CHAPTER 1

HIGHLIGHTS OF THE MULTICS SYSTEM

February 8, 1972

Introduction

Multics (from Myltiplexed Information and Computing Service)
is the name of a new, general-purpose computer system developed
by the Computer System Research group at M.1.T, Project MAC, in
cooperation with - Honeywell Information Systems (formerly the
General Electric Company computer department) and the Bell]
Telephone Laboratories. This system is designed to be a
"computer utility", extending the basic concepts and philosophy
of the Compatible Time-Sharing System (CTSS, operating now on the
IBM 7094 computer) in many directions. Multics is implemented
initially on the Honeywell o645 computer system, an enhanced
relative of the Honeywell 35 computer.

One of the overall design goals of Multics is to create a
computing system which is capable of meeting almost all of the
present and near future requirements of a large computer utility.
such systems must run continuously and reliably 7 days a week, 2u
hours a day, in a way similar to telephone or power systems, and
must be capable of meeting wide service demands: from multiple
man-machine interaction to the sequential processing of absentee
user jobs; from the use of the system with dedicated languages
and subsystems to the programming of the system itself; and from
centralized bulk card, tape, and printer facilities to remotely
located terminals. Such information processing and comnunication
systems are believed to be essential for the future growth of
computer wuse in business, in industry, in government and in
scientific laboratories, as well as stimulating applications
which would otherwise be untried.

Because the system must ultimately be comprehensive and able
to adapt to unknown future requirements, its framework must be
general, and capable of evolving with time. As brought out in
the sequel, this need for an evolutionary framework influences
and contributes to much of the system design and is a major
reason why most of the programming of the system has been done in
a subset of the PL/I language. Because the PL/I language is
largely machine-independent (e.g., data descriptions refer to
logical items, not physical words), the system should also be.

C) Copyright, 1972, Massachusetts Institute of Technology
All rights reserved.

1-2 H1GHLIGHTS OF THE MULTICS SYSTEM

specifically, it is hoped that future hardware improvements will
not make system and user programs ob§olete and that
implementation of the entire system on other suitable computers

will require only a moderate amount of additional programming.

As computers have matured during the last two decades from
curiosities to calculating machines to information processors,
access to them by wusers has not improved, and, in the case of
most large machines, has retrogressed., Principally for economic
reasons, batch processing of computer jobs has been developed and
is currently practiced by most large computer installations, and
the concomi tant isolation of the user from elementary
cause-and-effect relationships has been ei ther reluctantly
endured or rationalized. For several years a solution has been
proposed to the access problem. This solution, usually called
time-sharing, 1is basically the rapid time-division multiplexing
of a central processor unit among the jobs of several users, each
on-line at a typewriter-like terminal. The rapid switching of
the processor unit among user programs is, of course, nothing but
a particular form of multiprogramming.

The impetus for time-sharing first arose from professional
programmers because of their constant frustration in debugging
programs at batch processing installations. Thus, the original
goal was to time-share computers to allow simultaneous access by
several persons while giving to each of them the illusion of
having the whole machine at his disposal. This goal led to the
development of the Compatible Time-Sharing System (CTSS) at
M.1.T. Project MAC. However, at Project MAC it has turned out
that = simultaneous access to the machine, while obviously
necessary to the objective, has not been the major ensuing
benefit. Rather, it is the availability at one's fingertips of
facilities for wediting, compiling, debugging, and running
programs in one continuous interactive session that has had the
greatest effect on programming. Professional progranmers are
encouraged to be more imaginative in their work and to
investigate new programming techniques and new problem approaches
because of the much smaller penalty for failure. But, the .10st
significant effect that CTSS has had on the M.1.T. community is
for other the way problems are attacked, but has caused important
research to be undertaken that otherwise would not have been
done. As a consequence, the objective of the current and future
developinent of time-sharing extends beyond the improvement of
computational facilities with respect to traditional computer
applications. Rather, it is the on-line use of commputers for new
purposes and in new fields which provides the challenge and the
motivation to the system designer. In other words, the major
goal is to provide suitable tools for what is currently being
called machine-aided cognition.

SYSTEM REQUIREMENTS i-3

More specifically, the importance of a multiple-access
system operated as a computer utility is that it allous a vast
enlargement of the scope of computer-based activities, which can,
in turn, stimulate a corresponding enrichment of inany areas of
our society. Over ten vyears of experience indicates that
continuous operation in a utility-like manner, with flexible
remote access, encourages users to view the system as a thinking
tool in their daily intellectual work. Mechanistically, the
qualitative change from the past results from the drastic
improvement in access time and convenience. Objectively, the

change 1lies in the wuser's ability to control and affect
interactively the course of a process whether it involves
numerical computation or manipulation of symbols., Thus,
parameter studies are more intelligently guided; new

problem-oriented 1languages and subsystems are developed to
exploit the inhteractive capability; many complex analytical
problems, as in magnetohydrodynamics, which have been too
cumbersome to be tackled in the past, are now being successfully
pursued; even more, new, imaginative approaches to basic research
have been developed as in the decoding of protein structures.

These are examples taken from an academic environment:; the
effect of multiple-access systems on business and industrial
organizations can be equally dramatic. It is with such new

applications in mind that the Multics system has been developed.
Not that the traditional uses of computers are being disregarded:
rather, these traditional needs are viewed as a subset of the
broader, more demanding, new requirements.

To meet the above objectives, issues such as response time,
convenience of manipulating data and programs, ease of
controlling processes during execution, and, above all,
protection of private information and isolation of independent
processes, become of critical importance. These issues demand
departures from traditional computer systems. While these
departures are deemed to be desirable with respect to traditional
coinputer applications, they are essential for rapid man-machine
interaction. '

System Reguirements

In the early days of computer design, there was the concept
of a single program on which a single processor computed for long
periods of time with almost no interaction with the outside
world. Today such a view is considered incomplete, The effective
boundaries of an information processing system extend beyond the
processor, beyond the card reader and printer, and even beyond
the typing of input and the printing of output. In fact, they
encoipass the goals of many people. To better understand the
effect of this broadened design scope, it is helpful to examine
several phenomena characteristic of large, service-oriented
computer installations.

1-4 HIGHLIGHTS OF THE MULTICS SYSTEM

First, there are incentives for any organization to have the
biggest possible computer system that it can afford. It is
usually only on the biggest computers that there are elaborate
programming systems, compilers, and features which 'make a
computer "powerful"™. This results partly because it is more
difficult to prepare system programs for smaller computers when
limited by speed or wmemory size, and partly because large systems
involve more persons and, hence, permit more attention to be
given to system programs. Moreover, by combining resources in a
single computer system rather than in several, bulk economies and
therefore lower computing costs can be achieved. Finally, as a
practical matter, considerations of floor space, management
_efficiency, and operating personnel provide a strong incentive
for centralizing computer facilities in a single large
installation,

Second, = the capacity of a contemporary computer
installation, regardless of the sector of applications it serves,
must be capable of growing to meet continuously increasing
demand. A doubling of demand every two years is not uncommon.
Multiple-access computers promise to accelerate this growth
further since they allow a man-machine interaction rate which is
faster by at least two orders of magnitude than other types of
computing systems. Present indications are that multiple-access
systems for only a few hundred users can generate a demand for
computation exceeding the capacity of the fastest existing single
processor system. Since the speed of light, the physical sizes
of computer components, and the speeds of memories are intrinsic
limitations on the speed of any single processor, it s clear
that systems with multiple processors and multiple memory units
are needed to provide greater capacity. This is not to say that
fast processor units are undesirable, but that extreme system
complexity to enhance this single parameter among many appears
neither wise nor economic. '

Third, computers are no longer a luxury used when and if
available, but are primary working tools in business, government,
and research 1laboratories. The more reliable computers become,
the more their availability is depended upon. A system structure
including pools of functionally identical wunits (processors,
memory modules, input/output controllers, etc.) can provide

continuous service without significant interruption for equipment
maintenance, as well as provide growth capability through the
addition of appropriate units.

Fourth, wuser prograns, especially in a time-sharing systen,
interact frequently with secondary storage devices and teriinals.
This communication traffic produces a need for multiprogramming
to avoid wasting main processor time while an input/output
request is being completed. It is important to note that an
individual user is ordinarily not in a position to do an adequate
job of rmultiprogramming since his program lacks proper balance,
and he probably 1lacks the necessary dynamic information,

SYSTEM REQUIRENFNTS i-b

ingenuity, or patience.

Finally, as noted earlier, the value of a time-sharing
system lies not only in providing, in effect, a private computer
to a nunber of people simultaneously, but, above all, in the
services that the system places at the fingertips of the vusers.
lHforeover, the effectiveness of a system increases as
user-developed facilities are shared by other users. This
increased effectiveness because of sharing is due not only to the
reduced demands for core and secondary memory, but also to the
cross-fertilization of vuser ideas. Thus, a major goal of the
present effort is to provide multiple access to a growing and
potentially vast structure of shared data and shared progran
procedures. In fact, the achievement of multiple access to the
computer processors should be viewed as but a necessary subgoal
of this broader objective. Thus, the primary and secondary
memories where programs reside play a central role in the
hardware organization, and the presence of independent
comnunication paths between memories, processors, and terminals
is of critical importance.

From the above it can be seen that the system requirements
of a computer installation are not for a single program on a
single computer, but, vrather, for a large system of many
components serving a community of users. Itoreover, each user of
the system asynchronously initiates jobs of arbitrary and
indeterminate duration which subdivide into sequences of

processor and input/output tasks. It is out of this seemingly
chaotic, random environment that one arrives at a utility-like
view of a computing system. For instead of chaos, one can
average over the different user requests to achieve high
utilization of all resources, The task of multiprogramming
required to do this need only be organized once in a central
supervisor program. Each wuser thus enjoys the benefit of

efficiency without having to average the demands of his own
particular program.

With the above view of computer use, where tasks start and
stop every few milliseconds, and where the memory requirements of
tasks grow and shrink, it is apparent that one of the major jobs
of the supervisor program (i.e., monitor, executive, etc.) is the
allocation and scheduling of computer resources. The general
strategy is clear. Each wuser's job is subdivided into tasks,
usually as the job proceeds, each of which is placed in an
appropriate queue (i.e., for a processor or an input/output
controller). Processors or input/output controllers are, in
turn, assigned new tasks as they either complete or are removed
from old tasks. All processors are treated equivalently in an
anonymous pool and are assigned to tasks as needed. In
particular, the supervisor does not have a special processor.
Further, processors can be added or deleted without significant
change in either the user or system programs. Similarly,
input/output controllers are directed from queues independently
of any particular processor. Again, as with the processors, one

i-v HIGHLIGHTS OF THE MULTICS SYSTEM

can add or delete input/output capacity according to system load
without significant reprogramming required.

The overall design goal of the Multics system is to create a
computing system which is capable of comprehensively meeting
almost all of the present and near future requirements of a large
computer service installation. It is not expected that the
initial system, although wuseful, will reach the objective;
rather, the system will evolve with time in a general framework
which permits continual growth to meet unknown future
requirements. The use of the PL/1 language will allow major
system software changes to be developed on a schedule separate
from that of hardware changes. Since most organizations can no
longer afford to overlap old and new equipment during changes,
and since software development is at best difficult to schedule,
this relative machine-independence should be a major asset,

It is expected that the Multics system will be published and
will therefore be available for implementation on any equipment
with suitable characteristics. Such publication is desirable for
two reasons: first, the systein should withstand public scrutiny
and criticism; second, in an age of increasing compliexity, there
is an obligation to present and future system designers to make
the inner operating system as lucid as possible so as to reveal
the basic system issues.

An ability to share data contained within the framework of a
general purpose time-sharing system is a unique feature of
Multics, and is directly applicable to administrative probleins,
research requiring a multi-user accessible data base, and general
application of the computer to very complicated research
problems. The attention paid to mechanisms to provide and
control privacy is of direct interest for several of the same
applications as well as, for example, medical data. Multics can
thus be a valuable tool which provides opportunities. for
important new research in these areas.

Ihe Hardware system

The Honeywell 645 computer system is a large scale,
information processing system with most of the features currently
found in such systems. |If one attempted to classify systems, it
would fall in the same general category of size as the Honeywell
635, the Univac 1108, and the |BM Systems 360/65 and 67.

The configuration at M.1.T., shown in Figure 1-1, «currently
contains 384K (K = 1024) 3b bit words of core memory (1
microsecond access to 30 bits or 1.3 microseconds access to 72
bits), two central processors (330,000 instructions per second

1-7

THE HARDWARE SYSTEM
645 645 Paging
Drum v
Processor Processor 4){106 word
Operation
Console
Core Core Core Printer
| Memory ' Memory Memory 1200LPM
[S-Xstem 128K words 128K words 128K words
Clock
Card
Reader
Card
General I/0 Controller Punch
Character |High-~Perf, |Direct Disk Teletype
Adapter (2){Channel Adapter Adapterxgﬂ
| L L
Character Tape Disk Teletype
Channel Control Control Channels
() - (88)
\ Digk 36x Teletype
202c6 10°words [| Channels
Data ‘ (88)
Set =
Disk 37x |
10° words S~
88 lines to Data
~ Switch for 1050/2741,
5 lines to Data 6 - 120kc M33, 35, and 37

Switch for ARDS
Use

Figure 1-1:

’

/

Magnetic tape

Drives

Teletype

Honeywell Gu45 Configuration at M.!.T.

1-8 HIGHLIGHTS OF THE MULTICS SYSTEM

when running Multics), a high performance pagin drun (it moves
1024 words in 2 milliseconds, 16 milliseconds average latency

with a queue-driven channel controller), 78 million words of disk
storage, and a Generalized I/0 Controller which handles magnetic
tapes, card equipment, and high-speed full ASCIl printers, as
well as all telecommunication channels. The central processor is
built on the Honeywell 635 instruction set with augmentation to
permit control of paging and segmentation hardware.

0 iew of Multl c biliti

Multics offers a number of capabilities which go well beyond
those provided by many other systems, Those which are most
significant from the wuser's point of view are described here,
Perhaps the most interesting aspect of all 1is that a single
system encompasses all of these capabilities simultaneously.

1. The ability to be a small user of Multics.

An underlying consideration throughout the Multics design
has been that the simple user should not pay a noticeable
extra price for a system which also accomodates the
sophisticated user. For example, a student can be handed a
limited set of tools, can do limited work (perhaps debugging
and_ running small FORTRAN programs), and expect to receive a
bill for resource usage which is equivalent to the limited
work done. |If all users are small, then, of course, the
number of users can be increased in proportion to their
smallness. As an administrative aid, facilities are
provided so that one can restrict any particular user to a
specific set of tools and thereby limit his ability to wuse
up resources.

2. The ability to control sharing of information.

There are a variety of applications for a computer system
which involve building up a base of information which is to
be shared among several individuals. Multics provides
facilities in two directions.

Sharing:
. Links to other users' programs and data.

. Ability to move one's base of operation into another
user's directory (with his permission).

. Direct access with uniform conventions to any
information stored in the system.

. Ability for two or more users to share a single copy
of a program or data in core memory.

OVERVIEW OF MULTICS CAPABILITIES 1-9

Control:

.. Ability to specify precisely to whomn, and with what
access mode (e.g., read, write, and execute
permissions are separate and per-user) a piece of
data or the entire contents of a subdirectory are
"available.

. Ability to revoke .access at any time.

. Abiltity, using the Multics protection ring
structure, to force access to a data base to be only
via a program supplied by the data base owner. This
facility may be wused to allow access to aggregate
information, such as averages or counts, or
specified data entries, without simultaneously
giving access to the entire file of raw data, which
may be confidential. There are a large number of
potential administrative applications of this
feature, and as far as is known, Multics is the only
general-purpose system which provides it.

. %5, The virtual memory approach,

In the opposite direction of the little user is the person
with a difficult research problem requiring a very large
addressable memory. The Multic¢s storage system, with the
aid of a high-performance paging drum, provides this
facility in what is often called a virtual memory of an
extent . limited only by the total of secondary storage
devices (drums, disks, etc.) attached to the system. An
interesting property of the Multics implementation is that a
procedure may be written to operate in a very large virtual
memory, but core resources are used only for those parts of
the virtual memory actually touched by the program on that
execution, and disk and drum resources are used only for
those parts of the memory which actually contain data.
Another very useful property from a programmer's point of
view is that information stored in the storage system is
directly accessible to his progran by a virtual memory
address. This property eliminates the need for explicitly
programned - overlays, chain 1links, or core loads, and also
reduces the number of explicitly programmed input and output

operations. The Multics storage system takes on the
responsibility for safekeeping of all information placed
there by the user. It therefore automatically maintains

tape copies of all information which has remained 1in the
system for more than an hour. These tapes can be used to
reload any user information lost or damaged as a result of
hardware or software failures, and may also be used to
retrieve individual items damaged by a user's own blunder,

1-10

4.

5.

b.

A IGHLIGHTS OF THE MULTICS SYSTEN

Each user has an administratively set quota of space which
limits the amount of storage he can use, although he may
purchase as large an amount of space as he would like.
Additional disk storage can be added to the G45 computer in
large quantities if necessary.

The option of dynamic linking.

In constructing a program or system of programs, it s
frequently convenient to begin testing certain features of
one program before having written another program which s
needed for some cases. Dynamic linking allows the execution
of the first program to begin, and a search for the second
program is undertaken onty if and when it is actually

-called by the first one. This feature also allows a user to

freely include in his program a conditional call out to a
large and sophisticated error diagnostic program, secure in
the knowledge that 1in all those executions of his program
which do not encounter the error, he will not pay the cost
of 1locating, 1linking, and mapping into his virtual memory
the error diagnosis package. It also allows a user
borrowing a programn to provide a substitute for any
subroutine called by that program when he uses it, since he
has control over where the system looks to find missing
subroutines, In those <cases where subroutine A calls
subroutine B every time, there is, of course, no need to use
dynamic 1linking (and the implied 1library search), SO
facilities are provided to bind A and B together prior to
execution. :

Configuration flexibility.

An important aspect of the Multics design is that it s
actually difficult for a user to write a program which will
stop working correctly if the hardware configuration is
changed. In response to changing system-wide needs, the
amount of core memory, the number of central processors, the
amount and nature of secondary storage (disks, drums, etc.),
and the type of interactive typewriter terminals may change
with time over a range of 2 or 3 to 1, but users do not
normally need to change their programs to keep up with the
hardware. The system itself adapts to changes in the number
of processor or merory boxes dynamically, that is, while
users are logged in. Most other configuration changes
(e.g., the addition of disk storage units) require that the
system be reinitialized, an operation which takes a few
minutes. '

The human interface.

Experience has proven that ease of wuse of a time=-sharing
systein is considerably more sensitive to human engineering
than 1is a batch processing system. The idultics command

LANGUAGFS I-11

language has been designed with this in mind., Features such
as universal use of a character set with both upper and
lower case letters in it, and allowing names of objects to
be 32 characters long, are examples of the little things
which allow the nonspecialist to feel that he does not have
to discover a secret in order to be an effective user of the
system. In a similar vein, a hierarchial storage system
provides a very useful organization and bookkeeping aid, so
that a user need keep imnediately at hand only those things
he is working with at the moment. Such a facility is of

great assistance when attacking complicated or intricately
structured problems,

Languages

Multics provides two primary user languags: FORTRAN |V and
PL/1. The FORTRAN compiler is fairly standard. It is suppor ted
by the usual library of math routines and formatted input/output
facilities. Its primary use is for translation of already
written programs which have beén imported from other computer
systeims.

The iiultics PL/1 compiler s quite interesting because it
offers a very full selection of language facilities, over 300
helpful error diagnostics, and the ability to get at the advanced
features of Multics, all at a reasonable cost. On a "seconds to
translate a source language page" basis, the PL/I compiler
currently takes about twice as long as does the FORTRAN compiler;
on the other hand, a page of PL/I program can express
considerably more than a page of FORTRAN program. For these
reasons, as well as the anticipated wide availability of PL/! on
other computer systems, it 1is the recommended language for
subsystem implementers and general research users needing an
expressive language.

Other languages are:

BASIC - A translator and editor subsystem for the BASIC
language, developed at Dartmouth College. A
limited Multics service is available which
restricts the user to just this subsystem, if
desired. The BASIC subsystem is also available to
regular Multics users.

APL - A powerful and popular interpretive language
developed by Kenneth Iverson.

LISP - List Processing language, version 1.5, Both an
interpreter and a compiler for this popular
language for "artificial intelligence" problems
are available. An interesting feature of the
Multics implementation is the very large structure
space provided by the virtual memory.

1-12 HIGHLIGHTS OF THE MULTICS SYSTEM

ALM - A machine language assembler for the joneywell GU5
computer. (It is not recommended for general use;

it is slow and the machine language is very
difficult,)

QEDX - A programmable editor which qualifies as a minor
interpretive language.

A1l of the above languages translate a source prograi which
has been previously placed in the storage system, Input and
editing of source text is done with one of the available text
editors, edm or qedx. Although interactive, line-by=-line syntax
checking languages are easily iwmplemented in the Multics
environment, none are vet available.

A source language debugging system, named debug, provides
the ability to inspect variables and set break points in terms of
the PL/| progran being debugged. It also has a variety of
features to allow inspection of all aspects of the Multics
execution environment.

Reliability and Perf

An initial version of Multics began operating on a scheduled
daily basis for system programiing use in September, 1363, It
has been scheduled to run on a 24-hour-a-day basis since May 1,
1963. Since that time, almost three vyears of operational
experience has been obtained. During this time, reliability,
functional capabilities, and performance have been brought to the
point that, as of January 1, 13872, a two processor system Serves
55 simultaneous users, with good interactive response.

As an offering of the M.1.T., Information Processing Center,
Multics has attracted a community of about 600 registered users,
and an equal number of unregistered student users. These users
are organized around approximately 100 projects, thus making
liultics the primary source of time-sharing services at Mot.T.
(As with all 1.P.C, computer systems, the use of Hultics is
charged to ‘its users at rates adjusted to return full hardware
and running costs when the system is operating at about
two-thirds capacity.)

A MULTICS BiBLIOGRAPHY 1-13

A Multics Bibliography

A.

Manuals which are Generally Available

1.

Multics Programmers' Manual. An updateable reference
manual giving calling sequences and reference
information for all wuser-callable subroutines and
commands. Includes an introduction to the Multics

programming environment and a guide to typical ways of
using the system. approx. 800 pages.

Ihe : An Examination of its Structure, by
E. 1. Organick. A hard cover book describing in some
detail how Multics works. The description is from the
point of view of a programmer developing a large
program or subsystem, who wishes to gain the extra
insight to help him intelligently choose among
available alternatives of his implementation., M.I.T.
Press, Cambridge, Mass., 1972.

A User's Guide to the Multics EQRTRAN ’
by R. A, Frelburghouse. A document which provides the
pProspective Multics FORTRAN user wi th sufficient
information to enable him to create and execute FORTRAN
programs on Multics. It contains a complete definition
of the Multics FORTRAN language as well as a
description of the FORTRAN command and error messages.
It also describes how to communicate with non-FORTRAN
programs, and discusses some of the fundamental
characteristics of Multics which affect the FORTRAN
user, ©08 pages.

Mulgics PL/I Language Specification. A reference
manual which specifies precisely the PL/! language
used on Multics. 174 pages.

User's Guide to the Multics PL/I Implementation, by
R. A. Freiburghouse, et al,. Provides detailed
information about how the PL/|I language is embedded in
the Multics programming environment. 53 pages.

Users' Supplement to the Multics Programmers'
HManual. In the same format as the Multics Programmers'
Manual, this supplement gathers in one place
descriptions of the Multics Graphics System, and the
commands and subroutines needed to use it. approx. 55
pages, illustrated,

1-14

HIGHLIGHTS OF THE MULTICS SYSTEM

B. Manuals which may be exanined in the Project MAC or
information Processing Center Document Rooms

1.

. Programmers' Manual. In principle, a
complete reference manual describing how the system
works inside. In fact, this document contains many
sections which are inconsistent, inaccurate, OF
obsolete; it is in need of much upgrading. However,
its overview sections are generally accurate and
valuable if insight into the internal organization is
desired. approx. 3,500 pages.

System Programmers' gupplement Lo the Multics
Programmers' Manual. This updateable reference manual,

in the same format as the Multics Programmers' Manual,
provides calling sequences of every system module.
approx. 850 pages.

EPLBSA Programmer's Reference Handbook, by
D. J. Riesenberg. A manual describing the assembly
(machine) language for the Honeywell 645 computer. The
language has been renamed ALM since the publication of
this manual. (Needed only by programmers with some
special reason to use 645 machine language.) 85 pages.

Hopneywell 645 PBrocessor Manual. A hardware
description, including opcodes, addressing modifiers,
etc. Of interest only to dedicated machine language
programmers. 175 pages.

subsystem MWriters' Supplement Lo the Multics
Programmers' Manual. A manual giving calling sequences
of internal interfaces of the system which are
user-accessible. For the sophisticated subsystem
writer who feels that it is important to bypass some
standard Multics facility, this manual provides soine
help in using interfaces one level deeper into the
system, This manual is definitely not for the casual
user. approx. 50 pages.

c. Technical Papers About Multics

1.

Corbatb, F. J., and Vyssotsky, V. A., "Introduction and
Overview of the Multics System", AE1PS Conf. Proc. 27
(1965 FJCC), Spartan Books, Washington, D.C., 1965, pp.
185-196.

Glaser, E. L., et al., "system Design of a Computer for
Time=Sharing Application", AELPS Conf. Proc. 21 (1365
FJCC), Spartan Books, Washington, D.C., 1965, pp.
197-202. '

10.

11.

12,

13.

Tk,

A MULTICS BIBLIOGRAPHY 1-15

Vyssotsky, V. A., et al., "Structure of the Hultics

Supervisor'", AFIPS Conf. Progc. 27 (1965 FJCC), Spartan
Books, Washington, D.C., 1965, pp. 203-212,

Daley, R. C., and HNewmann, P. G., "A General-Purpose
File System for Secondary Storage', ALIPS Conf. Proc.
27 (13965 FJCC), Spartan Books, Washington, D.C., 1965,
pp. 213-229,

Ossanna, J. F., et al., "Communication and Input/Output
Switching in a Multiplex Computing System', AEIPS Conf.
Proc. 27 (19065 FJCC), Spartan Books, Washington, D.C.,
19651 ppo 231"2’41.

David, E. E., Jr., and Fano, R. M., '"Some Thoughts
About the Social Implications of Accessible Computing®,
AF1PS Conf. Proc. 27 (1965 FJCC), Spartan Books,
Washington, D.C., 1965, pp. 243-247,

Bensoussan, A., Clingen, C. T., and Daley, R. C., '"The
Multics Virtual Memory", ACM Second Symposium on

Operating Systems Principles (October 20-22, 18969),
Princeton University, pp. 30-42,

Clingen, C. T., "Program Naming Problems in a Shared
Tree-Structured Hierarchy", NAIO Science Committee
Conference on Jechnigues in Software Enzineering, 1
(October 27-31, 1969), Rome, ltaly.

Graham, R. M., "Protection in an Information Processing
Utility", Comm. ACM 11, 5 (May, 1968), pp. 365-369.

Daley, R. C., and Dennis, J. B., "Virtual Memory,
Processes, and Sharing in MULTICS", Comm. ACM 11, 5

Corbatd, F. Jo, and Saltzer, J. H., "Some
Considerations of Supervisor Program Design for
Multiplexed Computer Systems", Proc. IFIP Conf. 19638
Invited Papers, pp. 66-72.

Corbata, F. J., "PL/I as a Tool for System
Programming', Datamation 15, 6 (May, 1969), pp. 68-76.

Corbatd, F. J., "A Paging Experiment with the Multics

System", 1ln Hopmor of P. M. Morse, M.I.T. Press,
Cambridge, Massachusetts, 1969, pp. 217-228.

Saltzer, J. H., and " Gintell, J. We, "The
Instrumentation of Multics", ACM Second Symposjiumn on
Operating System Principles (October 20-22, 1969),
Princeton University, pp. 167-174. Also in Comm. ACM
13, 8 (August, 1970), pp. 495-500.

1-16

15.

16.

17.

18.

19.

20.

21.

22.

23,

2“.

25.

HIGHLIGHTS OF THE MULTICS SYSTEM

Spier, M. J., and Organick, E. |4, "The Multics
Inter-Process Communication Facility", ACM Second

i on Qperating System Principles (October
20-22, 1969), Princeton University, pp. 83-91.

Freiburghouse, R. A., "The Multics PL/! Compilter',

AEIPS Conf. Proc. 35 (1969), AFIPS Press, 1969, pp.
187-199.

Grochow, J. M., "Real-Time Graphic Display of
Time-Sharing System Operating Characteristics", AELPS
conf. Proc. 35 (1969 FJCC), AFIPS Press, 1969, pP.
379-385.

saltzer, J. H., and Ossanna J. F., "Remote Terminal
Character Stream Processing in Multics", AELPS Conf.
Proc. 36 (1970 SJCC), AFIPS Press, 1970, pp. 621-627.

Ossanna, J. F., and Saltzer, J. H., "Technical and
Human Engineering Problems in Connecting Terminals to a
Time-Sharing System", AELPS conf. Proc. 31 (1970 FJCcC),
AFIPS Press, 1970, pp. 355-362. _
Clark, D. D., Graham, R. M., Saltzer, J. H., and
Schroeder, M. D., ''Classroom Information and Computing
Service", M.1.T. Project MAC Technical Report TR-80,
(January 11, 1971).

Schroeder, M. D., "Performance of the GE-6U45
Associative Memory While Multics is in Operation', ACM
Workshop on System Performance Evaluation (April,

Schroeder, M. D., and Saltzer, J. H{, "y Hardware
Architecture for Implementing Protection Rings", ACM
MW@WMW
(October 18-20, 1971), Palo Alto, Calnfornia.

Feiertag, R. J., and Organick, E. ., "The Multics
Input/Output System", ACM Third Symposium on Qperaling
Systems Principles (October 18-20, 1971), Palo Alto,
california.

Sekino, A., "Response Time Distribution of
Multiprogrammed Time-Shared Computer Systems', Sixth
Annual Princeton Conference on information Sciences and
Systems, HMarch 23-24, 1972, Princeton, Hedo

Corbaté, F. J., Saltzer, J. H., and Clingen, C. T.,

"Multics--The First Seven Years', AF1PS Conf. Proc. 40
(1972 SJCC) AFIPS Press, 1972,

A MULTICS BIBLIOGRAPHY 1-17

M.1.T. Theses Related to Multics

1.

2.

10.

11,

Saltzer, J. H., "Traffic Control in a Multiplexed
Computer System", 3c¢.D., 1966. (MAC-TR=-30)

Rappaport, R., "Implementing Multi-Process Primitives
in a Multiplexed Computer System', S.M., 1968.
(MAC-TR=55)

Deitel, H., "Absentee Computations in a Multiple-Access
Computer System", S.M., 1968, (MAC-TR=52)

Greenbaum, J., "A Simulator of Multiple Interactive

Users to Drive a Time-Shared Computer System', S.M,,
19638. (MAC-TR=58)

Grochow, J. M., "The Graphic Display as an Aid in the
Monitoring of a Time-Shared Computer System'", S.M,,
1968. (MAC~TR=-54)

Ancona, R. |., "A Compiler for MAD-Based Language on
Multics", S.M., 1968,

Clark, D., "A Reduction Analysis System for Parsing
PL/1", S.M., 1968.

Schroeder, M. D., "Classroom Model of an Information
and Computing Service'", S.M., 1969,

Vogt, C. M., "Suspension of Processes in a
Multiprocessing Computer System", S.M., February, 1970,

Frankston, R., "A Limited Service System on Multics",
§$.B., June, 1970.

Schell, R. R., "Dynamic Reconfiguration in a Modular

‘Computer System', Ph.D., June, 1971.

(END) =

