MODELLING A COMPUTER SYSTEM UTILITY -

CONLTROLLED SHARING OF INFORMATION #

Michael J. Spier -
Massachusetts Institute of Technology, Project MAC
: and '
Elliott I. Organick
University of Houston, Department of Computer Science

ABSTRACT

This is the first of a sequer.ce of planned pspers that develop a model for a computer. systemn
utility. The present paper describes those parts which provide services for the protection and con-
trolled sharing of private information. The requirements for these services are defined, and a con-
puter, named the "ideal computer", is postulated with hardware-implemented capabilities for meeting
these requirements. :

It is demonstrated that the ideal machine effectively supports protection as well as controlle:
sharing of information in a fully general sense. It is shown that it is possible to build the de-
sired system utility model on the ideal machine within the framework of its built-in protection cap-
abilities, making it possible to a) dispense with the customary "supervisor/user-master/slave" type
modes of operation, and b) further develop any desired structures of mutually protected interacting
subsystems. ' -

Some capabilities of the model systems are mentioned. Among these are: a) the ability to Sup-
port parallel processing computations and b) the ability to support tree-structured hierarchies of
computations (processes).

1. INTRODUCTION - sequential- or parallel processing computa-
tions.

In this paper we report on our research to-
ward a model of a computer system utility which The system must be capable of supporting any
provides its users with an idealized programming number of coexisting users. ;
environment as one in which 2 user may success-

I

fully communicate the exact nature of his prob- e The system must possess an infinitely-large

lem to the system (i.e., by writing a program) on-line storage in which all of a user's

in some suitable language which is meaningful private information may be permanenfly stor-

both to him and to the system. In this activity ed and directly accessible. It must be pos-

he may, at no penalty, be unaware of hardware/ sible for the user to organize his private
software machine dependencies related to extent information into any structure convenient to
or immediacy (speed) of storage, processor or him.

i/o device resources. Moreover he should also

be free of concern or of need-to-know the inter- f The system must provide absolute protection

nal structure of other objects in the computing . for the user's private information, and

environment. guarantee the inviolable integrity and pri-
E : vacy of that information. It must be pos-
Specifically, we would like our idealized sible for the user to further protect any
system to meet the following requirements: subset of his information from instances of
; : ‘ - himself. .

a The system must "understand" programming : ,

o languages which are meaningful to the pro- g It must be possible for the user to dispense
grammer and which meaningfully apply to the with some or all of the protection of any
problem at hand. : e subset of his information, and to grant one

. ; : or more other users (or other instances of

b The programmer need not know about the art of himself) controlled access to that subset;

~ programming any more than is absolutely nec- _ the word "controlled" implies that the user
essary in order for him to be able to correct- must have the ability to precisely define
ly state his problem. the kind of access granted to any other user

e (or instance of himself).
c The system must be capable of supporting, for : :
i any one given user, any number of coexisting h We seek a generalization to allow us to apply

‘ Work reported herein was supported in part by Project MAC, an M.I.7, pesearch program sponsored by
he Advenced Research Projects Agency, Department of Defense, under Office of Naval Research Contrast
lumber Nonr-4102(01) and in part by Project Themis, at the University of Houston under Office of
laval Research Contract Number NOOO14-68-A-0151. Reproduction in whoie or in part is per.iitted for
ny purpose of the United States Government. :

\

\

the cepabilities described under requiremsnts
2 through g to the software parts of the Sys-—
tem itself, achieving a simplifying compati-
bility between "system" and "user” progreams,
and making it possible to dispense with the

customary "supervisor/user'"- "master/slave'-

type modes of operation.

This working paper deals with requirements
f, g, and h and describes the parts of the com-
puter system model which provide services to
fulfill these requirements. Requirements b
through e may then be realized by building—ﬁpon
the partial model described in this paper, and
are the subjects of successor papers planned for
the future. We consider requirement a to be
satisfactorily met through the postulated aveil-
ability, on our model system, of high-level lan-
guage (e.g., FORTRAN, ALGOL, COBOL, PL/1, BASIC,
APL etc.) compilers and interpreters. We note
also that satisfying requirements f and g also
provides a basis for achieving objectives of
programming generality or "building on the work
of others” as described by Dennis [1] and Fano
[2]. . :

The development of our model requires that
*ertain assumptions be made concerning the hard-
vare machine on which it is to be implemented.
[n order to be able to develop a model of suffi-
2ient generality, we postulate a machine which
re name the ideal machine and which consists of
. single very large primary (e.g., core) memory,
and a very large number of independent processors
vhich are each potentially capable of accessing
any given part of the memory. We assume that
he present state of the art is such that an im-
ylementation of our ideal machine (through an
ppropriate use of special-purpose hardware and
software) is practically feasible. By building
ur desired model on the ideal machine, we con-
reniently circumvent the problems of resource
imitations (both qualitative and quantitative)
thich would only obscure the issues at hand.

- This approach enables us to develop a gen-
ralized model, defined in terms of formalized
bstractions, whose correctness may be judged by
logic alone. An actual implementation of an op-
rating system based on our model will of course
require that a certain amount of generality be
sacrificed in order to comply with the practical
lemands of real life.

Our model, while essentially new in the
pproach to its construction has been built on
he work of others:. The multiple contributions
»f Dennis and cowqgrkers has been especially im-
ortant to us. Thus the concepts of segments,
spheres of protection and capability lists of
J)ennis and Van Horn [3] form a basis for this
vork. The attempts to exploit such ideas by
fmgve and Fabry, as reported by Wilkes [L4] add-
2d further to our understanding and to our abil-
[ty to apply these ideas in our own model.. The
reviously mentioned objectives of programming

s

generelity anl its relztionship to contrclleq
sharing of inTormation as pointed out by Vandie
bilt [5] has =lso provided motivation. Conceys
ol protection, access conirol, intersphere cell
ete., used in our model are also related to cor.
responding ideas expressed by Evans and Leclerc
[6] and by the several Multics designers [7.8,

- 9,10].

There clearly exists a gross correspondenc.
between the objectives and components of our me.
del and those of certain existing or proposed
systems (Corbzto and Vyssotsky [T], Hauck and
Dent [11], Cleary [12], Wilkes [L4], Vanderbilt
[5].) Significant differences may show up as we
are able to m=ke a careful study of these re-
lated models. Hopefully (and subsequently) a
searching comparison of this kind will lead to
increased understanding and additional simpli-
fication. For this paper however we have lim-
ited our objective simply to an explanation and
examination of our model, hoping to receive som-
suggestions for its further improvement.

The body of this paper (Sections 2 and 3)
develops the model in a step-by-step, almost-
reference-manual fashion. Ideally some synopsi:
would be desirable here so that the reader
might more fully anticipate what is developing
as he proceeds with his reading. Such an over-
viev has been provided in a companion paper

[13}).

2. THE IDEAL MACHINE

The ideal machine consists of two types of
devices, the ideal memory and the ideal proces-
sor. The machine has a single very large ideal
memory which may be structured into any number
of distinctly addressable segments (the term is
defined below), and a very large number of ideal
processors each of which is capable of address-
ing any given segment of memory. Every ideal
processor is a distinctly named and addressable
device.

2.1 THE IDEAL MEMORY

The ideal memory is a device consisting of
three components:

data storas2 which is an array of consecu-
tive elements, each of which is capable of
storing a single bit of information. Each
element is addressable’by an integer 8, 188
index.

-
o

'g§§criotor steraze which is an array of
consecutive elerents, each of which is cap-

> single descriptor (the

of low). A descriptor is
eddresseble by an integer D, its index.

= s b e . $:
memery. SE%;;QLLSE Yhich is the only device
capable of uccessing an element of either the

Any access

2 r
to stora be done through the intermed-
Fal
4

2.1.1 Segmentation

A segment is an array of consecutive data-
storage elements, defined by the integer pair
[S, n] where S is the address of the first ele-
nent of the array. We define no a priori struc-
sure of segments, they may be defined and rede—
’ined, recursively and overlappingly.

A segment is also associated with a datz
;¥pe which is a predetermined integer defining
’he way in which the information items within
she segment should be interpreted. Examples of
lata types are: a double precision floating-
»oint variable, a boolean variable, an instruc-
.ion, a variable-length character string, etc.

The memory controller considers a segment
0 be an array of information items as defined
y the data type. (A segment which may consist
f a single variable would be treated as an ar-
ay of size one.) The segment is the only ad-
ressable unit of data-storage in our ideal ma-
hine.

.1.2 The descriptor

A descriptor describes a segment; we also
ay that a descriptor "points" to a segment.
ny number of' descriptors may point to any one
egment, or to any subset of a segment. A seg-
ent may only be indirectly addressed through a
escriptor which points to it.

The descriptor is a structured variable.
e shall use the notation D.x to refer to ele-
ent x of structure D. The descriptor is struc-
ured as follows:

D.pointer is an integer pair which may be
‘either a segment pointer [S, n] or an in-
direct pointer [D, i] where D is the ad-
dress of a descriptor pointing to the seg-
ment and i1 is the index of an information

item within that segment. Indirect ad-
dressing may be recursive to any desired
level;_provided that the recursion be ter-
minated with an [S, n] segment pointer.

D.dtype 1is the segment's data type. For the
purpose of this paper we need only concern
ourselves with the "instruction" data type,
as described further on. :

D.specifier is an item which defines certain
properties associated with the segment
(e.g., size of array) and the data type
(e.g., length of character string),-and

. does not concern our discussion.

: o) o

19
W
0
0
o
0

is an access name, which is an
integer. Access names are defined in
sectiomn 3.

)

.Ovner 1is an access name.

|

.atiributes 1is an array of binary indica-
“tors. ‘]fbinary indicator, known by the
name of atlribute, is addressable by an
integer i, its index. An attribute may
assume either of the wvalues TRUE or
FALSE.

Our machine features a set of privileged
instructions {we shall discuss later the re—
quirement necessary for the execution of a pri-
vileged instruction) to access and manipulate
a descriptor. Excepting those instructions,
there is no wzy with vhich a program may access
a descriptor other than for the purpose of in-
directly accessing a segment.

2.2 THE IDEAL PROCESSOR

The ideal processor is a device which is
capable of performing an ordered sequence of
computational operations. Before defining the
term "computational operation", we wish to des-
cribe some elements of the ideal processor.

We begin with the definition of the follow-
ing two terms: :

instructicn an instruction is an informa-
tion item which is composed of an oper-
ator f followed by a list of operand
addresses a, and may be represented by
the notation f(ay, as, ..., B vy
En)' The operator specifies the oper-
ation to be performed on the operands
addressed by (a; through a,). An oper-
and address a; may refer to a segment,
or to am element of a 'segment, or to a
descriptor, or to an internal processor
registexr.

procedure a procedure is a segment which
consists of an array of instructions.
An instruction may be addressed through
an instruction pointer which is an in-
direct address pair [P, i] where P 1s
- the address of the descriptor for the
procedure segment, and i the index of
the instruction. (note: we use notation
P rather than notation D to refer to the
bProcedure segment's descriptor. We do
this for reasons of convenience and
readability; notation D could have been
used.) A Segment which is not a procedure
segment is said to be a data segment.

The ideal processor contains the following

* internal registers which enable it to perform

én ordered sequence of computational operations

(see alsc Figure 1):

P-register this register may contain the
address P of a procedure segment's des-
crivtor.

I-counter
dex 1 of an instruction.

The processor features operators which re-
define the contents of either the I-counter or
the P-register or both. The pair [P-register,
I-counter] constitutes an effective instruction
pointer. If, as a result of program execution,
the value of this instruction pointer is rede-
fined, we say that a transfer of control has
occurred; if the P-register has been redefined,
then the transfer of control is either an inter-
procedure call, or an inter-procedure return...
or more simply a "call" or "return"

The computational operation (also known as
"instruction execution") consists of the follow-
ing sequential steps:

step 1: fetch the instruction pointed to by
the [P-register, I-counter] instruction
‘pointer.

step 2: perform the operation specified by
operand f on the operands specified by
the address list (83, ..., 8,). One of
the effects of the performance of oper-
ation f may be a transfer of control.

step 3: if no transfer of control occurred
during step 2, then increment the value
of the I-counter by one.

step 4: resume step 1.

A processor performing a sequence of com-
putational operations within a given procedure
segment P (i.e., none of the computational op-
eratlons is an inter-procedure call) is said to
be "executing procedure P" another figure of
speech is to say that procedure 2 executes"

2.2.1 Attributes

Built into our processor is a set of oper-
ators (f3, fo, «+e5 fis oves fn) which is divi-
ded into subsets. A subset is identified by a
predetermined integer value which we name attri-
bute. For the szke of convenience, we shall
associate selected attributes with symbolic
names. Exemples of attributes are: "read"-
the subset of operators which only read infor-
mation from storage, "write"- the subset of op-

erators which only write into storage, "descrip-

tor" - the subset of operators which manlpulate
descrlptors, ete.

We expand the concept of "attrlbute" to in-

this register may contain the in-

clude functionzl cespebilities which &.. .
rectly identified with any ons specific o
tor, but which the processor 1s capzble -

cognizing. Thus, we assoclalz the 'execyte: ‘
attribute with the function of fetching ingts .
tions from storage (step 1 of the computation.
operation). '

We shall define, as we go along, those at-

tributes which are essential for the construe-
tion of our model.

2.2.2 Protection hardware

We now define a number of internal regis-
ters vhich we build into our processor in order
to enable us to implement the desired scheme f¢
protection and controlled sharing of private ir
formation. The purpose and function of these
registers will be described later on in the pa-
per.

A-stack this register, known as the "access
stack", is a LIFO (last in, first out)
list of access keys. We use notation X
to denote an access key, and notation
K[t] to denote the topmost (last in)
access key in the list.

An access key is a struectured variable. Ve
shall use notation K.x to refer to element
x of structure K. The access key is struc-

tured as follows:

K.access an access name

K.mask an array of binary indicators. A
binary indicator, known as "attribute
mask" is addressable by an integer i, its
index. An attribute mask may assume
either of the values TRUE or FALSE. By
convention, there is a one-to-one corres-
pondence between the elements of arrays
D.attributes and K.mask.

R-stack this register, known as the "retur:
stack", is a LIFO (last in, first out)
list of return pointers. We use notation
R to denote a return pointer, and nota-
tion R[t] to denote the topmost (last in)
return pointer in the list.

A return pointer is a structured variable.
We shall use notation R.x to refer to
element x of structure R. A return point-
er is structured as follows:

R.pointer

an instruction pointer [P, il.

R.gate & binary indicator which may
assume either of the values
TRUE or FALSE

‘P-sphere (or protection sphere) this regis-
ter may contain an access name.

—pointer & T :
£-pointer (or ergurent prointer) this

PAIS
ter may contein & descriptor address D.

i e—

2.2.3 Integ:proccdurc calls

A procedure is an ordered sequence of in-
structions, whose execution nzy only be meaning-
ful if commenceq at predetermined locations.

We name an instruction with which execuvion of
the procedure may be meaningfully started entry
point. Likewise, the logic of a procedure may
require tha®t at some point of the execution a
call be made to some other procedure, and that
control eventually return to the instruction
following the call. We name an instruction with
which the execution of g procedure may be mean-—
ingfully resumed return point. Our system guar—
antees that transfers of control into procedures
be effected only at approved entry - or return
points.

Associeted with every entry point is at
least one ertry pointer. An entry pointer is a
descriptor whose "entrypoint" attribute is
TRUE, and whose D.pointer contains the address
[EJ ij of the entry point. A call instruction
(requesting the performance of an inter-proce-
dure call) is executed only if it references,
as its operand, an entry pointer.

A return point is dynamically defined
through the execution of an inter-procedure call.
Associated with a return point is a return point-
er, as defined in sub-section 2.2.2.

Some entry and return points are also asso-
ciated with the "gate" attribute. We shall de-
fine this attribute in section L. We only men-
tion it here in order to be able to describe,
in the following subsection, the logic of the
*all and return instructions.

2.2.4 Operations on the protection hardware
Following is a description of some of the

perations with which the protection hardware

lescribed in subsection 2.2.2 may be manipulated.

) reset-stacks this operation resets both
A-stack and R-stack to null lists.

)) setmask (newmask, oldmask) consists of the
following sequential steps,

b.1l: oldmask := K[t].mask
b.2: K[t].mask := newmask

) call(D, A) where D is the address of an en-
try pointer and A is the address of a de-
scriptor which points to an argument list.
We use-notation FAULT to indicate that the
current computational operation is to be
abandoned and that an error condition is to

" signalled. Notation (register) denotes

i i e

”Ho}icate a virgin return poirter
end append it to R-steck (i.e.,
"push" +the return stack); this ne-
return pointer becomes the cirrent
Bl[t]. 1Initialize it as follows:
E[t].pointer := [(P-register),
(I-counter)+1]
Rlt].gate := FALSE
c.3: iT D.attributes["gate"] = TRUE
then :
c.3.1: fabricate a virgin access
key and append it to A-stack
(i.e., "push" the access
stack); this new access key
becomes the current K[t].
Initialize it as follows:
K[t].access := D.owner
set 211 attribute masks X[t].
mask[i] to TRUE
e.3.2: Rlt].gate := TRUE
c.b: {A-pointer) 1= A
.32 [(P-register), (I-counter)] := D.

pointer

i
o
=
f

d) return this operation consists of the

following sequential steps, '

d.1: [(P-register), (I-counter)] :=
Rl[t].pointer

d.2: if R{t].gate = TRUE then remove K[t]
from A-stack (i.e., "pop" 4
the access stack).

4.3: remove R[t] from R-stack (i.e.,
"pop" the return stack). ;

Additional operations exist which manipu-
late the processor's protection hardware. A-
mong them are operations to access a call argu-
ment pointed to by the A-pointer register, and
a privileged aperation (associated with the
"processor" atitribute) to put an access name in-
to the P-sphere register.

2.2.5 Additiomal processor registers

The processor features additional registers
which we do not describe here because their pur-
pose lies outside the scope of our Present paper
We wish, howewer, to briefly mention the proces-
sor's executien stack.

The execuition stack is a segment consisting
of an array of "stack frame" items. The proces-
sor contains an internal register, named E-stack
which may contzin a [D, i] stack pointer, where
D is the address of the descriptor pointing to
the stack segm=nt, and i1 is the index of the
current stack frame. :

3 THE MZUORY COITROLLER
The remory CC“ roller is a device which con-
rols all access to both datz- and descriptor
Torege ~ny request for storage access must be

ade to the memory controller in the form
s, a, D {,i}) where:

r 1is the request operator specifying
"fetch", "read" or "write"

is the storazge designator specifying
either the descriptor or the data
storage.

is the attribute of the currently-exe-
cuting instruction (if r = "fetch" then
a is undefined).

is the addressed descriptor.

is an optional index.

|0

Ll

e

The access control locic

=

A request is honored by the memory control-
er only if the requestor is capable of substan-
iating his right to make the request, by pre-
enting proper credentials. We shall describe
he memory controller's verification ("access
ontrol") logic. The access control logic is
xplained in sections 3 and L.

The memory controller has access capabil-
ties to the processor's registers. We use
otation (E:;egister) to denote the address of
he descriptor pointing to the currently-exe-
uting procedure. Notation FAULT indicates that
he current request for access is to be denied
nd that an error condition is to be signalled.
oolean operetion AND denotes intersection.

Whenever the memory controller addresses an
lement of either the descriptor or the data
torage, it checks for invalid addressing (e.g.,
n illegal descriptor address, an out of bounds
eference to an element of an array, etc.).
he detection. of an invalid address causes the
emory controller to FAULT.
he access-control logic con51sts of the follow-

ng steps:

steg‘lz locate the descriptor addressed by
D.
step 2: if s designates the descriptor
storage then
e R % o (P-register).attributes("des-
eriptor"] = TRUE then go to step

8.
2.2: FAULT
step 3: 10T " r designates a "fetch" request
then

3.1: if (P-register). attributes["exe-
- cute"] = FALSE then FAULT.
3.2: it (P—reglster).attrlbuues['pub-
" 1ic"] = TRUE then
go to step 8.

-3.3: if (P-register).access = K[t].
access then go to step 8.
3.h: FAULT.

step | if D.attributes["public"] = TRU:
T then go to step O. ek
tev 5 reveat this step Tor all access
e keys K of the A-stack;
if D,z2¢ccess = K.access then
5.1:if (D.attributes[a] AlID K.mask[a])
= TRUE then go to step ©
2:FAULT.

(P-sphere) then

6,13 Db, attrlbutos[d] = TRUE then go
to step 8.
6.2:FAULT
step T: FAULT
step 8: access control logic satisfied.

Perform request.

3. RESOURCE MANAGEMENT

We now present the operational framework
which will enable us to positively protect any
segment from unauthorized access.

We introduce the concept of access sphere,
which is a set of segments and processors. An
access sphere is identified by a distinct access
name which is an integer. At any given time,an
access sphere is defined by the collection of
segments and processors which are currently
associated with it; this collection is comprised
of zero or more processors and zero or more seg-
ments which may be either procedure or data
segments or both. We say that the segments and
processors "belong to" or "reside in" the access
sphere.

3.1 ACCESS CONTROL

A segment belongs to the access sphere
whose access name is posted in element D.access
of its descriptor. A processor belongs simul-
taneously to several access spheres. For the
purpose of execution (i.e., instruction fetch)
it belongs to the sphere whose access name is
posted in element K[t].access (i.e., of the A-
stack's topmost access key.) For the purpose
of data access it belongs a) to the access
spheres whose access names are posted in ele-
ments K.access of the A-stack, and/or b) to
the access sphere whose access name is posted
in the P-sphere register.

A1l access to segments must be validated
by the memory controller. The memory controlle:
allows a segment to be accessed (be it for ex-
ecution, read or write) only if the segment and
the accessing processor belong to the same ac-
cess sphere, i.e., access to the segment is per-
mitted only if both processor and segment can
present matching access names.

The reader is invited, at this point, to
re- -examine the memory controller's access con-

trol logic (sqbsectlon 2.3 1) and in particu-
lar e

D x hich verifies that the executed
procedure belongs to the access sphere
whose name is posted in E[EJ.EEQ@S?,

slel 5 which chiecks whelher or not tne
dccessed data

ve segment belongs to one of
the access spheres whose names are posted
in an element X.access of the processor's

A-stack,
step 6 which checks whether or not the

accessed data segment belongs to the
access sphere whose neme is posted in
register P-sphere, and

step 7 where access is refused and an
error condition is signalled because the
accessing processor and the accessed seg-
ment do not both belong to the same
access sphere.

3.2 THE PROCESSOR SPHERE

Every processor is associated with a dis-
tinct access name, posted in its P-sphere re-
gister. This access name is unique among all
other access names in the system. We say that
every processor belongs to its own processor
sphere. Any number of segments may also belong
to the processor sphere. A processor sphere is
comprised, bty definition, of a single distinct
processor, and zero or more segments which may
only be data segments. An application of the _
processor sphere concept and mechanism is given
in Section 4.2.L,

3.3 RESOURCE OWIIERSHIP

One of the important features of our system
is the ability to selectively group segments and
orocessors into collections identified by dis-
tinct access names, or in other words, the abil-
[ty to "allocate" segments and processors into
access spheres. We associate the ability to
21locate resources with the concept of "owner-
ship". The owner of a resource need not be pre-
sumed to be a person; it is more general to as-
sociate the concept of ownership with that of an
ccess sphere (it is, after all, always possible
.0 establish a person's ownership by associating
he person's identity with that of an appropriate
ccess sphere).

A resource may be simultaneously owned by
everal access spheres. However, in order to be
ble to resolve the conflicts which may arise
;hrouéh simultaneous application of ownership
ights, we define that ownership may only be del-
gated through the act of allocation, and that
11 owners of a resource must be hierarchically
elated in direct order of allocation. Thus,
uppose that resource a belongs to spherelﬂ, and
uppose that A allocates a to B which allocates
. to C. Spheres A, B and C are the owners of
esource a; however, in case of conflict A out-
anks B which outranks C. The act of allocation
S pef?brmed by dedicated system modules, pro-
ected within distinct access spheres. These

rodules, which we shzll disec
the paper, kezp historical re
allocation to establish the o

leedless to szy, an access s
exercise its ownership privi

L
ge
ly allocated to
ple gbove, spher
B may reclaim a from sphere C, in which case
only A and B remain as a's owners).

3.3.1. Segment. ownership

A segmeni may be owned by several hierar-
chically relzfed access spheres. A segment is
defined by its descriptor, whose element
D.owner contzins the access name of the sphere
in whose behalf that descriptor was produced,
As we shall see in section I, a segment may be
shared among (i.e., belong to) several access
spheres. Thus a segment's associated D.access
defines the access sphere to which the segment
belongs for the purpose of date-storage access,
while its assaciated D.owner defines one of the
spheres which may request the segment's descrip
tor to be accesssed, as described below.

The owner of a segment may perform the
following control applications on the segment:
allocation, retrieval (i.e., opposite of allo-
cation), redefinition (i.e., an owner may re-
quest the production of any number of descrip-
tors to redefime the segment or any subset
thereof, thus effectively creating new segments
destruction, amd sharing. Of course two descrip-
tors that redefine a segment into subsets thai
overlap (in the sense of section 2.1.1) may not
be allocated to different owners (although shar-
ing of overlapped subsets in the sense to be
described in smction 4.2 would be permitted).

3.3.2 Descriptor ownership

Descriptors being the tool to enforce the
access sphere protection scheme, they may not in
turn be protected by that very mechanism.
Therefore descriptors are accessible e
"belong") to procedure segments whose descrip-.
tors feature the "descriptor" attribute.

Let us suppose that all the procedures in

~the system which feature this privileged attfi—_

bute belong to a single access sphere which we
shall name "segment-manager". It follows that
all descriptors in the system must be fabricated
within the segment-manager sphere. If we furth-
er suppose thaft the Segment-manager safeguards
its "monopoly" over descriptors by never grant-
ing the "descriptor" attribute to any other
access sphere in the system, it follows that
some access sphere A may have its descriptors
manipulated (or new descriptors created) only
by requesting that the Segment-manager do it in
A's behalf. Thus, the segment-manager is the

exclusive owner of all escriptors in the syvstemn.

The segment manzger keeps the ownershi
history of all segments in the system, and hon-
ors only descriptor-maenipulation requests re-
garding segments owned by the requesting sphere.

3.3.3 Processor ownership

The concept of processor ownership relates
to the ability to reset the values of certain
key registers in the processor. These registers
are available to procedure segments whose des-
criptors feature the privileged "processor"
attribute.

Analogous to the segment-manager sphere, we
lefine a "processor-manager" sphere which "owns"
211 the processors in the system. Ve may think
f the processor-manager as owvning a pool of
wvailable processors. An access sphere may re-
Juest at any time that a processor be allocated
0 it. The mechanics of processor allocation
re rather simple (the reader may wish to con-
ult subsection 2.2.4 "Operations on the protec-
,ion hardware") and may be described by the
'ollowing three steps,

step 1: initialize various registers, in-

cluding initialization of register P-
sphere to a unique (emong access nemes)
value,

step 2: perform operation reset-stacks

to reset both the A-stack and R-stack.
step 3: perform a call to a "gate" entry
point in the requesting sphere.

The sphere may later return the processor
o the processor-manager's pool simply by exe-
uting a return instruction.

.4 PROTECTION FROM THE PROCESSOR, A REVIEW

Up to ncw we have described how our access
ontrol scheme guarantees that a processor be
llowed to access a segment only if it belongs
n the segment's access sphere. It is however
mportant to be able to further restrict the ex-
cution powers of a processor relative to a
iven segment; in fact, it is desirable to allow

processor to access a segment only to the ex-
ent actually required by the purpose of the
egment. This approach makes it possible to
inimize the penalty for error. Thus, it is in-
dvisable to allow a processor to write into a
2gment whose purpose does not require that it

e written into; if an erroneous procedure exe-
uting within that segment's access sphere ever
ttempts to alter the contents of the segment ,
ne hardware will not allow it to do so.

‘The apparent advantages of this approach
re twofold, namely a) the damaging potential
f an erroneous procedure is restricted, and

) the probability for speedy error detection is»

increased.

i =
(&)

Ve ackieve this protection by associati
every segment with the set of attributes (i.
subsets of the processor's operator repertoi:
corresponding to the purpose of the segment,
For example, a segment which is accessed only

for the purpose of instruction fetches (ve nar=
such a segrent "pure'- or "non-selfmodifying

procedure") requires only the "execute" attri-
bute; en "irpure"- or "selfmodifying procedure”

requires the "execute", "write" and perhaps
a1

F P A0 o)

g8

S

'

even the "rezd" attributes.

Our machine is even potentially more re-
strictive (for reasons associated with control:.
ed sharing, &iscussed in section 4) in that 2
segment's attributes may sometimes be "masked
off" by the a*tribute masks K.mask of the appro-
priate accesz key. The reader may wish to re-
consult steps 2, 3, 4, 5 and 6 of the memory
controller's azccess control logic (subsection
2.3) and observe that access to storage is per-
mitted only im accordance with predetermined
attributes.

L. PROTECTIOIl AND CONTROLLED SHARING

We have sieen how resources may be select-
ively grouped into distinct access spheres. We
shall now show how this grouping may be used to
permit a segm=nt owned by a certain sphere to
be accessed, In a controlled fashion, by (or in
behalf of) some other access sphere. We shall
show that our model allows an owner of a segmen'
to precisely specify the exact degree of access
to be granted to any other sphere.

To illustrate, suppose that access sphere

A owns a segment V which it is willing to make

accessible to spheres B, C,’D and E; we shall

use notation W.x to denote element (or subset)
x of segment V. Owner A may decide to:

' - grant B complete and uninhibited acces

to segment V, : '

- grant C read-only access to subset V.s
of segment V,

- grant D access to variable V.v in seg- -
ment W, but only for the purpose of
computing V.v := f(V.v), . :

- grant E complete and uninhibited access
to a single bit V.b in segment e

- etc. etc.

As may b= gleaned from the example above,
the number of possibilities for controlled
sharing is pctentially very large. To attempt
to justify the design of our system by citing
numerous examnles would be a futile approach.
'Inste&d,.we skall attempt to formally define
the requiremenmts for controlled sharing, and
show how our machine fulfills these require-
ments. ‘The interested reader is encouraged to

e ,

ut our mzchins to tha test hy i .
‘:’SO]E'{I"M" }‘.]'Q; ovwn exsrw :"“)b bJ f!‘):!"i'l-l;""l"l “l: ‘q‘nd
Yoo e O £@&nples. A convenient woy

or doing so might b2 to make use of graphic re-

M. kS

b

bresentation, drawing objects within circles to
4. . A
denote access spheres and their contained seg-

~

el s and processors, havilg thaliaazcsses
circles overlap where appropriate, and using ar-

b
row notations to represent a processor's flow of
control.

4.1 REQUIREMENTS FOR CONTROLLED SHARING

In the following discussion, we shall make
use of the term "lender" to refer to an access
sphere which makes one of its owned segments a-
vailable to some other sphere, which we shall
refer to as "borrower". We use the term "shar-
ing" to describe the act by which a lender gives
a borrower access rights to one of the lender's
owned segments; we say that such a segment is a
"shared segment", and that it belongs (i.e., for
the purpose of access) to both the lender and
the borrower access spheres simultaneously. Ve
wish to emphasize once more, that only an owner
of a segment may share that segment with one or
more borrowers, and that the act of sharing does
not bestow upon the borrower any ownership pri-
vileges relative to the shared segment.

The requirements for controlled sharing may
be stated in the following words: ''the ability
of “the lender to specify to the system in what
orecise. mannar an authorized borrower may access
. shared segment, and the guaranteed protection,
oy the system, of a segment from unauthorized

access."

4.,1.1 Access authorization

In a computer system, an authorization to
access an item of information must be comprised
of three parameters, namely a) the identity of
the information item to be accessed, b) the
identity of the borrower, and c¢) the defini-
tion of the computations to which the borrower
may subject the information item.

An access authorization is any desired in-

tersection of three sets (o AND B AND y) where:

o 1is the set of all distinctly addressable
information items in the system,

B is the set of all entities which may ac-
cess an information item, and

Yy is the set,of all possible computations

which the system is potentially capable
of performing on an information item ai.

4.2 CONTROLLED SHARING ON OUR MODEL MACHINE

mi- AT
The aforecrmar 6)4

sented on ocur -

[
3

o The concept of n as defin-.g
in this paper nel ssible to
ary group of contigucus bits of infe..
mation a distinct "segment" identity
The concept of the zccess sphere allc
us to define any desired set of seg-
ments, i.e., represent any group of

contiguous. or non-contiguous bits or
information in a wegy which is compre-
hensible to and enforced by the sys-
tem. Thus, in our model system, set ¢
is the set of all access spheres.

B As mentioned before, our system allows
a person to be identified with an ac-
cess sphere. This in turn provides the
means for positively identifying the
procedures authored by that person.
Permission for a procedure to access an
object in the set o is then directly
related (as it should be) to a permis-
sion for the author of that segment.
Thus, in our model system, set B is al-
so the set of all access spheres.

Y 1is the the set of a2l1l computations to
which a segment may be subjected. Our
system features a positive access con-
trol logic, i.e., all access to a seg-
ment Is a priori forbidden, unless spe-
cifieally authorized. Therefore, we
need concern ourselves only with the
set of computations which the owner of
the segment specificelly approved of,
which consists of the following two
subsets:

Yyl +the set of all computations which
the processor itself is capable of
recognizing, and which is repre-
sented by the set of attributes,
and

Y2 +the set of computations that are
too complex for the processor to
recognize, and which is the set of
procedures approved by the owner
of the segment.

For the purpose of this development
there:fore, we define y = yl AND y2.

The introduction of the procedure as ele-
ment of subset y2 introduces an added dimension
of complexity into our scheme for controlled
sharing, because the procedure is in itself a
segment to be protected. We are clearly con-
fronted with & recursive problem which may not
be solved in & linear fashion.

Our ideal® machine allows us, in principle,
to specify any particular access from the inter-

B AD v, provided that y is under-
r specified in terms yl AID

rt
nov demonstrate, in four progres—

» that the model as described in

ic Acore ¥ A5 xR e i RN Yo D <
= =¥ Laplual L SUpplluing gineralizcd

(PR PIEIN

stage 1, protection: shows that in our system,
' an owner X mzy positively protect any
set of information items a from being
accessed by eny procedure in the sys-
tem except for a set of authorized pro-
cedures Y2 vhich operate within the
scope of attiributes yl, by allocating
segments o and Y2 to e private access
sphere B, i.e., specify (a AND B AND
Yl AND v2). e
stage 2, direct sharing: shows how a lender X
may grant any procedure y2 which be-
longs to a borrower B access to seg-
ments o within a specified scope of
attributes yl, i.e., specify (a AND B
AND y1 AND v2). o

stages 3 and 4 which follow treat two
(a1 OR

note:
subcases for o, where we assume that o =
02), OR denoting inclusion.

stage 3, indirect sharing: shows that a lender
X may grant a borrower B indirect ac-
cess to segments al -through the exe-
cution of an approved set of "carew
taker" procedures y2 within a predeter-
mined scope of attributes yl, i.e.,
specify (ol AND B AND yl AND y2).

stage 4,

tion to the indirect sharing described
in stage 3, borrower B8 may in turn
lend arguments a2 to X's procedures

y2 for the purpose of accomplishing
the indirect sharing, and that these
arguments must not be made generally
available to borrower X. This stage
allows us to specify ((al OR a2) AND B
AND Y1 AND v2).

The four stages just described cover all
possible needs for the protection and controlled
sharing of information in a computer system.

Our model system allows any desired combination
of the four stages to be specified.

L4.2.1 Protection

Suppose that owner X wishes to protect seg-
ment o, and make it accessible only to proce-
dure Y2 within thé scope of attributes yl.

Owner X allocates segment o and procedure Y2
into a new access sphere B. The only descrip-
tor in the system pointing to segment o looks
as follows:

argument sharing: shows that, in addi- '

0.access
a.owner =X
a.attributes = vyl
Tae only d=scriptor in the system pointine ta

procedure y2 looks as follows:

Y2.access = B

Y2.owner = X

v2.attributes|"execute"] = TRUE
We further suppose that a) no other descripto:
in the system features D.access = B, and b)
that the owner has requested the processor-man-
ager to allocate a new processor into access
sphere B (see subsection 3.3.3), which implies
that the processor's registers are initialized
as follows:

R-stack contains a return pointer point-
ing to the processor-manager sphere,
and need not concern us here.

A-stack contains a single access key
K[t], initialized as follows:
K[t].access = B A
K[t]).mask contains an all-TRUE attri-
bute mask.

P-sphere contains a unique access name

We may now easily show that under the condi-
tions just stated only procedure Y2 may ever
access segment o, and that only within the scope
of attributes yl. We consult the memory con-
troller's access logic as described in subsec-
tion 2.3.1. The processor is capable of fetch-
ing instructions only from procedures which:be-
long to the access sphere whose name is posted
in K[t].access. The only procedure which ful-
fills this requirement is procedure y2. Fur-
thermore, the processor may only access a data
segment which belongs to a sphere whose name is
posted either a) 1in an access key K, of which
we have only one, or b) in register P-sphere
which contains a unique access name which is
guaranteed to be posted nowhere else in the sys-
tem. Also, the processor may access the segment
only for the purpose of an operation which lies
within the segment's declared scope of attri-
butes.

4.2.2 Direct sharing

Suppose that lender X wishes to give bor-
rower B access to segment a. Any procedure y2
belonging to borrower 8 may access o, provided
that the access be within segment o's declared
scope of attributes yl. Lender X calls on the
segment-manager to produce a new descriptor D
which looks as follows:

=}

-Pointer = a.pointer i.e., segment D
i1s in fact a redefinition of segment ¢
D.access =8 i.e., segment D belongs in

-access sphere B ;

0

D.owrer = X but is still indisputably cwne
- ar SN - N
ed by X which possesses the exclusive
right to delete descriptor D whenever he
56 wisheo &
A4-xr b-— 4 p =Y ~
D.dtype = «.dtype or perhaps any other

data type that ¥ chooses to specify
.specifier = G.svecifier or perhaps any

other specifier of X's choice
D.attrivutes = yl -

]

'he reader is invited to convince himself that
only borrower B may access "incarnation" D of
segment o,

The sharing just described applies to both
lata -and procedure segments. However, a pro-
edure may only be indirectly entered through an
ntry pointer, so the lender must provide the
orrovwer with an entry pointer as well. Thus,
n order for X to share procedure a with B8, X
st request the segment-manager to produce two
lescriptors, namely a) descriptor E_(desc?gg;
ng segment o) and b) descriptor g_(pointing
.0 an approved entry point in «), as follows:

P.pointer = a.pointer
P.owner = X
P.access = B
P.attributes["execute"] = TRUE
nd, .
Q.pointer = [P, i] where i is the approved

-entry point

§,attrigﬁteS["entrypoint"] = TRUE

'ne reader is invited to convince himself that
.) borrower B may access procedure P only at
ntry point Q, b) procedure P belongs in ac-
ess sphere B and may access any data or proce-
lure segments in sphere B, and c) borrower

3 may not misuse procedure P in order to access
segments which do not belong to sphere B.

1.2.3 Indirect sharing

The only way in which lender X may enforce
hat borrower B will only access segment al
hrough the intermediary of procedure Y2 is by
10t sharing ol and y2 with sphere B as described
n stage-2, dbut rather by allowing a processor
from sphere 3 to execute y2 in sphere X.

By definition, a processor may only execute
‘n the access sphere whose access name is posted
in K[t].access. Our machine permits intersphere
:aif§_(i.e., transfers of control among proce-
jures belonging to different access spheres) by
-xercising its ability to "push" the access
stack and append a new K[t] which allows the
processor to execute in the called sphere. .An
inter-sphere call is recognized by the machine
shen an attempt is made to transfer conﬁrol ¥
through an entry pointer featuring the “gate

1

e M-

attribute. Tn
sphere czl1 hi
performing an

>

cess stack defines
ry, which mzy be

s

¢
propriate series of returus.

(2}

o
1~

T

A\ I Y]

{
3]

+

ol <

o
through the exccution of Y2 by having the s
ment-maneger produce a gate entry pointer Q as
follows:

Q.pointer = [y2, i] where i is the

approved entry point

.access = B
.ovner = X
.attrivutes["entrypoint"] = TRUE
.attributes["gate"] = TRUE

Lender X srants borrower B access to

ololo|lo

Assuming that B's processor is initialized as
described in subsection L.2.1, after it had per-
formed a call to entry point Q (the logic of
the call instruction is described in subsection
2.2.4), its access stack contains two access
keys, as follows

[t].access

l. topmost access key where
=X
2. "pusk=d down" access key

= B

where g,acce35

L.2.4 Argument sharing

We have ssen how a processor belonging to
sphere B may execute an inter-sphere call into
access sphere X, there to execute procedure y2
and through thke execution of that procedure in-
directly access segment al. Normally, however,
such a call also involves the passing of argu-
ments to the called procedure, which in turn
implies that procedure y2 which belongs to
sphere X must be able to access arguments be-
longing to sphere B. This in effect means that
procedure y2 becomes the borrower of the argu-
ments. Our system allows sphere B to establish
a normal lender/borrower relationship with pro-
cedure y2, disregarding the fact that it simul-
taneously mairmtains a borrower/lender relation-
ship with sphere X. : :

Our machine features two mechanisms with
which a borrower procedure may be granted acces:
to the lender"s arguments a) the access stack
mechanism which is cheap to use but which grant.
the borrower access to all of the segments in
the lender's sphere [this mechanism implies the
the caller sphere (lender) trusts the called
procedure (borrower) and does not wish to bothe:
and protect itiself], and b) the processor
sphere mechanism which is a regular direct
sharing mechanism (section %.2.2) involving the
production of special descriptors. [this mechan:
ism is more expensive to use than the access
stack mechanism, but it provides the lender
with the ability to restrict the borrower's
access to the arguments only, and that within

‘their declared scope of attributes].

. Fo% the following discussion 1, suppose tk&i
%?sﬁa des ptor rointing to en argument lis
'hich for * purpose is an integer array of size
1), that Elﬂfﬁﬂiﬂfl is an array of FALSE attri-
ute masks, and that storemask is a segncnt in
hich an array of masks may ’ be stored. We ex-
end our indirect sharing as described in subsec
ion 4.2.3 to include the passing of argument

2 to procedure y2.

Let us first consider the case of access
tack sharing. Descriptor a2 belongs to sphere
- (i.e., o2.access = B). Sphere B calls entry

v01nt Q as fcllows:

a) puts the integer @2 into W(1)
b) executes call(Q, W)

s mentioned before, the processor which now ex-
cutes in procedure Y2 has two access keys in its
ccess stack, featuring access names X and B,

nd therefore procedure y2 is capablewa address—~
ng both ol end a2; it is, however, equally cap-
ble of accessing any other segment which be-
ongs to sphere B. :

In the case of processor sphere sharing,
he lender first puts the arguments into a spe-
ial access sphere, then calls the borrower in
uch a manner that the borrower has access to
he arguments but not to the lender's original
phere. Arguments are allocated into the pro-
essor sphere because it is guaranteed to be in-
ccessible to any other processor in the system.
rocessor sphere sharing is done as follows:

- a) B requests the segment manager to make
a new descriptor E which redefines o2
as follows,

E.pointer = o2.pointer

E.sccess = (P-sphere)

E.cwner = B

E.gttributes = whatever B specifies

b) it also requests the segment-manager
to allocate W into the processor sphere
(i.e., W.access = (P-sphere)), and puts
integer E into W(1).

¢) it disables the access stack sharing
mechanism by executing setmask(closed
mask, storemask)

d) it calls sphere X by executing call(Qq,
W)

e) (upon return from a2), it restores the
old attribute mask by executing set-
mask (storemask, closedmask)

f) it asks the segmeni-manager to destroy
descriptor E

third possibility exists, namely that the call-
r wishes to deny the called sphere all access
ltogether irn the caller's sphere, in which cese
he calling sequence is,

~a) setmask(closedmask, otoremﬂsf)
b) call(Q, O) where O zero") may indi-

py P gL
cate absence of argunsnts
c) setr (s toremask, clcsedmask)

P X

Any combinscion of ihe two mechdnismsjuet degy
¢ribed is alsoc possible. For example, the cal-
ler may grant the called sphere restricted
"read only" access to all of the caller's seg-
ments, by performing an appropriate setmask,
and in addition grant the called sphere more
liberal access rights to a number of selected
arguments by using the processor sphere mechan-
ism.

4.3 Public access

It is essential to the construction of any
multiple-user computer system that certain seg-
ments be made accessible to all users, and’ that
some of these segments be generally known by a
predetermined segment address D. Examples of
such segments are the gate entry pointers to the
"segment-manager" and "processor-manager" access
spheres, which have to be known by predeterminec
segment addresses. We provide for this require-
ment by incorporating into the access control
logic the concept of the "public" attribute,
vhich specifies that access to this segment is
granted to any access sphere in the systemn.
Thus a segment with the "public" attribute is
said to belong to all access spheres in the
system. The reader may wish to review steps 3
and 4 of the access control logic (subsectlon
2.3.1) which check for the "public" attribute.

4.4 ‘Explicit and implicit sharing

Three shzring mechanisms have been present.
ed in the foregoing discussions: a) direct-
and indirect sharing by explicitly granting ac-
cess to the borrower sphere through the fabrica
tion of specizl descriptors, b) implicit argu-
ment sharing by using the A-stack mechanism,
and c¢) argument sharing by using the P-sphere
mechanism. OFf these, mechanism (a) which pro-
vides explicit sharing, and mechanism (c¢) may
be regarded as essential while mechanism (b)
can be considered to be, in some sense, a fanci
ful extension of (a).

Mechanisms (b) and (e¢) which provide impli
cit sharing are functionally distinct from mech
anism (a). Explicit access is granted to an ac
cess sphere which is known in advance; lender X
grants borrower B access to segment a by giving
B a descriptor D which redefines a and whose D.
access = B. TImplicit access, however, is grant
ed to a function whose execution may extend
over any number of a priori unknown access
spheres. Suppose that sphere A calls sphere B
passing B an argument o. It is unknown whether
B will actually process a, or whether B will -
call C which will callwhich will call Z

oieh is
lor L,O‘

‘.'..' calle

or, argumen
d sphere for the express purpose of
purticiz 34*1‘“; in the function for vhiech the in-
ter-sphere call was made. Argument o must not
ve made generally available to the called spher
(if it were, explicit sharing would have been
used). Our system does not make any assumptions
about the number of processors vhich may, at any
given time, concurrently execute within any giv-
en access sphere. Argument sharing must be ac-
complished so that they may not be accessed by
other processors which may be executing within
the called sphere at the time of the inter-
sphere call. The mechanisms for implicit shar-
ing fulfill the requirements for argument shar-
ing by essociating the access rights to the ar-
guments with the calling processor, rather than
with the called sphere. :

5. COMMUNICATION AMONG ACCESS SPHERES

We have seen that our model system supports
controlled sharing of information by allowing a
segment to be redefined to reflect the different
access privileges associated with different bor-
rovers. Thus segment o belonging to lender X
is known as segment (D1, D2, ..., Di, ..., Dn)
to borrowers (Bl, B2, ..., 853 ., Bn) respect-
ively. This means that a shared segment is
known to different spheres under different names.
A lender X who wishes to share segment o with
borrower B by providing B with a special des-
criptor D must thus have a facility for commun-
icating to B the segment number D, which is dy-
namically defined and hence a priori unknown to
B. The only way in which information may be
comnunicated among access spheres is through a
shared segment in which B may retrieve the com-
munication posted by X. Thus, information shar-
ing among access spheres presents a recursive
problem which has to be resolved through the
application of some system wide convention by
which a shared segment is accessible and known
to 211 access spheres in the system by its P__T
determined descriptor address. It is the "pub-
lic" attribute which enables us to incorporate
this capability in our system.

We are, moreover, faced with a synchroni-
zation problem. Namely, access spheres include
processors which are capable of independent and
asynchronous execution. Some method must be de-
vised by which segments could be shared among
access spheres without restricting the spheres'
potential for asynchronous execution.

And thirdly, -e naming scheme must be pro-
vided by which independent access spheres may
all meaningfully refer to a single shared seg-
ment, even though in actuality the segment is
knovn to each access sphere by a unique address
D which is not meaningful to any other access
sphere This problem is a fundamental one and

15

in our view cen oxnly be solved byian

between the shurers made outside il o
This necessary agreemn ent has been re g

in a pre: ri oS LEpCeT [1‘] where . in the A

of inter process communlcatlod throu(l S

My o g S DRl
dc«ud. bg.b;_, it wsas termed 1pC u\.uu,‘t) ,)

5.1 SECMENT CATALOG

To solve the problems Jjust outlined, we in-
troduce the concept of a segment cataloa which
is a data base maintained by the segue nt-manegor
The segment catalog is an array of entries E,
where each entry describes a shared segmsnb A
catalog entry is a structured variasble; we shall
use notation E.x to refer to element Eyof stzub—
ture E. The catalog entry is structured as fol-

lows:

E.names which is a list of symbolic seg-
“ment names, where a symbolic segment
name is a unique (within the catalog)
character string. We use notation

E[i] to refer to catalog entry E fea-
turing symbolic name i.

E.address is the storage address (8, n]
of the shared segment.

E.owner 1is the access name of the sphere
which created this catalog entry.

E.accesslist 1s a list of access tags T.
An access tag is a structured varlable
as follows:

T.access 1is:.the access name of a
sphere which shares this segment
T.dtype 1s the data type under which

the segment is known to this sphere
T.specifier 1is the segment's speci-
fier.

T.attributes
attributes

this sphere's set of

5.2 EXPLICIT SHARING BY SYMBOLIC NAME

An owner of a segment, say sphere X, may
now share one of its segments with sphere B by
associating a unique symbolic name with that
segment, say "symb", and by requesting the seg-
ment-manager to create a catalog entry for this
segment. It further on requests the segment-
manager to put an access tag T[B] in segment

"symb"s catalog entry, thus authorizing the se:z-
ment manager to grant sphere B access to se”*‘"f

.Il Sym 1"

Sphere B may now, at any time, call the‘
segment-managexr requesting a descriptor p01§13*'
to segment "symb". It may do so by perforzmirn-

call segment-manager("symb", D)

H . . o Tl
where D is a return argument in which o€ :
ment-manager reaturns to the caller the =% :

D vwhich is the address of the requeste’

The segnent-manager looks up the catalog
until it finds the entry which features ihe sym—
bolic neme "symb". It then locates, within that
entry, the access tag 2{8] which features sphere
B's access name, and produces the requested des-
criptor D as follows:

D.pointer = E["symb"].address
D.dtype = T[B].dtype
D.specifier = T[B].specifier
D.access = B

D.owner = E["symb"].owner
D.attributes = T[B].attributes

6. CONCLUSION

We would like to add a number of remarks,
commenting on the model and suggesting some ap-
plications for it.

6.1 The reader interested in the feasability
of actually building an ideal processor as
defined in this paper may wish to acquaint
himself with the Burroughs' B6500/BT500
computer [11] which is in many ways similar
to our machine. It features a hardware-im-
plemented stack mechanism suitable for the
implementation of our R-stack and E-stack
registers. As for the implementation of
our A-stack register, an associative memory
would most probably be indicated.

>.2 The ideal memory could be implemented in
the form of a paged virtual memory. Ben-
soussan,[10], describes in great detail
and clarity the implementation of such a
virtual memory.

.3 Our system does not differentiate between
"system" and "user" code; both are imple-
mented by using the same access-sphere pro-
tection mechanism. This allows flexibility
in system development and expansion possi-
bilities; new "supervisor" routines may be
coded and tested in an unprivileged "user"
environnent. Also, the system may be ex-
panded by layers of subsystems which play
"supervisor" roles relative to their re-
spective "users".

.4 There is no extra execution overhead asso-
ciated with an inter-sphere call; in effect,
the cost of a call is the same for both in-
tra- and inter-sphere calls. This may en-
Courage programmers to compartmentalize the
Modular components of their programs for

he sake of modularity as well as for max-
Bum protection against programming errors.

The
in
is

A
.
wvi

- Probvlem of establishing meaningful nam-
& COonventions and structures for segments
®1 eutirely open subject which is well

worth exploring. Access spheres nay e,
tain internal naming structures 08 Paiii
segments as well as external ones for COm

municating with other access spheres, |
most interesting possibility is that ot
Plementing hardware-supported ALGOL ne
declaration block structures, where each
block is implemented as an independent ac—
cess sphere.

& 1N~
sted-
c

6.6 A subject which would be equally fascinat-
ing to explore is that of multiprocessed
computations, and the possibility for im-
pPlementing tree-structured hierarchies or
computations (processes). PL/1 tasking, for
example, seems to be easily implementsable
on our model; for example, the fork state-
ment corresponds to a call to the processor
manager reguesting it to allocate anothner
brocessor to the requesting computation.

6.7 No mention was made in this paper to input/
output (I/0) devices. Our system is well
suited for the implementation of (simulatec
logical I/O devices within dedicated access
spheres. Such an approach would allow the
system to hide all instances of I/0 device
management behind a facade of logical de-
vices and, by allocating a logical device
to a user's computation upon demand (even
though such a device need not necessarily
map into a corresponding actual device at
the time of allocation) it resolves the
problems of hardware resource multiplexing
by queueing up requests for (possibly) de-
layed service.

7. ACKNOWLEDGEMENT

This paper is an outgrowth of three years
work and study of operating systems centered on
Multics. We are indebted to Professors Corbato,
Saltzer, Graham an d others of M. I. T.'s
Multics design team for this opportunity and for
countless hours of teaching and counsel in im-
proving our understanding of operating systems.
Special thanks is also due Andre Bensoussan of
Cambridge Information Systems Laboratory (the
G. E. Component of the Multics effort) whose
special help and encouragement was instrumental
in the development of this paper.

8. REFERENCES

1. Dennis, J.B., "Programming Generality, Paral-
lelism eand Computer Architecture", M.I.T.
Project MAC, MAC-M-409, 1968

2. Fano, R.M., "The MAC System: The Computer
Utility Approach", IEEE Spectrum 2, Jan.
1965, pp 56-64 e :

3. Dennis, J.B., and Van Horn, E.C., "Program-
ming Semantics for Multiprogrammed Compu-
tations”, Comm. A.C.M., 9, 3 March 1966 ,

pp. 143-155.

L. Wilkes, M.V., "Time Sharing Computer Systems"
American Elsevier Press, New York, 1960

5. Vanderbilt, D.H., "Controlled Information
Sharing in a Computer Utility", M.I.T.
Project, MAC TR-6T7, 24 October, 1949

6. Evens, D.C., and Leclerc, J.Y., Proc. AFIPS
1967 Spring Joint Computer Conference,
Vol. 30, Thompson Books, Washington, D.C.
pp 23-30. .

7. Corbato, F.J., and Vyssotsky, V.A., "Intro-
duction and Overview of the Multics Sys-
tem", Proc. AFIPS 1965 Fall Joint Compu-
ter Conference, Vol 27, Part 1, Spartan
Books, N.Y., pp 185-196.

8. Daley, R.C., and Newumann, P.G., "A General
Purpose File System for Secondary Storage"
Proc. AFIPS 1965 Fall Joint Computer Con-
ference, Vol 27, Part 1, Spartan Books,
N.Y., pp 213-229.

9. Greham, R.M., "Protection in an Information
Processing Utility", Comm. ACM 11, 5 May
1968, pp 365-369. :

10. Bensoussan, A., Clinger, C.T., and Daley,
R.C., "The Multics Virtual Memory", Proc.
Second ACM Symposium on Operating Systems
Principles, October 20-22, 1969, Prince-
ton University, pp 30-42, based on a re-
port by Bensoussan et al., of the same
title. Internal document G0093, The Gen-
eral Electric Co., Cambridge, Information
Systems Laboratory (CISL) Technology

- -. Square, Cambridge, Mass.

11. Hauck, E.A., and Dent, B.A., "Burroughs
B6500/ 7500 Stack Mechanism", Proc. AFIPS
1968 Spring Joint Computer Conference,
Thompson Book Co., Washington, D.C.
pp. 2L5- S :

12. Cleary, J.G., "Process Handling on Burroughs
B6500", Proc. Fourth Australian Computer
Conference, Adelaide, South Australia,
August, 1969 pp 231-239

13. Spier, M.J., and Organick, E.I., "Modelling
A Computer System Utility - A Summary",
Fourth Annual Princeton Conference on In-
formation Sciences and Systems, March 26-
27, 1970

1k, Spier, M.J., and Organick, E.I., "The Multics
‘Interprocess Communication Facility",
Proc. Second ACM Symposium on Operating
System Principles", October 20-22, 1969,
Princeton University, pp 83-91.

elcment S1 1
el

...—-._...‘..._.._

AN VAR

entry pointer Q e -¢>‘hﬁlngigzzgfbﬂ‘:kzhuﬁwn
¢ . '
procedure segment ey E
d ; P o
escriptor &
s o
) 1]
] o
e £ 5
data segment D & kS
descriptor = o -4
i 2
gl =
<§
element ;52
DESCRIPTOR
STORAGE > L8
E
3]
—
o
=
: il MO : %
; R[t] :
'<2\\ \§
e N , v
e ' K[t] DATA
e STORAGE
v by M__’ P
\i§L._«_“_*~__“~__
<‘ ~ e ~-{>
e e . : - . -
& e En .) v
e 7 i
P-register I-counter
P-sphere R-stack A-staek -

'Figure 1: The essential components of the ideal machine

)
2N

