e el

N

)

AR Y

. 4

(e
.

4.

]

: j et

NE

.Jx.-:j PR

7
s E,
il

v
e e Ll

TN S (RN L SR %

i
Y

T4

RN W

The many faces of Multics
J. E. Jarvis

(’7/ g £r’
Notic peret
- GOV D

Honeywell Information Systems Ltd., Honeywell House, Great West Road,

Brentford TW8 9DH

Figure 1 is an example of a standard login sequence for Multics, with a few personal featur
illustrated—abbreviating ‘login’ to ‘1’ and automatically having mail, or the ‘no mail’ message
posted to the terminal. Multics is capable of presenting simultaneously an enormous range of MAY 5

RECEIVED
1975

1

different interfaces to its world of users and the following discussion illustrates some of the tools
available to build individual environments tailored to cither the individual and/or the application.
. H. SALTZER

(Received August 1973)

Multics—Multiplexed Information and Computing Service—

is a compu—te_r_u‘tility jz)intly developed at the Massachusetts
Institute of Technology by Project MAC of MIT, Bell Tele-
phone Laboratories (from 1965 to 1969) and, originally,
General Electric, later Honeywell Information Systems. 1t was

- implemented initially on the GE 645 and is now available on
the Honeywell 6180 computer system, an enhanced relative of
the 6080. It embodies many capabilities which are substantially
in advance of those provided by many other systems, par-
ticularly in the areas of security, continuous operation, virtual
memory, shareability of programs and data, reliability and
control.

It also allows different programming and human interfaces to

- co-exist within a single system. This paper describes some of
the tools and techniques which are available to enable a user
to build his own personal interface or to have one imposed on
him by a project administrator.

The requirements for interfaces of a considerably different
nature arise for a number of reasons. There is, in some ways, a
basic distinction between the needs of a clerical user—perhaps
only updating a file or making enquiries in a transaction pro-
cessing environment—and those of a programmer; and the
ways they use the system are quite different. In an organisation
where the two distinct classes of user need to share common
files and/or programs the basic need for different interfaces
begins to emerge. It has been found from experience that the
success and ease of use of an on-line system are extremely
sensitive to the interface presented to its users.

Also, within the two broad classes of users—clerical and
programming—there are subdivisions which are related te the
needs, experience and ability of those users. The subdivisions
which are found in the first class include:

. on-line data preparation

. data acquisition

. low level access, c.g. cnquiry only

. higher level access, e.g. updaling, access to confidential or
restricted information

. computer aided instruction

. griaphics - '

DN -

N\

7. custom built terminals, e.g. ticket printers for seat reservation
applications
8. non-programming users of a time-sharing system.

Similarly, in programming environments there are clear cut
distinctions between thc nceds and capabilities of sets of
programmers:

1. elementary users and beginners, e.g. school children, first
year undergraduates

. applications programmers

. systems programmers

.an APL only subsystem for a university class, etc.

. programmers developing programs for other systems—for
reasons of co-existence or conversion.

wv AW

This latter point is a major subject in its own right. It arises, for
example, if a bureau were to change from another system to
Multics; if Multics is used as a software development system for
a completely different machine; or if Muitics is used to ‘front-
end’ another powerful processor. A

In the first of these cases the bureau may not wish to force its
users to change directly from the old system to the new, but
rather to provide a period when users can continue to use
Multics as if it were the older system, and optionally to use the
wider ‘native’ Multics facilities. It is possible to implement a
subsystem that precisely imitates the command environment
of the other system. The Dartmouth Time Sharing System
(DTSS) is implemented in such a way, for example,

Multics as a ‘front end’

Here, a physical link can be made between Multics and another
system, which might be intended for a specialised ‘number
crunching’ application. Multics acts then as the user interface,
the scheduler, the guardian of secure information and a prob-
lem solver in its own right. The system can be organiscd so that
users of the complex need have no concern for the JCL of the
background machine-—indeed they may not even know on
which computer the job is run. Alternatively, when submitting
a job for a particular machine they could allow Multics to add
the control language and pass the job on. Similarly, output can

Multics 18-11; MIT, Cambridge, Mass.
Load = 16-3 out of 50-0 units; users = 19

1 Jarvis
Password:
You are protected from preemption.

\
\

Jlarvis PMED logged in: 044 044:74 0616-2 est Wed from TN300 terrminal “134’
Lost login 044 04373 0403-3 est Wed from TTY37 terminal ‘none’
new 4 updated help files: 6180_costs, mpm, lines.

No mail now.
Fig. 1

i

be returhed to the users from the background machine.

“In such an application, onc has the choice of making Multics
Jook like the attached machine--by imitating its command
language—-or of making the background system (and its JCL)
completely invisible.

Multics concepts

There are two important Multics concepts which together
allow.the shaping of interfaces which are user dependent and
at the same time dynamic. These concepts arc that of the
process and that of a tree structured administrative hierarchy
which mirrors the Muitics file system.

The process
A process can be regarded as a program in execution together
with its address space. A process is created when a user logs into
the systern and is known by the user’s name. It is destroyed
when the user logs out. The address space is the st of segments
which are available to the user. The segments reside in Multics’
virtual memory and the contents are therefore directly addres-
sable, unlike most systems which use virtual storage techniques,
where records from data segments must be read into the virtual
memory before processing, just as in conventional systems.
During the construction of a process, there are a number of
options znd restrictions which can be specified by a project
administrator which influence and shape the operating environ-
ment for that process.

Administration

SYSTEM
ADMINISTRATOR

T 11
[|

PROECT

PROJECT
AD'INISTRATOR ADMINISTRATOR

— | l_‘l—l

PROJECT
ADMINISTHATOR

_USER [USER USER ustn USLR) USER USER USER

Fig. 2

In the Fig. 2, the system administrator (SA) has a wide view of
the system as a whole and establishes the operating parameters
and prices. He registers projects and project administrators and
allocates resource quotas to them.

The project administrator (PA) similarly rcgisters users of this
project and allocates resources to them but additionally has
considerable control over the manner in which a user may use
the system, the resources he may expend, commands available
and the general interface which is presented to the user. The PA
is in the major position for enforcing alternative interfaces on a
user, be he clerical or programming, and some of the para-
meters he may specify are shown below:

(a) Named or anonymous users

(b) Non-standard process overseer

(c) Allow or force special program executions
(d) Provide abbreviations

(e) Special command processor

(f) Modify search rules

(g) Protection rings

(h) Home directory

(i) Output device interface module (dim).

his home (or initial log-in) dircctory or changing his process
overseer,* which the project administrator may allow the user

Lo choose for himself.

Also, as Multics is, in the main, written in PL/I, the PA is
assisted in providing alternative overscers, command pro-
cessors, etc by the clean and casy interface to which he has
access: He may extract existing routines from the standard
overseer and modify or include them in the new one just as if he
were writing a normal application program.

Making contact and logging in

When a user makes contact with the system and logs in there
are a number of alternatives available. When Multics is con-
figured at start up, the physical lines on the system are de-
scribed and a lines table constructed showing which of the
physical lines are to be attached-to the initialiser, the system
routine which controls the usual logging in procedure. Other
processes can attach the other lines to themselves directly.
Terminals connected via these lines will therefore by-pass the

. initialiser and immediately be under the control of a particular

program. This could be many things—a transaction processing
program or a specialised programming interface.

For a ‘normal’ line there are then two alternative ways to log
in.

(a) login the normal method for a registered user of the
system -
(b) enter for anonymous members of a project who need not

be known to Multics, e.g. members of a short
course or undergraduates with minimal
requirements.

Process overseer :)

The project administrator can specify for each of his users
which process overseer is to be invoked when that user logs in.
The process overseer directly controls the user’s interface by
defining the commands available and the procedure to be
invoked by a given command. The overseer can be:

Process_overseer_ :the default and standard

procedure

:simulates the Dartmouth Time
Sharing System

:makes a limited subset of
Multics (LSS) available

dart_login_responder

limited _command _system _

any_other_overseer

LSS—Limited Service System—comprises a small set of Multics
commands, noted for their light use of resources. The user
cannot use other commands and also may have his rate of
CPU usage regulated by a governing parameter. A project can
therefore ensure that its users cannot exceed a given maximum
expenditure during a period but can also know that reasonable

_access can be continuously available. A professor could leave a

terminal logged in and available all day to any of his students
without the risk of running out of funds early in a term.

The LSS and variants on it can be used to match the facilities
provided to a (programming) uscr with the capabilities of that
user by, for example, limiting the commands available to him or
their effect, and progressively widening their scope and power
as the user’s expertise and experience increases.

Table 1 shows the typical commands currently allowed in the
LSS. The command make_commands is provided to enable the
project administrator to specify the LSS commands and
percentage of CPU time which can be used. The following is an
example of an input segment containing the specification of
an LSS interface. The first part defines the processor utilisation

P T S

i oo sy - E3

.o "

[P

- .-._-_‘ s o o Ml B . s 1

Jpenev

e

PP

rate as - scconds in a period of i scconds where i |s an interval
r

‘of time and r defines the ratio. In the cxamplc the user will be

allowed two seconds of processor time in any two minutc

. period.

Example of input file

[* set the ratio and interval¥*/
ratio:

interval: 120

[*define commands*/

(list Is): >udd>m>abc>spec1a|$hst,
logout:

edit: bsys:

start: ;

hold: ;

(pr print): ;

Each line in the second part has two components separated
by a colon. The first shows the command (and possible vari-
ations) which the user types; the second shows the relative
(e.g. bsys) or absolute (¢.g. Yuddympabc special$list) name of

“the program which corresponds to that command. A blank

entry implies the standard Multics command of the same
name.

Table 1

* Typical commands included within the Limited Service

System (LSS) are:

basic

decam—(desk calculator)
delete

edm —(easy to learn editor)
help

list

logout

print

rename

Start-up exec-com

The zxec_com, or ec, command allows the execution of a
series of commands specified in a segment. The exec_com
provides therefore a macro-like facility and includes control
lines for conditional execution of commands.

A particular form of ec is the start_up. ec. If a segment start_
up. ec exists in the user’s initial working directory, the com-
mands and programs specified therein will be executed before
coming to command level. This feature is normally used to
initialise processes in a particular manner and to cause par-

ticular commands to be executed—it is common for users to

have their nrail or the list of other logged in users printed out
in this manner, as in the login example in Fig. 1.
The start_up. cc also allows the project administrator to force

. a uscr into a particular environment. The PA can:

(a) specify a start_up. ec which will control the interface

(b) prevent a user from by-passing the start_up. ec (an attribute
normal users have)

(¢) further restrict the user, e.g. within the ec he can disable the
‘quit’ or interrupt button to stop the user ‘forcmg his way
out of the environment.

The .nterface presented to the terminal user in this manner
could, for example, be the use of a proprietary software pack-
age where input is invited from the terminal, or a conventional
transaction processing system. If the latter case were, for
example, an order entry system, the initialised program could
begin with an invitation to:

ENTER NEXT CUSTOMER NUMBER:) (
ENTER E IF END OF BATCH:) (

and could continue from there without ever going to Multics
command level.

Command processing
Users who proceed to the command processing level can still
choose—or have forced on them—one of many further inter-
face-shaping options.

The listener procedure reads commands from terminals, edits
them in accordance with conventional keyboard erase and kill
characters, and converts them to a canonical form. The
listener then calls either the command processor directly or the
abbrev command processor.

Abbreviations

Any user can set up his own abbreviations at will and change
them at any time. The command abbrev, which can be abbrevi-
ated to ab, must be invoked before persohal abbreviations are
accepted. Most users therefore include the abbrev, or ab,
command in their start_up. ec (see above). This use is in
addition to the system command abbreviations, e.g. the
command

‘how many users’ has a standard abbreviation of ‘hmu’.

A user could, if he wished, abbreviate it still further, perhaps to
merely h.

Abbreviations can be applied to system commands (as above),
a user’s own program names, directory names, his own name
(e.g. jj for JJarvis)—in fact up to eight characters for any string
of up to 132 characters.

This ability allows a project administrator to provide project
wide abbreviations, perhaps to facilitate imitating other
systems—‘bye’ for ‘logout’ for example—or even for other
languages—*adios’ for Spanish speakers, etc. There are very
interesting areas of application here for multinational com-

- panics wishing to case the use of a central system by the

component countries.

Command processor

The standard command proccssor can be called by the listener,
by abbrev after expanding an abbreviation, or by any other
command which examines terminal input for recognisable
commands. Command processors are called through the ‘cp’
entry to the command utility subroutine. A complementary
entry, set_cp, allows the project administrator to set an alter-
native command processor. Subsequent calls to cp will be
passed to the new command processor. This technique can

- therefore be used by a subsystem developer to provide a pur-

pose built transaction processing interface for a clerical user
or to ensure that the new subsystem retains control while
allowing the use of many standard system commands.

Search rules

When the command processor reccives a pointer to the name of
a program to be exccuted, it follows a set of search rules to
locate the named segment. (In passing, Multics binds external
references to both procedure and data segments at execution
time. The ‘dynamic linker” which effects this also follows the
same search rules.) Table 2 shows the default search rules.

Table 2 Search rules

1. Initiated _segments check the already, initiated segments;
2. referencing_dir search the parent directory of the seg-
ment making the reference;

search the working directory;

search the home directory;

search the process directory;

search the default system libraries.

. working_.dir

. home _dir

. process _dir

. system _libraries

[=) WV T N V)

€S

R

L)

R I

Both users themselves and project administrators can specify
» their own set of search rules. The commands

sct_search_dirs (ssd)
and set_search_rules (ssr)

are available for altering the rules. Alterations may be made by
changing the order shown in the default list, by adding or
inserting further directorics in the list, or by omitting certain
items. A project administrator can leave system librarics out of
the list and thus make many standard commands unavailable
to a user; he can similarly insert a special project directory high
in the list so that the user will be presented with alternative

(perhaps less expensive) versions of a standard command. As-

an example of this, he may provide a Basic compiler which uses
a subset of the main language specification for the use of school
children or beginners.

An casy way for the administrator to change the rules is to
provide a start_up. ec (see above) for his users and to include
the command .

ssr project_search_rules

-in it, where project_search_rules is the name of a segment
containing the new rules. -

Terminal input and output
" The input/output system in Multics is oriented around the
~ concept of streams. Usually the output to a terminal is directed
to the stream user_output. A stream is associated with or
attached to a particular device interface module (DIM) and
"corresponding device, and the attachment can be changed
dynamically if required. _

The use of intermediate interface modules can be interposed in
this chain to carry out additional processing for a particular
user or terminal type.

A common use of these facilities allows the easy attachment of
new terminal devices with, perhaps, slightly different character-
istics or applications requiring heavily formatted data. The
approach also allows for the translation, on both input and
output, from and to different languages. For example, an
international company, with terminals throughout Europe,
connected to a central system, could provide a local interface
where common files and procedures could be accessed in
English in England, French in France and so on, and have the
system look after the translation as appropriate. This is an
extreme, and perhaps unlikely, application but entirely possible
and the approach is of value in certain circumstances.

New commands
As an illustration of several of the aspects described above, let
us consider the definition of a new command to compile and
execute a FORTRAN program. On many time-sharing systems
the command RUN, with various options, is used for this
purpose, and we can trivially develop a RUN command for
personal or project use as follows. _
Assume a source program segment has been created and
named ‘segname. fortran.” To compile this a Multics user types

fortran segname (or ft segname)
and to execute it after a successful compilation he types

segname

(The segment ‘segname’ is created by the system if the compi-

laticn is successful.)

By using the exec_com command, a series of commands listed
in a segment with suffix .ec may be executed. If the segment
ftrun. ec contains :

fortran segname
segname

then the command
cc ftrun

will cause segname to be compiled and exccuted. This is of

limited value as it stands, but by the use of parameters in ftrun.
ec we can generalise it, e.g. let ftrun. ec contain

fortran & 1
&1

then the command
ec ftrun segname

will cause segname to replace the occurrences of & 1 in the
segment and it will be compiled and executed as before.
We now use abbrev to abbreviate ec ftrun as RUN thus:

.a RUN ec ftrun

(.a is the abbrev control request to define a new abbreviation),
and thereafter the user can compile and execute any FORTRAN
program by typing

RUN source _segment_name

This, then, is a simplified example of one of the ways in which
other systems and commands can be provided for reasons of
compatibility, co-existence or familiarity. In practice, of course,
several other parameters would normally be involved, and
other commands would not necessarily be as straight-forward.

Rings of protection :

The Multics ring protection, implemented in the hardware, has
been described at length elsewhere (Graham, 1968). It is a
refinement of the general access controls (permission to read,
write and execute segments—also hardware implemented in
Multics) and allows subsystem writers to develop much more
secure applications than would otherwise be possible.

It can be pictured as a series of concentric circles, as Fig. 3.
Ring 0 has the highest privilege and ring 7 the least. The normal
Multics user operates in ring 4, but the actual rings in which a
user may work are, like so many things, specified by the project
administrator. The user will probably be unaware that he is
constrained to a given ring or set of rings, unless he attempts
deliberately to cross a ring boundary. Segments reside entirely
within a ring and access from a ring to a data segment, for
example, in one of higher privilege is possible through ‘gates’,
or entry points to a procedure in the higher privilege ring. The
procedure can then sift the data as appropriate and provide
all details, a summary only or nothing at all depending on the
user and/or his ring. .

Salary and medical history databases are often quoted as
examples where the ring structure is valuable. A list of
employces, salaries, work history, etc can be maintained in, say,
ring 4. Some employces might need to have access to the list of
names and addresses only, others might be allowed to know the
total monthly salary bill but not the specific salary of each
employee. The rings allow the easy construction of this and
similar environments.

Again, a junior clerk, perhaps in ring 7, can use the same
enquiry code as his supervisor, in ring 6, but be given only a -
subset of the information which the superior would receive.
Similar applications are currently implemented using elaborate
systems with locks and keys which the supervisor carries. The
structure gives the same sort of control more flexibly without
requiring special hardware and terminals with locks.

The user

The programming user can either have all Multics native facil-
ities available to him or, as we have seen, have them augmented,
restricted er modified to look like another system—in this
regard he is under the project administrator’s control.

Fig. 3

The user can use many of the facilities himself to further alter
his interface for, usually, reasons of convenience and familiarity.
He may, among other things,

(a) vary his process overseer

(b) specify his normal working directory

(c) use or escape from his start_up ec

(d) receive brief or normal messages

(e) elect not to receive ready messages at the completion of
each command or ask for monetary totals rather than cp
‘time to be shown

(f) use abbreviations

(g) vary his search rules

(h) use alternative DIM’s

(i) move his base of operations to different directories of his
own or other users (with proper permission).

References
GRAHAM, R. M, (1968).

Available systems
Currently implemented and available as altcrnatlve operating
systems under Multics are:

DTSS —The Dartmouth Time-Sharing System implemented by
Dartmouth College, Hanover, New Hampshire.

GCOS—The standard operating system for the Honeywell
Series 6000 and Series 60/Level 66 ranges of com-
puters.

These have major differences from native Multics. The Limited
Service System (LSS) which is available is a proper subset of
Multics. Other operating system interfaces, for completely
different systems, are under development.

PL/I

The very great majority of the Multics operatmg system com-
mands and subroutines are written in PL/I. Apart from
obvious benefits in speed of implementation, documentation
and maintainability, it eases the task of subsystem writers who
are given the ability to interface directly and easily ‘with the
operating system itself.

Systems programmers can and do build their own expen-
mental Multics systems, which run during normal service, to
test new modules without requiring the complete system, or
running the risk of ruining parallel production work.

Conclusion
The above brief descriptions of many of the environment
shaping tools available indicate the wide choice available to the
project administrator and subsystem designer who wish to
provide a new Multics face for the outside world.

Major significant aspects of the approach are:

(@) there are no supervisor modifications required to implement
the possible multiplicity of external faces

(b) no operations involvement is necessary: alternative inter-
faces are remotely implemented, maintained and
administered

(c) they can be dependent on the project or the user himself
within a project.

logout .

JJarvis PMED logged out 04#04:&- 73 06539 est Wed
CPU usage 17 sec

hangup.

Protectxon in an information processing utility. CACM, Vol. 11, No. 5, pp. 365-369.

SCHROEDER, M. D., and SAL’I‘ZER, J. H. (1972) A hardware architecture for 1mplementmg protecuon rings. CACM, Vol. 15, No. 3 pp.

157-170.

gt

