_(,,f;z.! R Cohae
| R /9 eefhon
0. Ehum

‘M

H,
TO: W.L. Estfan 2317
. , , ‘_HA ihaja&uuf
SUBJECT: Multics Diagnostic System Trip Report . OLave\
- 3' Lol in
DURATION AND LOCATION OF TRIP: Monday, May9 to R. u)a,.,j

Friday May 27 at MIT, Cambridge, Massachusettsﬁr- LL)

UW
OUTLINE:

1.0 Introduction

2.0 Multics/Diagnostic System Interface Requirements
3.0 Software Reconfiguration

4.0 Recommendations

5.0 Definitions

6.0 Projected Work Plan

Harlow Frick
645 System Design Unlt

June 2, 1966

INTRODUCTION

The purpose of this document is to inform you of progress and
direction taken on the definition of an on-line diagnostic system
running under Multics control.. Also, to make recommendations

and solicit constructive comments and suggestions.

Many important problems have been overlooked or side-stepped

in this document and some of the concepts and details described
herein are expected to change. For this reason, it is important
that distribution be limited so as not to propogate terms which
are incorrectly used and some faulty concepts.

Recommendations as to which of our existing 600 line T&D programs
should be modified to run in the Multics environment will be
delayed until the diagnostic system needed for the Multics
environment is further defined and until I have a better
understanding of Multics.

Although many of our existing programs could probably be modified
to run in the Multics environment, I suspect that it would be
better, considering long range goals, to re-write them in EPL
(Early Programming Language - a subset of PL1:) or in 645
assembly language. A stronger position will be taken on this

in the Multics Diagnostic System Position Paper which should

be completed in about a month.

MULTICS/DIAGNOSTIC SYSTEM INTERFACE REQUIREMENTS

Existing Multics modules as described in the MSPM (Multics System
Programmers Manual) leave ample room for adding a diagnostic system
without many changes to what is already defined. As the diagnostic
interface is defined, additions will be made to the presently
defined modules and new modules will be specified.

The following comments about some of the presently defined Multics
modules are intended to illustrate the extent to which additional
details must be added in order to provide a proper diagnostic
system interface.

L 3 .) .
Traffic Controller - Some additional details are neéeded.
Transactor - Considerable additional definition

is required in this module. In this
document I have delegated several
responsibilities to the transactor
for convenience only. It is likely
that the Transactor will be divided
into several different modules as
various functions are further
defined.

-

Device Control Modules (DCM) - (also known as DIMs) - ©No change is
contemplated to any of the DCMs. The
diagnostic system will either use the
DCMs as other users or will replace
a DCM for a particular device when
exercising the device with a
diagnostic program.

GIOC Interface Module (GIM) - No change is contemplated to the
present definition of the GIM, but
considerable additional detail is
required. The GIM can be used as
presently defined when exercising
a device with a diagnostic program.
Failures in the GIOC should be
detected where practical by the GIM.
When the GIM detects a GIOC failure,
certain information about the failure
should be stored and a recovery _
procedure should be initiated. This
is a Big problem area in which lots of
additional work is required.

MSU Interface Module - I have not yet investigated this module.

Other Modules - Not yet investigated.

SOFTWARE RECONFIGURATION
A method of allocating components to the diagnostic system.

The diagnostic system should have authority to test only those
components assigned to it. The transfer of components to and from
the diagnostic system should be handled by the transactor.

The following is a possible approach:

An unassigned component file (or possibly an "unassigned" bit in
the Physical configuration file) defines all components which are
physically connected to the system but which are not currently
allocated for use by Multics. Only the Transactor can transfer
components to and from the unassigned component file.

A diagnostic operator can run diagnostic programs on ‘only those
components which are in his system configuration file. Any number
of diagnostic operators can be currently logged in. Any diagnostic
operator can transfer components at will between his system .
configuration file and the unassigned component file, via requests
to the transactor.

PUPR——

The Transactor transfers components between the Multics configuration
file, the unassigned component file, and diagnostic system
configuration files as follows:

1. Transfer from Multics configuration file to unassigned component
file. '

Multics requests the transfer because the component has-
malfunctioned or is due for preventive maintenance, or because
a Multics operator requested the transfer.

A Multics operator may request the transfer for any of the
following reasons:

a) The component is to be put "off-line" for preventive or
corrective maintenance.

b) The component is to be physically removed from the system.

c) A diagnostic program is to be run on the component to
determine whether it functions properly.

2. Transfer from the unassigned component file to the Multics
configuration file.

This is done only by a request from a Multics operator.

3. Transfer from the unassigned component file to a diagnostic
system configuration file.

Any diagnostic operator may transfer components from the
unassigned component file to his system configuration file.

4. Transfer from a diagnostic system configuration f:}é to the
unassigned component file. :

Any diagnostic operator may transfer components in his system
configuration file to the unassigned component file. \
.

5. Initially there will be no way of transferring directly between
the Multics configuration file and a diagnostic system
configuration file. The reason is to keep these transfers under
control of the Multics operator.

«“w

3.2

4.0

4.1

A Simple Re-configuration Example

If a printer is to be moved from GIOC channel X to channel Y, and
a card reader is to be inserted into the system at channel X,
the procedure might be as follows:

a) Multics operator requests the Transactor to move the printer
assigned to channel X into the unassigned component file at
the next logical breakpoint.

b) At the next logical breakpoint, the transactor moves the printer
from the Multics configuration file to the unassigned component
and informs the Multics operator.

c) The printer cables are physically moved from channel X to
channel Y. The card reader is physically moved into the area
and its cables are connected to channel X.

d) The Multics operator orders the Transactor to delete printer
on channel X from the unassigned component file, and add a card
reader on channel X and a printer on channel Y.

e) A diagnostic operator orders the Transactor to transfer card
reader on channel X and the printer on channel Y to his system
configuration file. :

f) Diagnostic operator runs a short card reader and printer
diagnostic to verify that these components are operational.

g) Diagnostic operator orders the Transactor to give his system
configuration back to Multics.

RECOMMENDATIONS

One or more diagnostic programs, which run in the Multics environment,
should be provided for each component which may be deleted from the
Multics system configuration without curtailing Multics operation.
The component must be deleted from the Multics configuration and
allocated to the diagnostic system while the diagnostic is being run.
The following is an incomplete list of components which diagnostic
programs should be provided for. '

1. Entire MSU system
2. One MSU sector

3. Sixteen contigquous MSU sectors .

4. Entire Processor system (plus one memory controller for diagnostic
program use).

5. Memory Controller

6. Entire GIOC system

7. GIOC Adapter

At least one program should be provided for each type of GIOC
adapter. ‘ .

8. GIOC Device
At least one program should be provided for each type of device.

R

<

No general distinction should be made between diagnostic processes
and other processes as far as loading, execution, or maintenance

is concerned.

The Multics Monitor should be capable of starting diagnostic processes
for any of the following reasons:

a) A diagnostic operator requests startup.

b) Elapsed time interval triggers startup.
c) System process detects a failure and therefore triggers startup.

Most diagnostic programs should be written in EPL and should run

in slave mode. In fact, the only exceptions should be diagnostics

for major modules when the entire major module is down. For example,
in a multiple GIOC system, when one GIOC is completely down, a special
diagnostic GIM (GIOC Interface Module) may replace the standard GIM
when communicating with the GIOC which is down. The diagnostic

GIM is not necessarily coded entirely in EPL and it may include some
code written in Master Mode. (Note: Further investigation is

required before we commit ourselves to EPL. However, we should attempt

_to use EPL unless there is a valid reason for not doing so. Also,

1 \any existing T&D programs modified to run in the Multics environment
. would, of course, be assembled with the 625/635 assembly program.)
K

4.% Wherever practical the initial version of Multics should include
internal software checks for verification of proper operation of the
system. This will help isolate software as well as hardware failures.
This approach may easily be overdone. The philosophy should be to
assume that the processor works and protect against I/0 system
failures causing the software to fail. The following kinds of
software checks should be included for the prototype system:

a) Verification by software, that GIOC status control words are
properly maintained by the hardware and that a status word is
indeed stored for each increment of the status control word.

?J/ b) If a status word is supposed to be stored by the hardware with

“{ zeros in a field, the software should verify that the field is
indeed zeros before performing an operation (like entering a
branch table) which would cause an undefined software failure
if the hardware failed.

A

4.5 An additional person should begin working full time on the Multics
2 diagnostic system as soon as possible. (I recommend Al Longanecker.)
' This person should investigate the feasibility of writing diagnostic
system programs in EPL and should also write a Multics Diagnostic
System Functional Specification.

4%

5.0 DEFINITIONS

component -

diagnostic program -

diagnostic process -

test program -

o @A«W7.

console user -
A

multics operator -V)Qﬁﬁ

diagnostic operator -

A discrete physical portion of the
system hardware which may be allocated
to or deallocated from Multics use.

A program specifically written to help
engineers diagnose hardware failures.
There is no implication as to the
amount or usefulness of error output
information.

Basically, a diagnostic program in
execution in the Multics environment.

A program specifically written (or in
some context, used) to determine
whether a system or some part of a
system is functioning properly.

A person communicating with the Multics
system via an on-line typewriter like
device.

Note: A console user's domain of
authority is always defined by his @
q§§§§§7\not§5§—WEIEh\ph<§icaL device
h&1is connected to. w““”ﬁ)

A console user with approximately fhe

same responsibility and authority as
the operator in a GECOS environment.

A console user whose user number
defines him as having the following
authority:

1. All authority of an ordinary console
user.

2. Authority to use system components
which have been de-allocated from the
Multics configuration. In other
words, he can transfer components
between the unassigned component file
and his System Configuratipn File.

3. Authority to execute Diagnostic
Programs.

4. Authority to communicate certain
information to and from the Multics
system.

i (oA kit

L b R B e e Lt s e e

N
}y(,
%u”

diagnostic system programmer - A console user whose ugei_numbgr
defines him as having all authority

of a diagnostic operator plus the
authority to change certain
permanent system files. For
simplicity I have defined two types
of diagnostic system files.

Type A diagnostic system files may be improperly changed without
resulting in a Multics system failure to anyone except
diagnostic operators. These files contain most permanent.
diagnostic system symbolic and binary program files and
various standard data files. Most diagnostic system
programmers will have authority to change only type A
files, and perhaps only those type A files to which
individual responsibility is assigned.

, Type B diagnostic system files contain symbolic and binary
L c fx\. , files of Multics Modules which are used primarily by the
NP diagnostic system. They are implemented and maintained
’ by diagnostic system programmers. Great care must be
taken when changing some of these files because an
improper change may cause catastrophic failure of the
Multics system. It is likely that only certain on-site
system programmers will have authority to change type B
files. ,

6.0 PROJECTED WORK PLAN

Upon returning to MIT I will continue to spend considerable time
familiarizing myself with the Multics system. I also plan to
prepare the following documents.

1. Multics Diagnostic System Position Paper
Planned completion on FW 27 }]/1/66)

e
This document will explain the general approach to be taken on
the Multics Diagnostic Systen. The following topics may' be
discussed:

a. General role which diagnostic programs should play reéarding
error detection and correction versus the role of test
programs and the rest of the Multics software.

b. Feasibility of modifying the 645 off-line T&D system to run
in the Multics environment.

c. Languages which the diagnostic system should be written in. .

d. Diagnostic system operating procedures.

e. System component allocation for diagnostic testing or
maintenance.

f. System components which diagnostic programs should be
provided for.

g. System re-configuration.

Multics/Diagnostic System Interface Functional Specification

Planned completion on FW 31 (7/29/66)

This document will describe in general, what changes or additions
are required in Multics modules defined in the MSPM (Multics
System Programmers Manual) in order to allow implementation of

the Multics Diagnostic System described in the Multics Diagnostic
System Position Paper.

Multics/Diagnostic System Interface Design Specification
Planned completion on FW 35 (8/26/66)

Same as 2 except in detail.

Multics Users Guide for Diagnostic Programmers
Planned completion on FW 39‘(9/23/66)

This document will contain information which a diagnostic
programmer will find useful when starting to implement a
diagnostic program which runs in the Multics environment. It
may include the following:

a) Guide for using Multics Documentation.
b) Guide for using programming languages.
c) Suggested Program Documentation Standards.

