process initiation as an unprivileged

operation controlled by domain entry mechanisms.

. Development of a new model of process synchronization,
called the "eventcount" model, that leads to simpler
coordination algorithms and minimizes unnecessary

communication, a feature important to security.



The cumulative impact of these projects on the structure of a system
kernel, together with a variety of other ideas currently being explored,
appears to be significant in that the kernel becomes modular, ordered, and

thereby incrementally verifiable.

The activities reported this year on this project are of a different
nature than those reported in previous years. Earlier reports concentrated on
reducing the size of the security kernel by removing unnecessary functions,
while this year’s work has concentrated on better understanding of how the
remaining, essential functions might be more systematically organized. Two
key ideas have led us to this understanding. First, the use of abstract types
as a methodology for choosing and specifying the interfaces inside the kernel
(as pioneered in HYDRA, CLU, and SIMULA) gives a useful and clear
decomposition of the kernel. Second, the use of processes within the kernel
to multiplex the resources used in implementing objects of abstract type gives

a much simpler control structure inside the kernel.

Our basic approach to simplifying the structure of the kernel is to
decompose its design and implementation into modules. By structuring the
decomposition into modules correctly, we hope to obtain a system in which
understanding or verifying the system as a whole requires little more effort
than understanding or verifying every module separately. The problem with
obtaining such a well-structured decomposition of the system is to find a way
to decompose the system into modules that are internally simple and have

simple interactions with the other modules of the system.

Simplifying the interactions among modules is aided by two techniques.
First, the method by which interacting modules communicate can be simplified.
Philippe Janson, in his Ph.D. thesis, has categorized modularizations into
two classes: strict modularization, in which modules interact with another
module only by invoking procedures in the other module, and weak
modularization, in which modules may communicate via shared data bases. By
designing a system in terms of strict modules, it is much simpler to define

the effect of a particular intermodule interaction. The second technique for




simplifying interaction is to define a partial ordering of modules based on
functional dependency. Module A depends on module B if B must correctly meet
its functional specification in order for A to meet its functional
specification. If all dependencies are uni-directional, and form a partial
ordering, then it can be quite simple to verify the correct operation of all
nodules. One starts with modules that are assumed to be correct (for example,
the hardware) and proceeds to verify all modules by induction on the

partially~-ordered structure.

Abstract Types as a Structuring Tool

A structuring methodology that leads to both a strict modularization and
a modularization that is partially ordered in functional dependency is the
type—-extension mechanism for creating abstract types. An abstract type is a
collection of abstract objects and operations on the abstract objects. The
specification of the properties of and interface to the objects of the type is
independent of the actual storage representation of the objects or
implementation of the operations in terms of the storage representation. The
only way to manipulate objects of the type is to call on the operations of the
type. Thus a modularization based on abstract types is strict. Types may be
implemented in terms of objects of other types. This results in a

uni~-directional functional dependency.

Both Janson and David Reed have investigated the use of abstract types in
the design of the kernel of an operating system such as Multiecs. In an
operating system, the implementation of abstract types and the process of type
extension cause difficulties not present in abstract type concepts as
implemented in programming languages such as CLU., The major difficulty arises
from scarcity of memory and processing resources to implement objects and
operations, requiring multiplexing of those resources. Using the abstract
type concept to structure the multiplexing functions has led to some new
insights into the structure of operating systems and the mechanism of type
extension., In contrast, the HYDRA system, which supports abstract types
outside the kernel, does not use abstract types in the multiplexing of memory

and processors to provide virtual memory or virtual processors.



4

Janson has defined a new model of abstract types to be used in the design
of the kernel of the system where multiplexing of objects is the key problem.
The primary difference between this model and older ones is that he explicitly
recognizes the limitations on the supply of low-level resources, such as
primary memory and processor resources. He also recognizes the multiplexing
function, by explicitly including in his model a time-varying mapping between

objects of abstract type and the objects used in their representation.

An important part of describing a modularization is to determine all
functional dependencies between modules. Janson has extensively categorized
these dependencies for a modularization based on abstract types. The five

categories he has described are:

1. Component dependencies - dependency of an abstract type on
the types used to provide storage for parts of the

objects.,

2. Program dependencies - dependency of an abstract type on
the types used to provide storage for programs that

implement its operations.

3. Map dependencies - dependency of a type on the types used

to provide storage for its maps.

4. FEnvironment dependencies - dependency of a type on the
types that are used to structure the address space or

naming environment of the programs that implement the

type.

5. Interpreter dependencies - dependency of a type on the
types used to control the allocation of processor

resources to the programs that implement the type.

The enviromment and interpreter dependencies are particularly difficult
to deal with in structuring a system. A mechanism for simplifying these
dependencies has been proposed by Reed. It consists of implementing the

kernel type managers on dedicated virtual processors that rely on a simple




(perhaps hardware-implemented) fixed addressing enviromment, rather than as
operations in a privileged domain of each user process. The enviromment of
the type manager need not depend on the domain mechanism, and the processing
of type manager operations does not depend on the resource control mechanisms

that regulate the virtual processors that run user processes.

A particular pattern of type-extension that recurs frequently in
construction of a kernel has been described by Janson. It is the cache
management pattern, which consists of building a new type of object out of two
representation types, the cache type and the encached type. The functionality
of the new type is quite similar to the functionality of the cache type. The
encached type merely provides a large amount of storage. This pattern arises
because there are not enough objects of cache type. A new type is created
using the encached type to store the status of objects of the new type
whenever they are not stored in cache type objects. Janson finds numerous
examples of this pattern in the virtual memory design; for example, a virtugl
memory page type is created out of a primary memory page type and a secondary
memory page type. Reed has also found this pattern in structuring the

implementation of virtual processors.

Disentangling Processor and Memory Multiplexing

An important result of our work on structuring the kernel is actually
disentangling the interdependency between processor and memory multiplexing
algorithms. This interdependency resultsvfrom the need to provide a large
amount of memory for tables used in implementing virtual processors for user
computations performed by the operating system and the simultaneous need to
provide and control the processing power used to interpret the virtual memory

algorithms.

The technique used by Reed to break up this interdependency is to divide
processor multiplexing into two levels. The first level of processor
multiplexing provides a small set of virtual processors, called level 1
processors, that have sufficient functionality to implement the virtual memory
algorithms. These virtual processors access primary memory in exactly the

same way that physical processors do, through address translation hardware.



6

Any attempt to access an object not in primary memory is reflected as a fault,
just as in the real processor. The virtual memory software is implemented in
terms of these level 1 processors. Andrew Huber has proposed a design for
virtual memory implementation that uses multiple dedicated virtual processors
to perform its functions. The second level of processor multiplexing
multiplexes a subset of the level 1 virtual processors to provide a large set
of level 2 virtual processors, used to run user processes. The data bases of
the level 2 processor multiplexing algorithms are implemented in terms of
virtual memory objects. The processor resources for the level 2 manager

algorithms are provided by three dedicated level 1 processors.

Using Processes as a Structuring Tool

As a result of this two level design, level 1 virtual processors can be
dedicated to handle management of many multiplexed operating system resources.
Level 1 processors are relatively cheap compared to real physical processors,
so dedicating them gives some of the effect of dedicating a physical

processor, without the cost.

Structuring the kernel as a set of processes running on dedicated level 1
processors is another powerful tool for structuring the kernel. The opposite
approach, used in operating systems like Multics, TENEX, and 05/360, is to
implement kernel operations as subroutines called by users of those
operations. Let us call the first approach the multi-process supervisor

approach, and the second the distributed supervisor approach,

The multi-process supervisor approach simplifies the handling of types
built of multiplexed resources by centralizing the operations that manage
those resources in one or more dedicated processes. In such a design, a type
manager process is isolated from the processes that request operations on the
resources. Consequently, interference with the implementation of the type by

processes using the type is precluded.

One advantage of implementing a type manager as a process is that it need
not share a data base with other instances of itself acting in parallel. Only
the type manager process need have access to the data structures used in

managing the objects it implements. The sequentiality imposed by interlocking



in the distributed supervisor is achieved by using the sequentiality inherent
in the queue of the type manager process. The sequence of actions that may be
performed on objects is explicitly represented in the programs of the type

manager process, rather than implicitly in the locking protocols.

Another advantage of implementing a type manager as a process on a
dedicated processor is isolation of its enviromment and control point from
accidental (or intentional) interference. As noted above, the enviromment of
a type manager executing on its own dedicated processor need not be managed by
the same manager that performs the complex operations needed to manage user
process enviromments. This simplifies the dependency structure by eliminating
environment dependencies. Similarly, the multiplexing of processor resources
that provides resources to type managers need not include the complexity of
the resource controls used to limit user process resource usage. On the other
side, the implementation of user process enviromments and scheduling
algorithms for user processes need not take into account the special
requirements of user processes when executing kernel algorithms (such as
protecting the process from destruction while in the kernel or protecting the
kernel type manager enviromment from tampering). Taking these requirements

into account would in any case probably result in a cyclic dependency.

The allocation of kernel type managers to dedicated level 1 processors
also aids the principle of least privilege. Each type manager need have only
the privileges necessary to access its own data bases. This principle can be
enforced by restricting the environment (by controlling the set of descriptors
in the descriptor segment) of the type manager processes. In a distributed
supervisor, on the other hand, the kernel operations have access to more
objects than they need. For example, in the present Multics, every kernel
operation has access to all objects in the enviromment of the user process
that invokes it. An operation that maps a page into primary memory has the
capability to simultaneously copy data from one user object to another. 1In a
distributed supervisor, for this reason, each supervisor operation must be
inspected to see that it does not do additional operations extraneous to its
function. The multi-process structure provides a natural mechanism for mutual

protection.



8

Finally, the multi-process structure helps simplify the structure of the
system by avoiding the need to specify unnecessary ordering constraints. An
example of this can be found in the design of a multi-process page control by
Huber. The page removal algorithm is only indirectly coupled to the algorithm
that handles page faults. Each page fault requires using up a page frame in
primary memory, but waiting until a page fault occurs to write pages out of
primary memory would result in unnecessary delay. To avoid this delay, the
pages that are to be written should be located and the write started by a
predictive algorithm, which is very hard to fit into a page manager that is
invoked only on each fault. A much better structure would be to implement the
page removal algorithm as a process that controls the rate of removal of pages
in a way that is only loosely coupled to the fault sequence. The page removal
algorithm can then easily be designed to run at the optimal times, rather than
being constrained to execute only at page fault time, This use of processes
also exemplifies the principle of least privilege, because the faulting
process need never touch a page other than the one it requires (and presumably
has access to). In a distributed supervisor, where removal is done at fault
time, the fault handler doing the removal must touch pages that the user

process should not have access to.

Impact on the Kernel Design Project

The work of Janson, Huber, and Reed has led to a fairly cohesive and
implementable kernel design. Janson and Reed have worked out a structuring of
the Multics kernel into modules that each manage one abstract type. The use

of processes to structure the kernel has been investigated by Huber and Reed.

The status of the use of these ideas in the design of a Multics kernel
varies. Huber implemented and tested his use of processes in page control in
a special version of Multics. Reed has proposed a detailed design for the two
levels of processor multiplexing. A test implementation of part of this
design is in progress. Janson has proposed a very detailed structure for the

virtual memory management portion of the Multics kernel.



Related Activities

In addition to the closely interrelated activities just mentioned,
several other activities in the kermel design project either were completed or

made significant progress during the year:

1) An internal report was completed by Rajendra Kanodia and Reed describing
the use and implementation of the "eventcount" process coordination model.
Basically, eventcounts are semaphore-like coordination variables that are
constrained to take on monotonically increasing values. Coordination of
parallel activities is achieved by having a process wait for an eventcount to
attain a given value; one process signals another by incrementing the value of
an eventcount. Any coordination problem for which a solution has been
developed using semaphores can be easily converted to a solution using
eventcounts. In addition many eventcount solutions seem to have the property
that most eventcounts are written into by only one process; this reduction in
write contention has beneficial effects on security problems and on
coordination of processes separated by a transmission delay, as in a
"distributed" computer system. Eventcounts provide a solution to the
"confined readers" problem, a version of the reader’s-writer’s coordination
problem in which rgaders of the information are supposed to be confined in
such a way that they cannot communicate information to the writers. Finally,
for the class of synchronization problems encountered inside an operating

system kernel, eventcounts appear to lead to simple, easy~-to-verify solutions.

2) A thesis and trial implementation completed by Warren Montgomery
establish that it is practical to remove many of the traditional constraints
on process creation without creating problems for security or resource
administration. The concern here is that when a process is created, say in
response to a user’s dial-up and request for service, the designation of the
principal identifier for the new prdcess must be done correctly, or else all
access control will be worthless. For this reason, process-creating programs
of the "network logger", the "answering service" and the "absentee user
manager" have been considered sensitive, privileged programs. Montgomery’s

approach is to allow any process to request creation of other processes




10

without restraint on principal identifiers proposed; control is provided by
associating with every principal identifier a designated starting procedure
for the new process. This starting procedure checks to see if proper
identification has been submitted by the requestor of the creation. By
decentralizing this check, making it the responsibility of the concerned
party, a strategy parallel to that of entering a protected subsystem (at a
designated starting point) has been created. The result is to remove from the
security kernel several large programs previously thought to require

certification.

3) The use of end-to-end cryptographic protection for network connection to
a secure host was explored in depth by Stephen Kent in an independently
supported, but closely related, project. Kent examined the impact of
end-to-end encryption on network protocols, and developed strategies for
character-at-a-time full duplex interaction, key distribution, and
resynchronization following high-priority messages or line disruption. He
also examined the question of proper placement, within an operating system, of
a cryptographic protection module. He concluded by developing a practical
design, based on the National Bureau of Standards Data Encryption Standard,

and testing that design in a Multics/ARPANET implementation.

4) Another related activity, supported by Honeywell and Ford Motor Company,
was the trial, by David Gifford, of a simple method of estimating the primary
memory requirement of an executing program, for control of multiprogramming.
Gifford’ s method is to observe the rate of "misses" of the processor’s
associative memory for page table words, and assume that a high miss rate is
an indication that a large program is being executed. Gifford found that
basing multiprogramming control on this measurement provided a level of system
effectiveness equal to that achieved by careful hand tuning, and that the
incredibly complex memory size estimator currently in the Multics security

kernel is unnecessary.

With the completion of the activities described above, the majority of
work planned for the kernel design project is finished. We expect that the

coming year will see the completion of the remaining research tasks for this



11

project, and a final report; activity will continue, however, to provide
support and technology tranfer to the larger Air Force/Honeywell project of

which this work has been a part.

PUBLICATIONS, TALKS, AND THESES

Publications

Redell, D.D. and Fabry, R.S., "Selective Revocation of Capabilities,"
submitted to Communications of the ACM, April, 1976.

Redell, D.D. and Clark, D.D., "Protection of Information in Computer Systems,"
Tutorial notes, IEEE Publication No. 75CH1050-4, September, 1975.

Saltzer, J.H. and Schroeder, M.D., "The Protection of Information in Computer
Systems," Proceedings of IEEE 63, 9, (Sept., 1975), pp. 1278-1308.

Saltzer, J.H., "Computer," article in 1976 Yearbook, McGraw-Hill Encyclopedia
of Science and Technology New York: McGraw-Hill (Scheduled 1976).

Schroeder, M.D., "Engineering a Security Kernel for Multics," Proceedings of
5th Symposium on Operating Systems Principles, ACM Operating Systems
Review 9, 5, pp. 25-32.

Theses Completed

Gifford, D., "Hardware Estimation of a Process’ Primary Memory Requirements,"
S.B. Thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, May, 1976.

Bratt, R., "Minimizing the Naming Facilities Requiring Protection in a
Computer Utility," S.M. Thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, July, 1975,
also Project MAC Technical Report TR-156.

Huber, A., "A Multi-process Design of a Paging System," S.M. and E.E. Thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May, 1976,

Kent, S., "Encryption-Based Protocols for Interactive User-Computer
Communication," S.M. Thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, May, 1976,
also Laboratory for Computer Science Technical Report TR-162.

Montgomery, W., "A Secure and Flexible Model of Process Initiation for a
Computer Utility," S.M. and E.E. thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science,
June, 1976.



12

Reed, D., "Process Multiplexing in a Layered Operating System," S.M. thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, June, 1976.

Theses in Progress

Goldberg, H., "Protecting User Environments," S.M. thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and
Computer Science, expected date of completion, November, 1976.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem," E.E. thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, expected date
of completion, September, 1976.

Luniewski, A., "A Certifiable System Initialization Mechanism," S.M. thesis,
Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, expected date of completion, January,
1977.

Janson, P., "Using Type Extension to Organize Virtual Memory Mechanisms,"
Ph.D. thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science, expected date of completion,
August, 1976.

Feiertag, R., "A Methodology for Designing Certifiably Secure Computer

Systems," Ph.D. thesis, Massachusetts Institute of Technology, Department
of Electrical Engineering and Computer Science.

Talks and Presentations

Kanodia, R., "Eventcounts: A new model of process synchronization," given at:

Institute for Advanced Computation, Sunnyvale, California, August, 1975,
Xerox Palo Alto Research Center, June 14, 1976

IBM, Thomas J. Watson Research Center, Yorktown Heights, New York, June
24, 1976.

Redell, D.D. and Clark, D.D., "Protection of Information in Computer Systems,"
day-long tutorial given at:
Eleventh IEEE Computer Society Conference, Washington, D.C., September 8,
1975.

Hunt, D., "A Case Study of Intermodule Dependencies in a Virtual Memory
Subsystem," given at:
Sperry Research Center, Sudbury, Massachusetts, October, 1975,
C.S. Draper Laboratory, Cambridge, Massachusetts, April, 1976.

Redell, D.D., "Proprietary Subsystems and Personal Computers," given at:
IBM San Jose Research Laboratory, November 17, 1975.
Xerox Palo Alto Research Center, February 6, 1976.



13

Clark, D.D., "Engineering a Security Kernel for Multics," given at:

University of Southwestern Louisiana, November 18, 1975.
Redell, D.D., "The Multics Kernel Design Project," given at:

IBM San Jose Research Laboratory, March 5, 1976,
Schroeder, M.D., "The Multics Kernel Project,”" given at:
Xerox Palo Alto Research Center, January, 1976.
Cambridge University, England, April, 1976.

Janson, P., "Validating the Protection Mechanism of a System," given at:
IRTA Workshop on Protection and Security in Data Networks, France, June
28, 1976.

Committee Memberships

Saltzer, J.H., ARPA Secure Systems Working Group



14

PERSONNEL, June, 1975 - July, 1976

Faculty and Research Associates

Professional Staff

Nancy C. Federman
Rajendra K. Kanodia
Robert F. Mabee
Douglas M. Wells

Support Staff

Paulyn G. Heinmiller
Virginia M. Newcomb
Carol Sarner

Mur iel Webber

Undergraduate Students

David K. Gifford
Arthur G. Gottlieb
Barry M. Grant

t

David D. Clark
David D. Redell

Jerome H. Saltzer (Division Head)

Michael D. Schroeder

Liba Svobodova

Graduate Students

Toby Bloom

Fugene C. Ciccarelli
Richard J. Feiertag
Harry C. Forsdick
Robert M. Frankston
Harold J. Goldberg
Andrew R. Huber
Douglas H. Hunt
Philippe A. Janson
Stephen T. Kent
Allen W. Luniewski
Andrew A. Montgomery
David P. Reed

Victor Voydock

Guests

Nathan A. Adleman
William B, Maczko




