. manlpulate the computer hardware v1a an.’ 1deallzed 1nterface. H1gh level

- languages have long been accepted as a- desrred interface whlch offers the‘

: whlch ‘may affect the 1oglc of a programmer s computatlon have not been

".,some of the more obv1ous constralnts (ng., paging, segmentatlon, processor

~of two or more independent v1rtua1 resources. A virtual resource 1s a’

'.Iesource in order to produce some meanlngful effect, Examples of virtual

.virtual resources. For the purpose of thlS paper, we -assume that

. it is generally known how to 1mp1ement 1nd1v1dua1 virtual resources, and

- Nonr-4102(01) . Reproduction in whole or in part is permitted for any ’

N ‘ i'

!

5 ;
(i o soh

AN OPERATING SYSTEM MODEL FEATURING DEMAND SCHEDULING OF VIRTUAL RESOURCES MR T

- Michael J. Spier SR ;,u "‘ o *fj*

S Massachusetts Institute of Technology PR R 8

Ll : Project MAC L DRAFTf

LT S, 24 69
L SRS and S “:, i

R s Elliott I. Organick - R LA T
S University of Houston R RITTEER
Department of Computer Science

’§UMMARY

An operatlng system is a functlonal buffer to allow the programmer to
programmer partlal independence of the hardware. However, many hardware :
associated constralnts, pr1mar11y the llmltatlons of physrcal resources,;

1systemat1ca11y resolved Varlous mechanisms have been 1mp1emented to overrlde

stack loglcal I/0 dev1ces etc) In thrs paper we present a model for a: 1fif

omputlng utlllty whlch prov1des the prdgrammer w1th a systematlcally 1dea112ed

programmlng env1ronment,,‘a ”‘T;J,Q AN ;" th ~‘fj »-.ﬂd-g:m"

We“think of a process as belng an ordered sequence of requests for i

elementary computatlonal operatlons, whlch are satlsfled through the interactlon

]oglcally distinct entity wh1ch has to rnteract with some other v1rtual

Iesources are a segment with dlstlnct access attributes, or a v1rtua1 I/O ‘
dev1ce whlch is capable of performlng a 31ng1e elementary I/O task (e g.,;_f‘
prlntlng a file, typing out a 11ne) 1n a ‘single indivisible loglcal operatlona N

We deflne the operatlng system to be a collectlon of 1ndependent1y allocatable '35“2.

consequently take such v1rtua1 resources for granted. We concentrate on the i
issues of virtual resource management, i.e., allocatlon, protection, account;ng,"f{¥

and retrieval. ‘ RO

* Work reported herein was supported in part by project MAC, an M.I.T.';f,j*ggffgj‘;}tdg
research program sponsored by the Advanced Research Projects Agency, IS
Department of Defense, under Office of Naval Research Contract Number S TP

@

purpose of the United States Government. -

/

(2)

In order to be able to develop the desired model, it is essential to

introduce the following two concepts: a) the virtual processor which is a

single sequential execution agent that, in itself, is incapable of performing
any meaningful computation and which is an independently allocatable resource,

and b) the protection sphere which is the set of all virtual resources capable

of mutual interaction. To substantiate the proposed model, the authors suggest

(in the body of the paper) possible implementations for both concepts.

A certain controversy exists in regards to the usefulness of a system,
such as our proposed model, in which the problems of system throughput
optimization (i.e., multiprogfamming and scheduling) are solved by the system
itself, as opposed to systems which provide the programmer with control handles
and which expect the programmer to make decisions and apply multiprogramming
control from his level. Our model hides all multiprogramming and hardware I/0
management behind a fagade of virtual resources and, by allocating a dedicated
virtual resource to a programmer's computation upon demand (even though such '
. résource may not necessarily map into an actual hardware resource at the time
of allocation) it resolves the problems of hardware resource multiplexing by

way of demand scheduling. We suggest that an operating system in which virtual

cresources capable of independent execution are awarded to competing customers
on the basis of demand scheduling (as opposed to predetermined scheduling)
provides optimum system throughput under all circumstances; that is, under

the worst possible environmental conditions the system throughput is no worse
than that of a system featuring predetermined scheduling (namely because the
worst possible environmental conditions make it behave like a predetermined
scheduling system). This seems reasonable because predetermined scheduling
decisions are logically dependent upon unpredictablé and irreproducible run
time conditions. The appendix to this paper carries a more formal justification

to this effect.

Central to our resource management scheme is the concept of the protection
sphere. Every virtual resource in the system is associated with at least one
or perhaps several (shared resource) protection spheres, The operating system
is the universal protection sphere. A protection sphere is identified by a
unique ggzegs tag which is meaningful to the system . Every virtual

resource is associated with at least one access tag which the system is capable

(3)

of examining. Access tags are internal to the system and inaccessible to
non-supervisor code. The system does not tolerate the interaction of virtual
resources which do not feature matching gccess tags; any such attempted
interaction is intercepted by the system and causes an éqcess violation

condition to be established.

All protection spheres in the system are administratively organized into g
hierarchical tree structure. The root of the tree consists of the "system
sphere" whose system tag is a predetermined value that is associated with
at least one predetermined person identity which we name "system administrator".
In other words, all system resources are, by definition, preallocéted to the
system administrator who may access them as he wishes. Resources‘may be

recursively suballocated into smaller protection spheres.

\ « A virtual resource may be
associated with several access tag? one of which is an owner tag. The system
recognizes the owner tag as such, and only a resource's owner may suballocate
that resource or grant access to it.vIn as far as access to a shared resource
is concerned, all access tags are treated in an equivalent manner. The action
of resource suballocation causes the resource's owner tag to be redefined. The
execution of a process may require the services of a privileged subsystem which
operates within a distinct protection sphere. In order to allow this, we associate

a virtual processor with an access stack which permits the stacking of access

tags. The system inspects the two topmost access tags upon each interaction; the
second tag from the top is deprived of its execution attribute. A process
may switch into another protection sphere by entering the new sphere in a
specific control entry which pushes down the virtual processor's current access
tag and placing the subsystem's owner tag on top of the access stack. Thus the
virtual processor is dynamically allocated into the subsystem's protection
sphere while it still maintains restricted (no execute) access in its previous
protection sphere.

The implementation of a model as described above may be approached via a
Dijkstra-like design that hierarchicalféfgrget of system processes so as to
provide the operating system with the desired virtual resources. The lowest-level
system process, named ''process exchange",‘manages the virtual processors. Each
virtual processor is associated with a set of virtual processor registers

(4)
which include, among others, the execution stack. By organizing the virtual '

processors into a hierarchical tree structure, and by giving a descendent

virtual processor restricted access to his parent process' execution stack,

it is possible to implement PL/1 type tasking on our model.

APPENDIX

Suppose that a computation requires a cpu and one or more I/0 devices, '
that all steps in the computation are executed sequentially Ci.e., no
multiprogramming), and that only a single computation at a time may be executed
on the computer (i.e., no multiprocessing). Let ¢ be the amount of cpu time
required by the computation, and let di be the amount of I/0 device time required
by the computation for a given device i. The duration tj of a computation j
using a cpu and n devices i is

tj = c + dl + d2 + .. di + oee. + dn [1
and the duration T necessary to throughput m computations sequentially (i.e.,
batch processing) is

T=t1+t2+...+tj+...+tm [2

In order to increase the throughput of the system described above, we
must decrease T by decreasing one or more of its component tj' Supposing
that a) all devices are logically independent of one another, and b) that
the amount of cpu time spent ¢ is very small compared to any di (assumption
based upon the large speed discrepancies between cpu and I/0 devices, as well
“as upon the observation of actual computer usage examples), we may optimize [1]
through the application of multiprogramming techniques. Associated with the
optimization is a certain overhead ¢, measured in cpu time. We obtain an

%
optimi?ed time tj for the duration of a computation j

t}’ =max [e, d, dyy wen, dyy aen, d] [3
ty maintaining the assumption that (c + cd) <Zdi we derive, by using tj
components for [2], an optimized T* which is less than T.

We observe the similiarity of [1] and [2], and may further optimize [2]
by applying to it multiprocessing techniques, in a way analogous to the
multiprogramming technique applied to [1]. We assume that our m computations
consist of q computations which may be run concurrently, and m-q computations
waich are logically dependent and must be run sequentially. Our optimized T*
corresponds to the throughput time of a multiprocessing system featuring
'Q;edetermined scheduling,

3 % %
T =max [tl, Loy eeey t

kl

% 3 *
]+t + ..+t
q m=-q m=1

It is obvious that the mutual independence of computations depends upon

+t o+ [4
m (o]

their degree of competition for any given device i; however, by preallocating
devices in step [3] decisions were made which do not take into account run~-time

competition in step [4].

IT
We achieve further optimization by the introduction of demand schedullng,
we do this by 51mp1y skipping step [3] and expressing the optimized T directly
in terms of device usage time d . We use the notation Dp to express the total
amount of time spent by some dev1ce i on independent operatlon, and notation
D to express the amount of time spent by the same device i on sequential
operatlon. The throughput time T for a multiprocessing system featuring

demand scheduling is
%

- p AP p s s . s s
TV maX[Dl,D, ce ey Di, es ey Dn]+Dl+D2+-oo+Di+ -00+Dn+c

