REBUGGING PLZI PROGRAMS IN THE MULTICS ENVIRONMAENT Paper 225
6

by B. L. Wolman (617) 491-6300, Ext. 215
Honeywell Information'Systems 575 Technology Square
Cambridge, wassachusetts 02139

The problems associated with debuggingy a orogram
written in PL/I are simplified in the Multics system for a
number of reasons. PL/I is the standard language used for
progranming in Multics. The H#ultics PL/I compiler 1is
complete, has few restrictions, and produces efficient
object programs. A variety of powerful debugging commands
make use of a run-time symbol table generated by the
compiler thereby allowinag the wuser to debug his program
symbolically. Statistics about the operéting
characteristics of a program may be easily and accurately
determinesd.

(85 words)



Debuaging PL/I Proarams Wolman

INTRODUCTION
One of the popular misconceptions concerning PL/I is

that orograms written 1in PL/I are necessarily inefficient
and hard to debuqg. Séveral_ years eXperience with the
Multics PL/I compiler running on the Honeywell 645 has shown
that in spite of the apparent complexity of the PL/i
language, PL/I proorams are easily debunged in the Multics
environment, even by novice users who are newcomers to PL/I
and are unfamiliar with the Honeywell 645. In most cases
the user can debug his program symbolically without having
to refer to a listing of the generated instructions or add
débquinq output statements to the program. This is due to
a number of factors:

« the run-time environment provided by the system.

. the implementation of PL/I.

. the availability of a variety of nowerful

debugging facilities.
THE ENVIRONMENT
The wuse of PL/I as the principal tool for programming

by users of Multics was envisioned at the very start of the
project. Features which are required by PL/I such as a
stack, pointer ‘variables, conditions, and a recursive
call/return mechanism are all provided and are directly
supported by the system hardware and/or software.
Consequently, the basic’ Multics environment is ideally

suited to the needs of PL/I programs. In fact, nearly all



Debuaging PL/I Programs Wolman

of Multics 1itself 1is coded 1in PL/I and executes in this
self-maintained envirpnment./‘S.

The Multics system currently provides the user with a
virtual address space of over 1000 segments of 65536 words
each (some changes now in progress will increase the maximum
size of a segment to 262144 words). Access to these
segments is by means of PL/I pointer variables which contain
a ségment number, a word offset, and a bit offset. There is
a direct correspondence between PL/I ovointers and virtual
addresses in Multicss PL/I pointer values may be 1loaded
into the addressing reaisters of the 645 by a single machine
instruction. An attempt to use a pointer whose value is the
PL/I null pointer causes a condition to be signalled.

The PL/I stack is maintained for each user as a series
of contiguous frames (block activation records) within a
sinqgle sedment.. A register is dedicated by'the systemvto
point at the stack frame of the procedure being executed.
Multics defines a system-wide standard call/return sequence
which is relatively efficient. Stack frames can be obtained
and releasgd by executing a few instructions.

Procedure segments in Multics are normally pure and
sharable. Access to procedure and data segments is set by
Multics access control commands and checked by the hardware
at each instruction and data reference. If a user does not
have appropnriate access to a segment, or if any other error

such as an attempt to divide by zero haopens, a machine

EDHE



Debugging PL/I Programs Holman

fault occurs. This fault is turned into a PL/l condition
(e.g., Maccessviolation" or "zerodivide") and is signalled
by the PL/I condition mecnanism. All but a few catastrophic
errors are handled in this manner.

Multics provides a default error on-unit which 1is
invoked if the user has not established an on-unit for a
specific condition. In most cases, the default on-unit
prihts an appronriate error message (which may include
information as to probable causes for the error) and calls
the command processor to read a command from the user’s
input stream. The stack chain of calls leading up to the
fault is preserveds in many cases the user’s orogram can be
restarted.

In Multics there 1is no real difference between a
command and a program written by the user: both are PL/I
procedures. Any program written in PL/I following command
argunent conventions may be invoked as a "command".

When the user tynes a command line of the form

edit alpha beta .
the Multics command processor searches a specified set of
directories for a bprocedure named Medit" and issues the
equivalent of the PL/I statement

call edit(*aloha',"beta)s
The procedufes found in the system dirgctories are the
"commands" and utility procedures normally available to

Multics users. Since the user can change the searcnh rules



Debuaging PL/I Programs Nolman

used by the system, he can tailor his own command set if he
chooses.
THE IMPLEMENTATION

The implementation of PL/I in Multics 1s particularly
complete and has few restrictions. x The only omission of
any cohsequence is tasking. The Multics implementation
allows:

. arbitrary pointer qualification including chains
of locators and use of functions as qualifiers.

.. adjustable data with no restrictions. Arrays may
have any number of adjustable bounds. Structures
may have any number of adjustansle members.

. operations on aggreaates.
. functions which return values whose length or
bounds are not known at the time the call is made,
e.g., réturns(char(*)) or returns((*) fixed bin).
. entry variables.v
. recursive procedures at no extra cost.
. full stream and record I/0.
. all data types including complex and decinal.
Since tﬁe implementation is so complete, the programmer
does not have to wofry about what features are or are not
available to him. The ability to wuse the full language
reduces the amount of code the user has to debug by
increasing the amount of work handlad by the run-time

sunnort system provided by the compiler.




Debunging PL/I Programs Hlolman

The HMultics PL/I compiler produces efficient object
code, even when measured acainst the best efforts of
experienced hand coders wusing assembly language. The
availability of a combiler which genearates efficient
proagrams qgreatly reduces the user’s desire to want to switch
to assembly language for reasons of efficiency. This is
particularly important in Multics because of the richness of
the‘machine instruction set (512 instructions and 64 types
of address modification) and the complexity of the system
environment from the view point of an assembly language
coder.

dultics PL/1 makes use of a separate "overator segment
which contains assembly language coding for about 50
commonly used functions such as string moving, complex
multiplication, and the index operator, as wesll as tables of
constants for masking, shifting, storing characters, etc.
This seqgment is shared by all PL/I programs. Communication
with the operator segment is by means of a work area in a
standard oposition in each stack frame. The operator segment
is entered by a short sequence of instructions which loads
certain machine registers with parameters and then jumps
directly into the operator seagment at a known location. The
use of the operator segment reduces the cost of PL/I
proarams by reducing their size and py reducing paging

activity.



Debuaging PL/I Proarams Holman

If a begin block or internal procedure block does not
declare any automatic variables with adjustable bounds or
sizes and can only be entered by first entering 1its parent
block, then the block is said to be "quick®%. The Multics
PL/I compiler does not use a separate stack frame for such
blocks. Instead, they share the stack frame of their parent
block. The overhead of calling a quick block, exclusive of
the'cost of preparing the arqument 1list, 1is only three
instructions: one each at call, entry, and return. The cost
of a aquick procedure is also reduced because automatic
storage in the parent block can be addressed directly.

The availability of a really inexpensive mechanism for
internal procedures means that users can write them without
having to concern themselves with efficiency. The artifice
of usina label variables and goto statements so that a block
of code can be executed efficiently from a nuﬁber of placés
is not necessary.

The compniler makes no restriétions on the format of
structures. This is important, since programmers can choose
a structure description that is aporopriate for the problem
they are trying to solve without having consider its
acceptability to the compiler. However, it is possible for
a user to specify a structure which causes the compiler to
generate very expensive accessing code7 There are a few
ncommon sense' rules users can follow if they are concerned

about the efficiency of their programs.



Debugging PL/I Programs ' Wolman

Extensive error checking 1s done during compilation;
there are nearly 500 nossible error messages. Except for a
few cases of multiole, related errors within a single
statement the Multics PL/I compiler normally finds most
errors in a sinale run. It is infrequent that a user will
correct a set of source errors and recompile his Dbprogranm
only to receive another batch of error messages. Errors are
repbrted on the user’s console as they are discovered; the
printed messaage normally includes the source for the
offending statement.

The listing generated by the compiler is desianed to be
pfinted by a high-speed 1line printer but is formatted s0
that items of interest to the user can be easily located 1in
the listing seament by inspecting it with an on-line editor.
The wuser can control the amount and level of detail of
information placéd in the listing.

DEBUGGING FACILITIES

Multics provides a number of special commands which aid
user debunging. There 1is a powerful Dbreakpoint debug
command, a facility for tracing procedure calls, and tools
which helo the user determine the operating characteristiés
of his bprograms. There are several oontions that the user
can specify when he uses the PL/I compiler to cause it to
generate additional information for use by debugging
commands. Of these, only the "Yprofile®" obtion causes any

change in the code generated by the comniler.



Debuaging PL/1 Programs A Nolman

The Run=Time Symbol Table

| The PL/I compiler and the system debug command
cooperate to allow the user to debug his program
symbolically. The compiler normally generates a run—time
symbol table only if "get data" or *"put data" statements are
used in the source program. The compiler can be instructed,
however, to generate a "full" symbol table which includes
all identifiers in the source program.

Each entry in the run—-time symbol table describes an
identifier in the user’s proaram giving its name, storage
class, location, size, bounds and other information needed
to access the identifier. Information 1is available about
the block in which the identifier is defined as well as its
relationship to other members of the structure to which it
belongs.

The run-time symbol table facility is much mofe
powerful than it needs to be to sunvort just data directed
1/0.

. Parameters, defined, and based variables can all
be represented in the table. When a variable is
declared based on a specific pointer, e.qg., "dcl.a
based(p)", information is kept which allows the
address of that pointer to be obtained at
run—-time.

. The size, offset, bounds, multipiiers, or virtual

origin of any identifier <can be any arbitrary



Debugging PL/1 Programs | Wolman

expression. This is necessary for the
representation of based variables.

. References to identifiers in the wuser’s program
from data directed input or from requests to the
system debunger need not be fully qualified. The
same algorithm wused by the compiler to resolve
partially qualified names is also wused by the
support program which searches the run-time symbol
table.

The run-time symbol table is generated at the end of
the object seament and 1is shared by all wusers of the
ségment. If it 1is not used during execution, there is ho
overhead required to support it: the paaes it occupies will
not be brousght into core memory; no code 1is required to
initialize it. After the‘ program has been debugged, the
run-time symbol £able can be - eliminated from the object
seagment without having to re-compile it.

The compiler will also generate a "map" of the object
program when a full symbol table is requested by the user.
"This map is a table, placed at the end of the object
segment, aiving information about the location in the object
seament of each source statement. The availability of this
table means that the user can refer to his object program by
source line number, e.g., to set a breakpoint at a specific
line number. Similarly, the system debunger can tell him

the 1line number corresponding to a given location in the



Debuaging PL/1 Programs Wolman

object oroaram. In fact, as is demonstrated in Figure |1,
the debuy command can print the source line that corresponds
to the object location.
The Debug Command

The command ¥"debua" can be invoked at any times for
example, after an error condition has been signalled for
which no on-unit exists. It may also be called directly
froh the user’s program. It acceots requests from the user
for actions such as examininag some location in the virtual
memory or printing a trace of the chain of <calls 1in the
user’s stack. It is aware of the different PL/I data types,
so variables in the object nrogram may be displayed in the
format anoropriate to their type. |

When a program has been compiled with a run-time symbol
table, the user can refer to it symbolically, either with
identifiers defined in the program or by the line number on
which a statement Dbeains. For exampnle, if the user’s
program was dealing with a two-dimensional based array of
integers, he could change one of the elements in the array
by entering the request

p => x(i+5, j-2) = 3

£

which takes the form of a PL/I style assignment. The
addresses of Uph, ux#, #i#  and *j" would be obtained from
the symbol taple. Any of the identifiers in this example

could be vart of a structure.



Debuaging PL/I Proarams ‘ Wolman

The debug command can also be used with PL/I programs
when a run-time symbol table 1is not available. In this
case, the user must refer to the compilation listing of his
program in order to determine the location at which a
variable is stored or at which a given statement starts.

The debug command has other featurzss which let the nore
experienced user examine or alter the values in a machine
register or disolay the status of the machine at the time a
fault occurred. These facilities are not normally needed if
a symbol table 1s available.

The debug command also lets the usar set conditional or
uﬁconditional breakpoints in object segnents. When the
breakpoint instruction is executed, the debug program gains
control. If the condition associated with the breakpoint is
satisfied, a message is printeds at this point ths user can
enter requests to debua. One of the actions available is to
continue execution from the point of the break. The user
may associate with each break a set of debug requests which
are to be automaticélly executed whenever the break 1is
encounted;  thus, for example, the user mignht use the break
mechanism to "insert" a (very simple). PL/I assignment
statement 1into his program. There is a mode of execution
available with debug which lets the user run his program one
PL/I statement at a time.

An object program may have more than one break set in

its similarly, more than one progran “may have active



Debugging PL/I Programs Wolman

breaknoints. Facilities are available in debug for 1listing
and altering breaks. Setting a break involves changing the
object ©D»rogram, so breaknoints remain active until
explicitly removed by the user. Breaknoints should not be
used when other users are sharing the segment.

There is an "escane" facility which causes debug to
pass the 1line typed by the user to the Multics command
processor instead of treatina it as a request. This 1is a

very powerful feature since it allows the user to invoke any

series of Multics commands (or any of his own programs)

without having to leave the debuj command. He could, for

example, run a special program to display the values of the
static variables used by the program he is trying to debug.
If he did not have such a program, he could input it,
compile it, and test it while preserving the complete status
of the program hé was originally debuaging.

The ability to "escape" back to the full Multics system
to execute any series of commands is generally available in
any command such as the editor that interacts with the user.
As is shown in Figure 2, the "hold" command may be used to
preserve tﬁe execution environment after a fault. -
Ihe Irace Command

The command "trace" lets the user monitor all calls to
a specified set of external procedures. Trace modifies the
standard Multics procedure linkage mecﬁanism SO that

whenever control enters or leaves one of the procedures



Debunging PL/1 Programs Wolman

specified by the user, a debugging procedure 1is 1invoked.
The arquments givenl to the debugging procedure by trace
enable it to obtain the values of the the arguments and
return point of the procedure being called. The user can
also provide his own debunging procedures instead of the one
supplied as a default by the tracing package.

The action taken by the default {trace debugging
proéedure is to print a message on the user’s console
whenever control enters or leaves one of the procedures
being traced. There are a number of options which the user
can specify to request such actions as printing the
arguments (at entry, exit, or both) or stopping (at entry,
exit, or both). The user can control the frequency with
which the tracing message is printed, e.g., every 100 calls
after the 1000th call. He <can also specify the maximum
recursion depth ﬁe wishes to see. The user can also request
that the tracing message be printed only if the contents of
some specified location in the virtual memory has .changed.

The default trace debunqaing procedure “stops" the execution

of the user’s program by calling the debug command; this

makes all of the facilities of debug available to the user.

An example of the use of trace is presented in Figure.3.

The user may start tracinag a procedure at any time,
even it has already been executed. Tracing may be removed
at any times subsequent calls of the procedure will execute

normally. Any orocedure which wuses the standard Multics



Debuqgging PL/1 Programs Nolman

calling sequence may be traced without interferinag with
other users who may be sharing the segment.
Determininy Program Efficlency

The two debugging packages debug and trace which we
have just discussed help the user find errors which prevent
his bprogram from runniny properly. There is another class
of errors which are much harder to find. These are wusually
flaws in the program design (or perhaps in its
impnlementation) which cause the program to run correctly but
to take much longer to execute than it should. Simply
locating the larqgest statement in the program or the biagest
orocedure is not sufficient to locate the causes of program
inefficiency because that statement or procedure may be
executed only onces the real offender may be some small
statement which gets executed very frequently. Without
detailed knowlédge of program flow during execution,
instruction counts alone are not much gond.

The cost of executing a specified orocedure, either for
a single call or a total of many calls, can be determined by
using the "meter" option of the trace command. This causes
trace to read the system clock when control enters or leaves
the specified set of procedures. The clock counts 1in
microsecond steps, so hiagnh resolution is possible.

Once a orocedure has been found to be inefficient, 1its
operating characteristics can be examined 5y re—-compiling it

4

with the PL/I ‘Yprofile" ootion. Tnis ontion causes the




Debuaging PL/1 Programs Nolman

cdmoiler to generate in the internal static data area a
table which contains an entry for each statement in the
source programi the table entry contains information about
the source line as well as a counter which starts out as
zero. FEach statement in the program is modified to start
with an 1instruction to add one to the counter associated
with the statement.

After running a program compiled with the ‘profile"
ontion, the wuser can determine the number of times each
statement in the program was executed. The table entry
contains the raw cost of the statement measured in
instructions, so the user can détermine both the absolute
total cost for the statement as well as its relative cost
compared to other statements.

A number of different tools have been developed for
presenting the information available in the brofile tabie.
Fiqure 4 shows the source for a small procedure printed by a
program which computes the percentage of the total time
spent in each statement. Figure 5 shows the same profile
information presented in another format.

The naaing characteristics of a orogram can be measured
by using the "“page trace" facility. The Multics paging
mechanism maintains a buffer for each user in which the
system records the seament number, page number, and time of
occurrence Tfor each of the last few hundred page faults

taken by the user’s process. A command is available which



Debugging PL/1 Programs ' ‘ Wolman

formats the information kept by the s?stem.
DIFFICULTIESY

As might be expected, there are problems associated
with debuaging PL/I programs in Multics. Most of these
problems are minor and have the effect of requiring the user
to know more about the internal workings of Multics than he
might otherwise have to know.

The most difficult problem occurs when a program in the
user’s process commits an error so severe that the system
cannot continue running the process. An example of such an
error is using up the entire stack seqgment (perhans because
of unlimited recursion). #hen the system detects an error
of this maanitude, 1t prints a message such as:

Fatal Process Error. QOut of bounds fault on user’s stack.
and creates a new brocess, thereby erasing all information
about the old précess.

This type of error can be very difficult to find,
because no information is available to the user about where
it occurréd. Future versions of #Multics will alleviate this
problen by_allowing the user to retain information about the
old process. The system will also be changed to detect when
the wuser is near the end of his stacks when this occurs, a
special "stack" condition will be signalled.

COMPARISON WITH OTHER WORK
9 10

PL/C and the I3#i Checkout Compiler are aoproaches

to the problem of debuaging PL/I programs in which a special



Debuaging PL/I Programs Wolman

cdmpiler is used during the debunging phase. Extra checking
is done at run-time to catch programming errors such as the
use of undefined variables. No particular effort is made to
generate good object codé since it 1is assumed that the
orogram will be re—compiled with a production compiler after
havino been debunged with the special compiler.

An advantage of this approach is that a great deal of
infﬁrmation about the original source program may be
nreserved at run-time, thus allowing good diagnostics. A
debunging compiler can often check for errors whose
detection would be intolerably expensive for a production
compiler, e.n. a mismatch between a based variable and the
object identified by the pointer value. The Checkout
Compiler allows the user to make incremental symbolic
additions to his program, a very desirable feature.

A disadvantage of using a special comdplier is that two
compilers are involved 1in the debuzging DYroCcess and
therefore two sets of compiler buags. Another disadvantage
is that meaningful fiqgures on program performance are hard
to obtain.

Multics provides a single PL/I compiler which is used
by all programmers, whether novice or exoert. Extra
checking (other than that defined as part of the PL/I
language) is not done at run-tinme. The run—-time symbol
table and the mao of the object program let the user refer

to his program symbolically. Since a production compiler is



Debujyging PL/I Programs Holman

‘being used, accurate fiqures on oprogram performance are
available.

A Yorogram® in Multics often consists of a number of
seoarateiy compiled procédures; the Multics PL/I compiler,
for examnle, consists of 181 procedures comprising over
137,000 instructions. 3ecause of the DOOr run—timé
performance normally available with a special debugging
compiler, it is doubtful whether such a large collection of

)

procedures could be successfully implemented using a
debunaing compiler. Since a special compilation is not
required for their wuse, the dultics debuaging tools debug
and trace may be successfully wused in finding bugs in
oroduction software. Even 1f a module could be re—-compiled
with a debugging compiler, the resulting object program
wonuld not be the same as the one which failed.

EXDAMS " is a powerful deobugging tool which uses a
pre-processor to modify the original source program before
compilatiqn. Calls t{o special monitoring procedures are
inserted at points of interest 1in the program. During
execution a record is kept of the complete execution history
of the program. This allows the oprogrammer to easily
determine the point at which a given variable changes, for
example. This sort of debugger would be useful, even in
Multics, when a program 1is first being debuaged; its
usefullness is limited by the fact that a special

compilation is required.



Debunging PL/1 Programs Holman

Evans and Darley'/z'cﬁscuss source language debunging
of higher—ievel lanquages. They bpresent a number of
princinles which they believe are important. The Multics
-debquing commands satisfy most of their criteria:

1. The user has flexible control over the execution
of his proaram. The program may be run in steps
which range from a single procedure call, througn
a single statement, down to a single instruction.

2. The data being operated on may Dbe examined and
altered at any time and this may be done in the
PL/I notation.

3. The conventions of the debuaging lanjuage are to a
large extent designed to minimize tyoing. (It 1is
only fair to point out that the Multics debug
command has been accused of being overly terse.)

The area in whiéh Multics falls short of the featufes
desired by Zvans and Darley is the lack of the facility for
incremental compilation.

ACKNOWLEDGHENTS

The Mgltics PL/I compiler was designed and implemented
by R. A. Freiburghouse, the author, G. D. Chang, and J. D.
Millsy significant contributions were also»made by P. A.
3elmont, P. A. Green, and A. C. Franklin. The Multics debug
command was written by S. H. Webber. The trace command was
written by the author. ifany other membars of the Honeywell

and M.I.T. staffs, notably M. 3. Weaver, D. Bricklin, and

- 20 -




Debuacaing PL/I Programs Wolman

D. P. Reed, have made important contributions to easing the
process of debuaging PL/I programs in HMultics.
REFERENCES

I E I ORGANICK

The Multics System: An Examination of its Structure

MIT Press Cambridge Massachusetts 1972

2 A BENSOUSSAN C T CLINGEN R C DALEY
The Multics Yirtual demorv: Concents and Design
Comm ACH 15 5 May 1972 pp 303-318

3 R C DALEY J 3 DEMNIS

Virtual semory, Processes and Sharing in Hultics

Comm ACA4 11 5 May 1963 »p 306-312
4 F J CORBATDZ J H‘SALTZER C T CLINGEN
Multics - The Eirst Seven XYears
AFIPS Conf Proc 40 1972 SJCC AFIPS Press 1972 pp 571-583

5 Multics Pronrammers’ H“anual

Honeywell Document AG90-93 1972
6 R A FREIBURGHOUSE

The Maltics PL/ZI Conmpiler

AFIPS Conf Proc 35 1969 FJCC AFIPS Press 1969 rp 187-199
7 R A FREIBURGHOUSE

The Multics PL/I Languace

Honeywell Document AG94 1972
8 D E KNUTH

An Empirical 3Study of EORTRAN Proarans

Stanford University Computer Science Department Report CS-186




Debugaing PL/I Proarams Wolman

9 H L MORGAN R A WAGNER

pL/C: - The Desinn of a High=performance Compiler for PL/IL

AFIPS Conf Proc 38 1971 SJCC AFIPS Press 1971 pp 503-510
10 IBM System/360 Operatinag System: PLZIL Checkout Compiler
IBM form number GC33-0003 197
11 R M BALZER
EXDAMS - EXtendable Debugaing and Monitorinz System
AFIPS Conf Proc 34 1969 SJCC AFIPS Press 1969 pp 567-580
12 T G EVANS D L DARLEY
On-line Debugging Techniques: A Survey

AFIPS Conf Proc 29 1966 FJCC AFIPS Press 1966 prp 37-50

—22_




Figure |

The PL/I condition mechanism 1is wused for most errors,
including those defined by Multics. In this example, the program
generates a fault by lpoping until it runs off the front of the
stack. The default error on-unit prints the location at which
the fault occurred (100 1in blowup) and the location being
referenced (-1 in the stack). The program was compiled with a
runftime symbol tabie. so the Multics debug command may be used
to print the source for the line in which the fault haopened.
The request syntax accepted by debug is designed to minimize
typing: the request specifies segment blowup, location 100 in
the fext section, and source line outout. The value of a
variable may be obtained merely by typing its namei the response
gives the address of the variable (450 in the static data

seament) as well as its value (-1209).




Fiogure 2

When a fault occurs, the complete status of the executing
proaram may be preserved. The “hold" command causes Multics to
retain the chain of stack frames (block activation records) up to
the current frame until £he user issues an explicit release®
command. In this example, the user innuts and conmpiles a small
procedure to fix wup the loop 1index that caused the bounds
violation in the example of Figure |. The program blowup is
reactivated by a non-local transfer of control to the external
label variable and completes normally. The same change of the
loop index and re—-start of blowup could also be done wusing only

the debua command.



Figure 3

The flow of control in to and out of any external procedure
may be monitored with the Multics debugging procedure trace. In
this example, trev is a driver program which calls procedure rev
to reverse the words in a string specified by the user when trev
is called. rev is coded as a recursive orocedures it contains a
bug which causes infinite recursion. The "fatal error® occurs
when there is no room left in the stack segment for a new frame.

The reason for the infinite recursion becomes obvious when trace

is used.

Figure 4
The execution nrofile of a Shell sort routine after having
sorted the descending sequence 999, 998, «++y O into ascending
ordér. Each statement is labelled with the vercentage of the
total execution time spent in that statement. The profile tells
us that the alcorithm 1is quite  good since unnecessary

interchanges were not often done.

Figqure 5

.
o)

Another presentation of the execution profile of the
procedure shown in Figure 4. The cost is measured in number of

instructions executed.




~
-

'prlnt blowup.pll

X

2 blowup: procedure; . ..

g TR

s dcl (j,a(10)) flxed binary})

. loop_index flxed binary external static,
recovery_label label variable external static,
sysprint file;

[ recovery_label = thru;

o do loop_index = -1 to -100000 by -1;

g j = a(loop_lindex);

1 end;

lo

thru: put skip list("loop index = ", loop_index);
put skip;
i end;

/)

7 r 2127 2.205

1Y

15 pll blowup table

16 PL/T

17

7 WARNING 307

T The varlable "a" has been referenced but has never been set.

3 r 2128 5.516

21 .

P2 blowup .

31 2%

PR Error: out_bounds_err by blowup|l80~

Ry referencing stack|777777

RS r 2129 2.474

27w debug 23
L /blowup/He0at,s
" j = a(loop_index);
11 » loop_index

1 450 -1208
17 % .q

Dy r 2131 3.544

‘f’ Lo & S‘VL»I_/L < ﬁ?i/\r«/(‘ ,-‘ [ ['1} .'!/\" (l",{



blowup

Error: out_bounds_err by blowup|{100
referencing stack|777777

r 2134

hold
r 2134

1,057

211

edm fix.pll
Segnent not found.

Input.’
fix:

dcl

Edlt.
w

procedure;

loop_index flxed binary external static,
recovery_tabel label variable external static;

loop_index = 12345;
goto recovery_label;
end;

q .
r 2135 1,789

pll fix

PL/I

r 2135 3.732

fix

loop index = 12345
r 2135 1.724



I print [trev rev)[

Y trev: proc(strlng);

s dcl string char(*) unal,
o rev entry(char(x)) returns(char(32) varying);
2

y put skip list(rev(string));

v put skip;

Sy end;

Ta o4
e

n ¢t "(V.I\i

" rev: proc(string) returns(char(32) varying);

7

g del string char(+*);

;' i = index(string," ");

LS if i =0 then return(string);

1y else return{rev(substr{string, 1)) J| " " || substr(string,1,1));
j end;

r 2131 4.164

vy trev "now is the time"
1,

4; Fatal error. Process has termlinated. Out of bounds fault on user's stack.

2. New process created.
25 r 2131 3,712

e

trace rev
r 2131 .578

trev "now is the time"

Cali 1 uf rev from trev|117
ARG 1 = “now is the time"
Call 2. of rev from rev|106
ARG 1'=" is the time"
Call 3 of rev from rev] 106
ARG 1 =" is the time"
QUIT >
r 2132 2.528

’\4 \4 wy

/""s/ ‘gv P



time_profile shell

Profile of shell

LINE PERCENT STATEMENT

[}
—
. .
00

14 12.7
16 63.3

shell:
dcl

dcl

downt

up:

e e} o

proc(x);

x(*) fixed bin;

(i,j.k,d,t) fixed binary;

d = hbound(x, 1);

d = 2+%divide(d, 4,17,0) + 1;

do I = 1 to hbound(x,1) - d;

k =1 + d;

j =k - d;

If x(j) > x(k)

then do;
t = x(j);
x(j) = x(k);
x(k) = t;
end;

if j > d

then do;
k = j;
goto up;
end;

end;

if d > 1 then goto down;
end;



print_profile shell

LINE

11
12
1y
16
18
19
20
23
25
26
28
30
31

TOTAL
r 1048

STM

ok b et et Pk ok ok Bl fad o ot et P e ot

3.461

COUNT

500
7767
7767

234

234

234
1767
7267
7267

500

COST

4

30

66
1500
23301
155340
234
702
702
31068
7267
7267
1000
24

1

228506

PROGRAM
shell

= e



