MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Reply tos Project MAC
545 Technology Square
Cambridge, Mass. 02139

Telephone; (617} 864-4900 x620)

March 3, 1970

Professor Brian Randell

The Computing Laboratory
University of Newcastle upon Tyne
Claremont Tower, Claremont Road
Newcastle upon Tyne NE1 7RU
England

Dear Brian:

I would like to submit the paper on "The Multics Virtual Memory",
presented at the Princeton Symposium on operating system principles,
for publication in the ACM Communications. I have enclosed two copies
of the paper with minor corrections marked in red. Attached to each
copy of the paper is a set of professionally-drawn figures to replace
the corresponding hand-drawn figures in the paper.

The summary at the beginning of the paper seems to serve as an
appropriate abstract. To complete the documentation unit, the
following content indicators are recommended.

Key Words and Phrases: virtual memory, file systems,
segmentation, information sharing, data sharing,
shared procedures, paging, storage management, file
management, f£ile hierarchies.

CR Categories: 3.73, 3.74, 4.31, 4.32
Thank you for your time and consideration.

It was good talking with you at Princeton and I hope to see you
again soon. ' '

Sincerely,

Robert C. Daley .
Assistant Group Leader
Computer System Research

THE MULTICS VIRTUAL MEMORY *

MOTLE

A. Bensoussan
¢, T. Clingen
General Electric Company
Cambridge, Massachusetts
R. C. Daley
Project MAC, M, LT,
Cambridge, Massachusetts

Summary:

among system users has become increasingly apparent.
Usually, sharing is accomplished by allowing several users to share data via input and

sharing.

output of information stored in files kept in secondary storage.

As experience with use of on-line operating systems has grown, the need to shave information

Many contemporary systems permi t some degree of

Through the use of segmentation,

however, Multics provides direct hardware addressing by user and system programs of all information,

independent of its physical storage location.

Information is stored in segments each of which is

potentially sharable and carries its own independent attributes of size and access privilege.

Here, the design and implementation considerations of segmentation and sharing in Multics are first
discussed under the assumption that all information resides in a large, segmented main memory.
Since the size of main memory on contemporary systems is rather limited, it is then shown how the

Multics software achieves the effect of a large se

segmentation and paging hardware.
1. Introduction

In the past few years several well-known systems
have implemented large virtual memories which
permit the execution of programs exceeding the
size of available core memory. These
implementations have been ac beved by demand
paging in the Atlas computer -, allowing a
program to be divided physically into pages only
some of which need reside in core storage at an
one time, by segmentation in the B5000 computer -,
allowing a program to be divided logically into
segments, only some of which need be in core, and
by a combtnatgoTlof both segmentatiog and paging
in the GE 645-7*% and the IBM 360/67¢ for which
only a few pages of a few segments need be
available in core while a program is running.

As experience has been gained with remote-access,
multiprogrammed systems, however, it has become
apparent that, in addition to being able to take
advantage of the direct addressibility of large
amounts of information made possible by large
virtual memories, many applications also require
the rapid but controlled sharing of information
stored on-line at the central facility.

In Multics (Multiplexed Information and Computing
Service), segmentation provides a generalized
basis for the direct accessing and sharing of
on-line information by satisfying two design
goals: 1) it must be possible for all on-line
information stored in the system to be addressed
directly by a processor and hence referenced
directly by any computation. 2) it must be
possible to control access, at each reference,

to all on-line information in the system.

*Work reported herein was supported (in part) by
Project MAC, an M,I,T, research program sponsored
by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval
Reaearch Contract Number Nonr-4102(1),

gmented main memory through the use of the GE 645

The fundamental advantage of direct addressibility
is that information copyiug is no longer
mandatory. Since all imnstructions and data

items in the system are processor-addressible,
duplication of procedures and data is unnecessary,
This means, for example, that core images of
programs need not be prepared by loading and
binding together copies of procedures before
execution; instead, the original procedures may
be used directly in a computation. Also,

partial copies of data files need not be read,

via requests to an I/0 system, into core buffers
for subsequent use and then returned, by means

of another I/0 request, to their original
locations; instead the central processor
executing a computation can directly address just
those required data items in the original version
of the file, This kind of access to information
promises a very attractive reduction in program
complexity for the programmer,

1f all on-line information in the system may be
addressed directly by any computation, it becomea
imperative to be able to limit or control access
to this information both for the self-protection
of a computation from its own mishaps, and for
the mutual protection of computations using the
same system hardware facilities, Thus it
becomes desirable to compartmentalize or package
all information in a directly-addressible memory
and to attach to these information packages
access attributes describing the fashion in which
each user may reference the contained data and
procedures, Since all such information is
processor-addressible, the access attributes of
the referencing user must be enforced upon each
processor reference to any information package.

Given the ability to directly address all
on-line information in the system, thereby
eliminating the need for copying data and
procedures, and given the ability to control
access to this information, then controlled
information sharing among several computations
follows as a natural consequence,

In Multics, segments are packages of information
which are directly addressed and which are
accessed in a controlled fashion. Associated
with each segment is a set of access attributes
for each user who may access the segment.

These attributes are checked by hardware upon
each segment reference by any user. Furthermore
ali on-line information in a Multics installation
can be directly referenced as segments while in
other systems most on-line information is
referenced as files,

This paper discusses the properties of an

" dealized" Multics memory comprised entirely of
segments referenced by symbolic name, and
describes the simulation of this idealized
memory through the use of both specialized hard-
ware and system software. The result of this
simulation is referred to as the Multics virtual
memory. Although the Multics virtual memory
has been discussed elsewhere3,6,7 at the
conceptual level or in its earlier forms, the
implementation presented here represents &
mecnanism resulting from several consecutive
implementations leading to an effective
realization of the design goals.

2, Segmentation

A basic motivation behind segmentation is the
desire to permit information sharing in a more
automatic and general manner than provided by
non-segmented systems. Sharing must be
accomplished without duplication of information
and access to the shared information must be
controlled not only in secondary memory but also
in main memory,

In most existing systems that provide for
information sharing, the two requirements
mentioned above are not met. For example, in
the CTSS system’, information to be shared 1s
contained in files. In order for several users
to access the information recorded in a file,

a copy of the desired information is placed in a
buffer in each user's core image. This requires
an explicit, programmer-controlled 1/0 request to
the file system, at which time the file system
cheeks whether the user has appropriate access to
the file, During execution, the user program
manipulates this copy and not the file. Any
modification or updating is done on the copy and
can be reflected in the original file only by an
explicit T/0 request to the file system, at

which time the file svstem determines whether

the user has the right to change the file,

In non-segmented systems, the use of core images
makes it nearly impossible to control access to
shared information in core. Each program in
execution is assigned a logically contiguous,
bounded portion of core memory Or paged

virtual memory. Even if the non-trivial problem
of addressing the shared information in core
were solved, access to this information could
not be controlled without additional hardware
assistance. Each core image consists of a
succession of anonymous words that cannot be
decomposed into the original elementary parts
from which the core image was synthetized.

These different parts are indistinguishable in
the core image; they have lost their identity
and thereby have lost all their attributes, such
as length, access rights and name. As a
consequence, non-segmented hardware is inadequate
for controlled sharing in core memory. Although
attempts to share information in core memory
have been made with non-segmented hardware,

they have resulted in each instance being a
special case which must be pre-planned at the
supervisory level. This coordination with the
supervisor can usually be done for only a few
system programs such as compilers and text
editors.

In segmented systems, hardware segmentation can
be used to divide a core image into several
parts, or segments”, Each segment is accessed
by the hardware through a segment descriptor
containing the segment's attributes. Among
these attributes are access rights that the hard-
ware interprets on each program reference to the
segment for a specific user. The absolute core
location of the beginning of a segment and its
length are also attributes interpreted by the
hardware at each reference, allowing the segment
to be relocated anywhere in core and to grow

and shrink independently of other segments. In
most of these systems, a& user program must first
call the supervisor to associate a segment
descriptor with a specific file before the
program can directly access the information in
the file, 1f the number of files the user
program must reference exceeds the number of
segment descriptors available to the user, the
user program is forced to call the supervisor
again to free segment deseriptors currently in
use so that they can be reused to access other
information, Furthermore, if the number of
segment descriptors is {nsufficient to provide
simultaneous direct access to each distinct file
required by his program, the user must then
provide for some means of buffering this informa-
tion. Buffering, of course, requires that
{information from more than one file be copied
and coalesced with other distinctly different
information having potentially different
attributes, Once the information is copied and
merged, the ldentity of the original information
is lost, thus making it impossible for the
information to be shared with other user

-

-/

programs. In addition, this form of user-
controlled segment descriptor allocation and
buffering of information requires a significant
amount of pre-planning on the part of the user,

In Multics, the number of segment descriptors
available to each computation is sufficiently
large to provide a segment descriptor for each
file that the user program needs to reference in
most applications. The availability of a large
number of segment descriptors to each computation
makes it practical for the Multics supervisor to
associate segment descriptors with files upon
first reference to the information by a user
program, relieving the user from the responsibili-
ty of allocating and deallocating segment
descriptors. in addition, the relatively large
number of segment descriptors eliminates the need
for buffering, allowing the user program to
operate directly on the original information
rather than on a copy of the information. In
this way, all information retains its identity
and independent attributes of length and access
privilege regardless of its physical location in
main memory or on secondary storage. As a
result, the Multics user no longer uses files;
instead he references all information as segments,
which are directly accessible to his programs.

To Multics users, all memory appears to be com-
prised of a large number of independent linear
core memories, each associated with a descriptor.
A user program can create a segment by issuing a
call to the supervisor, giving, as argumeats, the
appropriate attributes such as symbolic segment
name, name of each user allowed to access the
segment with his respective access rights, etc.
The supervisor then finds an unused descriptor
where it stores the segment attributes, The
segment having been created, the user program
can now address any word of the corresponding

linear memory by the pair [name,i] where "name"
is the symbolic name of the segment and "1 is
the word number in the linear mewory. Fuarther-
more, any other user van reference word number i
of this segment also by the pair [name,1] but he
can access it only according to the access
rights he was given by the creator and which are
recorded in the descriptor. Combinations of
the "read", 'ywrite", "execute" and "append”
access rights® are available in Multics.

A simple representation of this memory, referred
to as the Multics idealized memory, is shown in
Figure 1.

3. Paging

In a system in which the maximum size of auy
segment were very small compared to the size of
the entire core memory, the "swapping' of
complete segments into and out ol core would be
feasible. Even in such a system, if all
segments did not have the same maximum size, o
had the same maximum size but were allowed to
grow from initially smaller sizes, therc rema s
the difficult core management problem of providing
space for segments of different sizes. Muitics,
however, provides for segments.of sulficient
maximum size that only a few can be entively cove-
resident at any one time. Also, these segavats
can grow from any initial size smaller than the
maximum permissible size.

By breaking segments into equal-sized parts
called pages and providing for the transportation
of individual pages to and from core as dumand
dictates, several practical problems encountered
in the implementation of a segmented virtual
memory are solved.

First, since pages are all of equal size, space

Name |
Atteibvtes

Name 2
Attribules

Name 3
Attributes

Name 4
Atteibutes

Name§

Attribobes} =" scenr| Not used

Fig. 1.

Multics Idealized Memory

allocation is immensely simplified. The
problems of Ycompacting' information in core and
on secondary storage, characteristic of systems
dealing with variable~sized segments or pages,
are thereby eliminated.

Second, since ouly the referenced page of a
segment need be in core at any one instant,
segments need not be small compared to core
memory.

Third, "demand paging'' permits advantage to be
taken of any locality of reference peculiar to a
program by transporting to core only those pages
of segments which are currently needed, Any
additional overhead associated with demand paging
should of course be weighed against the alterna-
tive inefficiencies associated with dedicating
core to entire segments which must be swapped
into core but which may be only partly referenced,

Finally, demand paging allows the user a greater
degree of machine independence in that a large
program designed to run well in a large core
memory configuration will continue to run at
reduced performance on smaller configurations.

4, The Multics Virtual Memory

Multics simulates the idealized memory,
represented in Figure 1, using the segmentation
and paging features of the GE 645 assisted by
appropriate software features, The result of
the simulation is referred to as the "Multics
Virtual Memory'. = The user can keep a large
number of segments in this memory and reference
them by symbolic name; upon first reference to a
segment, the supervisor automatically transforms
the symbolic name into the appropriate hardware
address which is directly used by the processor
for subsequent references.

The remainder of this paper explains the address-
ing mechanism in the GE 645 and describes how

the Multics supervisor simulates the Multics
idealized memory.

5. The GE 645 Processorx

The features of the GE 645 processor which are
of interest for the implementation of the Multics
virtual memory are segmentation and pagling.

Segmentation

Any address 'in the GE 645 processor consists of
a pair of integers [s,i]. "s'" is called the
segment number, "i'" the index withip the segment.
The range of 's" and "i" is 0 to 2+°-1,

Word [s,i] is accessed t rough a hardware
register which is the gt word in a table called
a descriptor segment (DS). The descriptor
segment is in core memory and its absolute
address is recorded in a processor register
called a descriptor base register (DBR). Each
word of the DS is called a segment descriptor
word (SDW); the nth sow will be referred to an
B IER P Hee Flpure 2.

The DBPR contains the values:

DBR.core which is the absolute core addresu

of the DS,
DBR.L which is the length of the DS.

Segment descriptor word number

values:

A simplified versio

wg" contains the

SDW(s).core which is the absolute core
address of the segment s.
SDW(s).L which is the length of the
segment S.

SbW(s).acc which

for the segment.

SDW(s).F which is the

switch,

describes the access rights

"nissing segment'
4 £

n of the algorithm used by the

processor to access the word whose address is
[s,1] follows (see Figure 2):

1f DBR.L< s, generate a trap, Or "fault" to
the supervisor.
Access SDW(s) at absolute location
DBR.core + S,
1f SDW(s).F = ON, generate & missing segment
fault,
1f SDW(s).L< i, generate a fault,

1f SDW(s).acc is incompatible with the
requested operation, generate & fault,

Access the word whose absolute address is -’

SDW(s).core + 1.

DBR
DS [ore |;|
is
e spw ls) | |
SE GMENT "S . “‘Nl‘-l““ 3
i
worD [8.4] '
Fig. 2. Hardware Segmentation in the GE 645
Paging

The above description assumes that segments are
not paged; in fact, paging is implemented in the

GE 645 hardware,

In the Multics implementation,

all segments are paged and the page size'is,
always 1024 words.

Element "i" of a segment is the wt
page of the segment,'Ww'" and

pt
by

i

wea i mod 1024
pw (L - w)/1024

h

(1 1

P

word of the
being define’

-

Each segment is referenced by a processor through In order to reduce the number of processor

a page table (PT). The PT of a segment is an references to core storage while perlormiung this
array of physically contiguous words in core algorithm, each processor has a small, high-speed
nemory. Each element of this array is called a associative memory1 automatically maintained so
lage table word (PTW). Page table word number p as to always contain the PTW's and SDW's most
contains: recently used by the processor, The associative
) memory significantly reduces the number of
- PTW(p).core which is the absolute core additional memory requests requived during
address of page number p, address preparations,

- PTW(p).F which. is the 'missing page' switch,
6. Multics Processes and the Multics Supervisor

The meaning of DBR.core and SDW(s).core is now:
A process is generally understood as beiag a

- DBR.,core = Absolute core address of the PT program in execution, A process is chavactevized
of the descriptor segment. by its state-word defining, at any given instang,
- SDW(s).core = Absolute core address of the the history resulting from the oxccution of the
PT of segment number s, prograia, It is also characterized by its
address space. The address space of a process
A simplified version of the algorithm used by is the set of processor addresscs that the
the processor to access the word whose address process can use to reference information in
is [s,i] is as follows (see Figure 3): memory. In Multics, any information that a
process can reference by an address of the form
- If DBR.L< s, generate a fault, [segment number,word number] is said to be in
- Split s into the page number 5p and the word the address space of the process. There is a
number s_. one-to-one correspondence hetween Multics
- Access PIW(s,) at absolute location processes and address spaces, Each process {8
DBR.core + s,. provided with a private descriptor segment which
- If PTW(SP).F = ON, generate a missing page maps segment numbers into core memory addresses
fault, and with a private table which maps symbolic
-~ Access SDW(s) at absolute location segment names into segment numbers, This table
PTW(s,).core + s_, is called the Known Segment Table (KST).
- If SD&(S).F = ON, generate a missing segment
fault, The Multics supervisor could have been written
- If SDW(s).L< i, generate a fault, so as not to use segment addressing of course;
- If SDW(s).acc is incompatible with the but organizing the supervisor inte procedures
requested .operation, generate a fault, and data segments permits one to use, in the
- Split i into the page number ip and the supervisor, the same conventions that are used in
word number i, : user programs, For instance, the call-save-
- Access PTW(i,) at absolute location return conventions’ made f{or users programs can
SDW(s).core + i.. be used by the supervisor; the standard way to
- If PTW(ip).F = 8N, generate a missing page manufacture pure procedures in a user program {s
fault, also used extensively in the supervisor, A less
« Access the word whose absolute location is visible advantage of segmentation of the
PTw(ip).core + iw, supervisor is that some supervisory facilities
DAR
of DS
T of T J‘core .
PAGR “sp" of DS PTw(sp)l '3
- core [F
Sw
PT of spw(s) | |
SIGMENT'S v] |
PAGE"Lp" of o
SEGMENT *5" PTwiip) (P
<7 core|F
:1'~

word(s,i] |

Fig, 3. Hardware Segmentation and Paging in the GE 645

provided for the management of user segments can
also be applied to supervisor segments;

for example, the demand paging facility designed
to automatically load pages of user segments can
also be used to load pages of supervisor segments.
As a result, a large portion of the supervisor
need not reside permanently in core,

Unlike most supervisors, the Multies supervisor
does not operate in a dedicated process or
address space. Instead, the supervisor
procedure and data segments are shared among all
Multics processes. Whenever a new process is
created, its descriptor segment is initialized
with descriptors for all supervisor segments
allowing the process to perform all of the basic
supervisory functions for itself. The execution
of the supervisor in the address space of each
process facilitates communication between user
procedures and supervisor procedures. For
example, the user can call a supervisor procedure
as if he were calling a normal user procedure,
Also, the sharing of the Multics supervisor
facilitates simultaneous execution, by several
processes, of supervisory functions, just as the
sharing of user procedures facilitates the
simultaneous execution of functions written by
users.

Since supervisor segmeuts are in the address
space of each process, they must be protected
against unauthorized references by user programs,
Multics provides the user with a ring protection
mechanism'? which segregates the segments in his
address space into several sets with different
access privileges. The Multics supervisor
takes advantage of the existence of this
mechanism and uses it, rather than some other
special mechanism, to protect itself,

7. Segment Acttributes

Directory Hierarchy

The mame of a segment and its attributes-are
associated in a catalogue. Conceptually this
catalogue consists of a table with one -ntry for
each segment in the system. An entry contains
the name of the segment and all its attributes:
length, memory address, list of users allowed to
use the segment with their respective access
rights, data and time the segment was created,etc,

In Multics,this catalogue is implemented as
several segments, called directories, organized
into a tree structure, A segment name is a list
of subnames reflecting the position of the entry
in the tree structure, with respect to the
beginning, or root directory (ROOT), of the tree,
By convention, subnames are separated by the
character "> " FEach subname is called an entryname
and the list of entrynames is called a pathname,
An entry name is unique in a given directory and

a pathname is unique in the entire directory
hierarchy. Because of its property of uniquely
fdentifying a segment in the directory hierarchy,
the pathname has been chosen as the symbolic name
by which the Multics user must reference a segment,

There are two types of divectory entries, hr.uw‘.:os‘
and liuks. A branch is a divectory cntvy which
contains all attributes ol a segment while a divk

1s a directory centry which contatus the pathname

of another dirccrury entry. A move detailed
description of the divectory hiervarchy aml ot the

use of links is glven by Daley and Neumann®,

Operations on Sepment Attributes

Supervisor primitives perform all operations on
segment attributes. Therve is a set of

primitives availahble to the user which allow hin,
for example, to create a segment, delete a sepaent,
change the entryname of & dircctory entvy, change
the access rights of a scgment, list the sogment
attributes contained in a directory, cte.

Creating; a segment whose pathname is ROOT™ ABB> C
(see Figure &) consists basically of the Tollowing
steps:
- Check that entryname C does not already exist
in the directory ROOT>A >3B.
- Allocate space for a new branch in directory
ROOT>A >B.
- Store in the branch the following items:

. The entry name C.

The scgment length, initialized to ecro,

. The access list, given by the cveator,

.. The segment map, consisting of an array
of secondary memory addresses, one for
each page of the segment, The maximun
length of a segment in Multics being
64 pages, the sepment map Lor any scgment
contains 64 entrics, Since the segment
length is still zero, each entry of the
segment map is initialized with a "ull"
address, showing that no secondary wmewmory
has been assigned to any potential page of
the segment,

The scgment status "fnactive', meaning
that there is no page table for this
segment, The segment status, which may
be either "active' or "inactive" is
indicated by the active switch.

-

'

8. Segment Accessing

Although the creation of a segment initializes its
attributes, additional supervisor support is
required to make the segment accessible to the
processor when a user program references the
segment by symbolic name.

8.1. Symbolic Addressing Gonventions

The pathname is the only symbolic name by which a
segment can be uniquely identified in the

directory hierarchy. However, for user conve-
nience, the system provides a facility whereby a
user can reference a segment from his program

using only the last entry name of the segment's
pathname and supplying the rest of the pathname
according to system conventions, This last entr gy
name is called the reference name.

ROOT>A>BH>C

ROOT>A>B
¢! Athributes

Hjattributes
/ E"IP}Y

Emply

ROOT »A>X

et Al Altribules \ B |Atvibutes
FlAltributes X |Alteibotes

Emply
Emply

ROOT>A>Y

ROOT >D>A>F

ROOT>D > A

ROOT » A

Y [Aributes

Ewply
ROOT
Af Albribules
D{Athributes
Empty
Empty
ROOT >D

————{F[attributes]”
empty
Ewmpty
Emnply

ROOT D> X
Y| Attribubes
¢ [akributes
Diatteibutes
Empty

Fig. 4.

Alattributes

X {httribotes

Emply

Ewptly

. 5quares are directory segments.
o Circles are non-d:ruhw, 5ng¢nt’.

Directory Hierarchy

When a process executes an instruction which
attempts to access a scgment by means of its
refevence name, the Multics dynamic linking
facility’ is automatically invoked. The dynamic
linker determines the missing part of the path-
name according to the above-mentioned system
conventions. Thesc conventions are called
search rules and may be regavded as a list of
directories to be searched for an entry name
matching the specified veference name.

Wwhen this entry name is found in a directory,
the directory pathname is prefixed to the
reference name yielding the required pathname.
The dynamic linker, using the 'Make Known"
module (8.2.), then obtains a segment number by
which the referenced segment will be accessed,
Finally it transforms the reference name into
this segment number such that all subsequent
executions of the instruction in this process
access the segment directly by segment number
Further details are given by Daley and Dcnnis7.

8.2, Making a Segment Known to a Process

Each time a segment is referenced in a process
by its pathname, either explicitly or as the
result of the evaluation of a reference name by
the dynamic linking facility, the pathname must
be translated into a secgment number in order to
permit the processor to address the segment for
this process. This translation is done by the
supervisor using the KST associated with the
process. The KST is an array organized such
that entry number "s', KSTE(s), contains the
pathname associated with segment number s,
See Figure 5,

1f the association [pathname,segment number] is
found in the KST of the process, the segment is
said to be known to the process and the segment
number can be used to reference the segment,

If the association [pathname,segment number] is
not found in the KST, this is the first reference
to the scgment in the process and the segment
must be made known. A segment is made known by
assigning an unused segment number "s' in the
process and by recording the pathname in KSTE(s)
to establish the pair [pathname,segment number]
in the KST of the process, Also, the directory
hierarchy is searched for this pathname and a
pointer to the corresponding branch is entcred in
KSTE(s) for later use (8.3,),

The per-process association of pathname and
segment number is used in the Multics system
because it is impossible to assign a unique
segment number to each segment. The reason is
that the number of segments in the system nearly
always will be larger than the number of segment
numbers available in the processor.

When a segment is made known to a process by
segment number "s", its attributes are not placed
in SDW{(s) of the descriptor segment of that
process, SDW(s) having been initialized with the
missing segment switch ON, the first reference in
this process to that segment by segment number

"e" will cause the processor to generate a trap.
Tn Multics this trap is called a 'Wmissiug segment
fault" and transfers control to a suporvisor
module called the segment fault handler.

8.3. The Seuament Fault landler

When a missing scepment fault occurs, contvol is
passed to the segment fault handler to store the
proper segment attributes in thoe appropriate SDW
and set the missing segment switch OFF in the SDW,

These attributes, as shown in Figure 3, consist
of the page table address,the length of the
segment, and the access rights of the uvser with
respect to the segment, The intormation
initially available to the supervisor upon
occurrence of a missing segment fault is the

segment number ''s'.

The only place where the needed attributes can be
found is in the branch of the segment. Usinyg
the segment number "s', the supervisor can locate
the XST entry associated with the faulting
segment; it can then find the requived branch
since a pointer to the branch has been stored in
the KST entry when the segment was made known to

this process (8.2.,).

Using the active switch (Figure 5) in the branch,
the supervisor determines whether there is a page
table for this segment. Recall that this swiuch
was initialized in the branch at segment creatic
1f there is no pape table, one must be
constru .ted, A portion of core memory is
permanently reserved f{or page tables, All page
tables are of the same length and the number of
page tables is determined at syscem initializa-
tion.

time,

The supervisor divides page tables into two lists:
the used list and the free list. Manufacturing
a page table (PT) for a segment could consist
only of selecting a PT from the free list,
putting its absolute address in the branch and
moving it from the free to the used list, If this
were actually done, however, the servicing of
each missing page fault would require access to a
branch since the segment map containing

secondary storage addresses is kept therve

(Figure 5). Since it is impractical tor all
directories to permanently reside in cove, page
fault handling could thereby cequire a secondary
starage access in addition to the read request
required to transport the page {tselfl into core,
Although this mechanism works, elfffciency con-
siderations have led to the "activation"
convention betwcen the scgment fault handler and
the page fault handler.

Activation, A portion of core memory is
permanently reserved for recording attributes
needed by the page fault handler, i.e., the
segment map and the segment length, This
portion of core is referred to as the active
segment table (AST). There is only one AST in‘-'
the system and it is shared by all processes.

The AST contains one entry (ASTE) for each PT.

g

A PT is always associated with an ASTE, the
address of one implying the address of the other.
They may be regarded as a single entity and will
be referred to as the [PT,ASTE] of a segment,
The used list and free list mentioned above are
referred to as the [PT,ASTE] free list and the
[PT,ASTE] used list.

A segment which has a [PT,ASTE] is said to be
active, Beilng active or not active is an
attribute of the segment and is recorded in the
branch using the active switch.

When the active switch is ON, both the segment
map and the segment length are no longer in the
branch but are to be found in the segment's
[PT,ASTE] whose address was recorded in the
branch during '"activation' of the segment.

To activate a segment, the supervisor must:

- Find a free [PT,ASTE]. (Assume temporarily
that at least one is available),.

- Move the segment map and the segment length
from the branch into the ASTE.

- Set the active switch ON in the branch,

- Record the pointer to [PT,ASTE] in the
branch.

By pairing an ASTE with a PT in core, the segment
fault handler has guaranteed that all segment
attributes needed by the page fault handler are
core-resident, permitting more efficient page
fault servicing.

Connection, Once the segment is active, the
corresponding SDW must be '"connected" to the
segment. To connect the SDW to the segment the
supervisor must:

- Get the absolute address of the PT, using the
[PT,ASTE] pointer kept in the branch, and
store it in the SDW.

- Get the segment length from the ASTE and
store 1t in the SDW.

- Get the access rights for the user from the
branch and store them in the SDW.

- Turn off the missing segment switch in the
SDw.

Having defined activation and connection, segment
fault handling can now be summarized as:

- Use the segment number 8 to access the KST
entry,

- Use the KST eatry to locate the branch.

-~ 1If the active switch in the branch is OFF,
activate the segment.

= (Connect the SDW,

DBR
. s core JL
L *] Lo M DIRECTORY
= o
DS KST
spw (s) KSTE (5)
PT y)] 'orelLla:cJF e==p{Pathname | 9737 > BRANCH
- [= pir
...... v Entry name
PAGE o"r:‘[!’;- ASTE segment map
/ bl I}
EME onp[6.4] ' o E::?;ﬁ.:t M:P '.."' Lu;glh 'k
, i Conatet,List L. Active swile
o je=> i [Branch ptr pte (er,Aste) ptr
. user | : Access rights

Temporory mapping .

................... » Mapping needed lo invalidate a tcmpomvy mapping .

= ImPl;ciro marrh\g.

NOTE . The page table of the deseriplor segment is nol shown for the sake of simplicity.

Fig. 5. Basic Tables Used to Implement the Multics Virtual Memory

Oste 2 1 Access nights
user 3 ; Acceds right;

o
peety

“oe,
haal LULY PP L LT

Note that the active switch and the [PT,ASTE]
pointer in the segment branch "automatically"
guarantee segment sharing in core since all SDW's
describing a given segment will point to the

same PT.

Once the segment and its SDW have been connected,
the hardware can access the appropriate page
table word. If the page is not in core, a
missing page fault occurs, transferring control
to the supervisor module called the page fault
handler.

8.4, The Page Fault Handler

When a page fault occurs the page fault handler
is given control with the PT address and the page
number of the faulting page. The information
needed to bring the page into core memory is the
address of a free block of core memory into which
the page can be moved and the address of the page
in secondary memory.

A free block of core must be found. This is done
by using a data base called the core map. The
core map is an array of elements called core map
entries (CME). The nf entry contains informa-
tion about the ath block of core (the size of all
blocks {s 1024 words). The supervisor divides
this core map into two lists; the core map used
list and the core map free list.

The job of the page fault handler consists of the
followlng steps:

- Find a free block of core and remove its
core map entry from the free list.

(Assume temporarily that the free list is
not empty.)

- Access the ASTE associated with the PT and
find the address in secondary memory of the
missing page.

- If this address 1s a "null" address,
initialize the block of core with zeros
and update the segment length in the ASTE;
this action is only taken the first time the
page is referenced since the segment was
created and provides for the automatic grow-
ing of segments, Otherwise issue an 1/0
request co move the page from gsecondary
memory into the free block of core and wait
for completion of the re 3est via a call to
the "traffic controller':” which is
responsible for processor multiplexing.

- Store the core address in the PTW, remove
the fault from the PIW, and place the core
map entry in the used list.

8.5. Page Multiplexing

There are many more pages in virtual memory than
there are blocks of core in the real memory;
therefore, these blocks must be multiplexed

among all pages, In the description of page
fault handling it was assumed that a free block

of core was always available, In order to

{nsure that this is nearly always true, the page
fault handler, upon removing a free block from the

core map free list, examines the number of y

remaining free list entries; if this number is
less than a preset minimum value, a page removal
mechanism is invoked a sufficient number of times
to insure a non-empty core map free list in all
but the most unusual cases, A non-empty core
map free list eliminates waiting for page removal
during the handling of a missing page fault,

To get a free block of core, the page removal
mechanism may have to move a page from core to
secondary memory. This requires: (a) an
algorithm to select a page to be removed;

(b) the address of the PTW which holds the address
of the selected page, in order to set a fault in
it; and (c) a place to put the page in secondary
memory. .

The selection algorithm is based vpon page usage.
It s a particularly ecasy-to-implement version

of the "least-recently-used" algorithml, 8,

The hardware provides valuable assistance by,
each time a page is referenced, setting ON & bit,
called the used bit, in the corresponding PIW.
The selection algorithm will not be described in
detail here, However, it should be noted thas
candidates for removal are those pages described
in the core map used list; therefore, each core
map entry which appears in the used list must
contain a poimter to the associated PIW (Figure 5)
in order to permit examination of the used bit,
The action of storing the PTW pointer in the core
map entry must be added to the list of actions

taken by the page fault handler when a page is J

moved into core (8.4.).

Once the supervisor has selected the page to be
removed, it takes the following steps:

- Set the missing page switch ON in the FIW,

- If no secondary memory has been assigned
yet for this page, i.e., the segment map
entry for this page holds a "null" address,
assign a block of secondary memory and store
its address in the segment map entry.

- Issue an I/0 request to move the page to
secondary storage,

- Upon completion of the I/0 request, move the
core map entry describing the freed block of
core from the core map used list to the core
map free list. This may be done in another
process upon noticing the completion of the
1/0 request,

8.6, [PT,ASTE] Multiplexing

Core blocks can be multiplexed only among pages of
active segments, The number of concurrently
active segments is limited to the number of
[PT,ASTE] pairs, which is, by far, smaller than
the total number of segments in the virtual
memory. Therefore [PT,ASTE] pairs must be
multiplexed among all segments in the virtual
memory.

When segment activation was described, a [PT,ASTE’
palr was assumed available for assignment.
In fact, this is not always the case, Making one

segment active may imply making another segment
inactive thereby disassociating this other
segment from its [PT,ASTE]. Since all processes
sharing the same segment will have the address of
the PT in an SDW, it is essential to invalidate
this address in all SDW's containing it before
removing the page table,

This operation requires: (a) an algorithm to
select a segment to be deactivated; (b) knowing
all SDW's that contain the address of the page
table of the selected segment, in order to
invalidate this address; (c) moving the
attributes contained in the ASTE back to the
branch; and (d) changing the status of the
segment from active to inactive in the branch.

The selection algorithm for deactivation, like
the selection algorithm for page removal, is
based on usage, When the last page of a segment
is removed from core, the segment becomes a
candidate for deactivation, The algorithm
selects for deactivation the segment which has
had no pages in core for the longest period of
time, {.e., the segment which has been least
recently used, Since the number of [PT,ASTE]
pairs substantially exceeds the number of page-
able blocks of core, it is always possible to
find an active segment with no pages in core,

The ASTE must provide all the information needed
for deactivating a segment. This means that
during activation’ and connection, this informa-
tion must be made available, During activation,
a pointer to the branch must be placed in the
ASTE; during connection, a polnter to the SDW
must be placed in the ASTE, Since more than one
SDW is connected to the same PT when the segment
is shared by several processes, the supervisor
must maintain a list of pointers to all connected
SDW's, This list is called a connection list,
See Figure 5,

After the selection algorithm chooses a [PT,ASTE]
to be freed, the disassociation of the segment
from its [PT,ASTE] is done in two steps:
disconnection and deactivation,

DIRECTORIES

Disconnection consists of storing a segment fault
in each SDW whose address appears in the conunec-
tien list in the ASTE. Deactivation consists of
moving the segment map and the segment length
from the ASTE back to the branch, resetting the
active switch in the branch, and putting the
[PT,ASTE] in the free list.

9. Structure of the Supervisor

Up to now supervisor functions have been described,
but not the supervisor structure, In this
section, the different components of the super-
visor are presented and the ability of portions of
the supervisor to utilize the virtual memory is
discussed.

9.1. Functional Modules

Three funcrtional modules can be identified in the
supervisor described in Section 8; they are called
directory control (DC), segment control (SC), and
page control (PC).

DC performs all operations on segment attributes;
it also maps pathnames into segment numbers in the
KST of the executing process, Data bases used by
a process executing DC procedures are the direc-
tories and the KST of the process, (Figure 6)

SC performs segment fault handling. Data bases
used by a process executing SC procedures are
directories, the KST of the process, descriptor
segments and [PT,ASTE] pairs,

PC performs page fault handling. Data bases used
by a process executing PC procedures are [PT,ASTE}
pairs and the core map,

9.2, Use of PC in the Supervisor

One can observe that the page fault handler need
not know if a missing page belongs to a user
segment or to a supervisor segment; it only
expects to find the information it requires in

the [PT,ASTE] of the segment to which the missing
page belongs, Therefore, if all segments used in

Directory
Control

Segment
Control

Page

Control [™ CORE MaP

Fig. 6.

Supervisor Functional Modules and Data Bases

_s¢ and DC are always active, then thelr pages
need not be in core since PC can load them when
they are referenced.

1a order to make use of PC in the rest of the
supervisor the following (temporary) assumption
must be made.

Assumption 1:

a. All segments used in PC are always in core
and are connected to the descriptor segment
of each process.

b. All segments used in SC and DC are always
active and are connected to the descriptor
segment of each process.

9.3, Use of SC in the Supervisor

Assumption 1 is satisfactory in the Multics
implementation except for directories,

The number of directory segments in the system
may be very large and keeping them always active
is not a realistic approach, since a large number
of [PT,ASTE] pairs would have to be permanently
assigned to them. It would be desirable to use
SC to activate and connect directory segments
only as needed,

A necessary condition for handling a segment

fault for segment X in a process is that segment X

be known to that process. Assuming that all
directories are known to all processes, but not
necessarily active, reference to a directory x
may cause a segment fault. When handling this
fault, the segment fault handler must reference
the parent directory of segment x, where the
branch for x is located. This reference to the
parent of x could, in turn, cause a recursive
{nvocation of the segment fault handler. These
recursive invocations can propagate from direc-
tory to parent directory up to the root. 1f the
root directory is always active and connected to
each process, then the recursion is guaranteed
to be finite and a segment fault for any direc-
tory can be handled,

The first assumption can be replaced by the
following more satisfactory assumption (again
temporary).

Assumption 2:

a, All segments used in PC are always in core
and are connected to the descriptor segment
of each process.

b. All non-directory segments used in SC and
DC are always active and are connected to
the descriptor segment of each process,

c. The root directory is always active and
connected to each process,

d, All directories are always known to each
process.

9.4, Use of the Make Known Facility in the
Supervisor

However, it is unsatisfactory to keep all direc-
tories known to all processes because of the
space that would be required in each KSY. Tt
would lte more attractive if a divectory could bhe
made known to a process only wheun needed by the
process.

Making a segment x known implies searching fox
its pathname in the KST. I1f not found, the
parent of x must first be made known and S0 on up
to the root. 1f the root directory is always
known to all processes then any divectrory can

be made known to & process by calling recursively
the Make Known facility of the supervisor.

Assumption 2 will now be replaced by the Iinal
assumption:

Final Assumption:

{in PC are always in covre
to the descriptor segment

a, All segments used
and are connected
of each process. .

b. ALl non-directory segments used in S¢ and DC
are always active and are connected to the
.descriptor segment of each process.

c. The root directory is always active and
connected to each process.

d. The root directory is always known to each

" process,

Given the above assumption, supervisoxr segments,
as well as user segments, can be stored in the
virtual memory that the supervisor provides.

10. Summary

The most important points discussed in this paper
are surmarized below. They are grouped into two
classes: the point of view of the user of the
virtual memory, and the point of view of the
supervisor itself.

User Point of View

-

- The Multics virtual memory can contain a very

large number of segments that are referenced
by symbolic names.

~ Segment attributes are stored in special
segments called directories, which are
organized into a tree structure; by a naming
convention known to the user, the symbolic

name of a segment must be the pathname of the

segment in the directory tree structure,

- Any operation on directory segments must be
done by calling the supervisor.

- Any operation on a non-directory segment can
be dome directly in accordance with the
access rights that the user has for the
segment; any word of any segment which
resides in the virtual memory can be
referenced with a pair [pathname,i] by the
user.

-/

Supervisor Point of View

- The supervisor must simulate a large
segmented memovy which is directly address-
able by symbolic name and such that any
access to the memory is submitted to access
rights checking.

- The supervisor maintains a directory tree
where it stores all segment attributes,

It can retrieve the attributes of a segment,
given the pathname of that segment.

- The supervisor itself is organized into
segments and runs in the address .ipace of
each user process.

- Any segment, be it a directory or a non-
directory segment, is identified by its
pathname but can be accessed only using a
segment number, For each scgment name the
supervisor must assign a segment cumber by
which the processor will address the segment
in the process,

- The processor accesses a word of 4 segment
through the appropriate SDW and PIW, subject
to the access rights recorded in the SDW.

- A segment fault is generated by the processor
whenever the page table address or access
rights are missing in the SDW. The super-
visor then, using the KST entry as a stepping
stone, accesses the branch where it finds the
needed information. If a PT is to be
assigned, the supervisor may have to deacti-
vate another segment,

- A page fault is generated by the processor
whenever a PTW does not contain a core
address. The supervisor then, using the
ASTE associated with the PT, moves the miss-
ing page from secondary storage to core,

This may require the removal of another page.

11. Acknowledgments

This paper would be incomplete without acknowledg-
ment of the people who worked so hard to build the
virtual memory supervisor portion of Multics.
Special mention goes to G. F. Clancy,

M. R. Thompson and S. H, Webber who, under the
design leadership of R, C. Daley, have been
involved in a major portion of the design and
implementation effort, They were aided in
earlier designs and implementations by

C. A. Cushing, S. M. Jones, G. B, Krekeler,

N. I. Morris, P. G. Neumann, R. K. Rathbun,

J. D. Van Hausan, M. R, Wagner and L.D. Whitehead,
Recent implementations have also benefitted from
the contributions of S, D, Dunten and

M. C. Turnquist, Contributions in the form of
analyses and discussions have been made by

F. J. Corbaté, J. H., Saltzer and V, A. Vyssotsky.

Finally, our thanks go to P, A, Belmont,

M, A. Meer and D. L. Stone who participated in
studies leading to this formalized description
of the Multics virtual memory,

References

1. BRLADY, L.A. A Study of Replacement Algorithus
for a Virtual-Storage Computer.
IBM Systems J.5, 2 (1966), 78-101,

2. COMFCRT, W. T. A Computing Systom Desiyn For
User Service. Proc. AFIPS 1965 Fall Jeint
Computer Conference Vol. 27, Pt. 1, Spartan
Rooks, New York, pp.619-628.

[

. CORBATO, F. J., and VYSSOTSKY, V. A,
Introcuction and Overview of the Muloices
Systonm. Proc. AFIPS 1905 Fall Joint Computer
Counference, Vol, 27, Part 1. Spartan Books,
New York, pp.185-196.

4. CORBATGO, F. J. A Paging Experiwment with the
Multics System. To be included in a
Festschrift to be published in honor of
Prof. I. M. Morse,

5. CRISMAN, P, A, ed. The Compatible Time-
Sharing System: A Programmer's Guide, 2nd ed.,
MIT Press, Cambridge, Mass., 1965,

6. DALEY, R. C., and NEUMANN, P, G. A general-
Purpose File System for Sccondary Storage,
Proc., AFIPS 1965 Fall Joint Computer Couf.,
Vol. 27, Part 1. Spartan Books, New York,
pPp.213-229,

7. DALEY, R. C., and DENNIS, J. B. Virtual
Memory, Processes, and Sharing in Multics.
Comm., ACM 11, 5 (May 1968), 306-312.

8. DENNING, P. J.
Program Behavior.
323-333,

The Working Set Model for
Comm. ACM 11, 5 (May 1968),

9. DENNIS, J, B,
Multiprogrammed Computer Systems,
4 (Oct. 1965), 589-602,

Segmentation and the Design of
J.ACM 12,

10, FOTHERINGHAM, J. Dynamic Storage Allocation
in the Atlas Computer, Including an Automatic
Use of a Backing Store - Comm. ACM 4,10(1961),
435-436,

11,GIASER, E, L,, COULEUR, J, F., and OLIVER,G.A,
System Design of a Computer for Time Sharing
Applications, Proc, AFIPS 1965 Fall Joint
Computer Conference, Vol, 27, Part 1.
Spartan Books, New York, pp.197-202,

Protection in an Information
Comm. ACM 11, 5(May 1968),

12.GRAHAM, R, M,
Processing Utility,
365-369,

13, SALTZER, J, H. Traffic Control in a Multi-
plexed Computer System. Tech, Rep. No,
MAC-TR-30 (Ph.D. thesis), Project MAC, MIT,
Cambridge, Mass., 1964,

14, The Descriptor -~ A definition of the B5000
Information Processing System. Burroughs Corp.,
Detroit, Mich., 1961,

