TO: R. Freiburghouse
>J.'Ginte11
N. Morris
/3. Saltzer
S. Webber
FROM: R. Feiertag, V. Voydock
DATE: April 5, 1972
SUBJECT : Non-Local Transfers, Ring Aborts, and Outward Ring Transfers

on the Multics Follow-On System

This document describes the design changes necessary for the implementation

of the above-named features on the follow-on system,

A Riag Abort (Crawl Out) Mechanism for the Multics Follow-On System

The current Multics system contains only one means of abnormally aborting

a ring., Such aﬁ abortion occurs only if the condition mechanism cannot

find an established haqdler for a signalled condition in the ring of execu-

tion, This form of ring abort (currently called crawling out) must be

maintained in the Multicé follow-on system., The design proposed below

also contains pro#isions for a new form of ring abort, the non-local

transfer. A non-local transfer to a label in a higher ring will -
also cause ring’abort/and will actually be the heart of the implementation

of the follow-on crawl out mechanism,

The Non-local Transfer

Since the non-local transfer, as implemented in the unwinder, forms
the heart of the implementation of the ring abort mechan‘sm, it will be

described first. The current unwinder makes use of some idiosyncracies of



2=

the return sequence, The change in the return sequence makeé it no longer
possible to implement the unwinder entirely in PL/I. Also the current
uwinder can caus; some degenerate race conditions (e.g., quitting after
the unwinder reverts the ;leanup procedure and before it invokes it) which
will result in undesireable effects. The probability of the occurrence

of these race conditions can be sharply reduced in ALM, For these rea-

sons the new umwinder should be writter entirely in AIM. However, the

program will be fairly small,

The unwinder is invoked with a label as an argument. The unwinder will
first perform some consistency checks on this label. The steck frame
pointer in the label must point to a 16 word aligned address (a?l stack
frames must be 16 word aligned), the stack frame pointer must point to

a valid stack segment (this can be validated by looking for a proper
stack header), and the forward and backward pointer in the indicaﬁed
stack frame must also be 16 word aligned, These simple checks will
uncover almost all cases of invalid labels before the unwinder starts
unwinding the stack and destroying valuable information and very possibly

terminating the process,

The unwinder now begins examining each stack frame in the stack beginning
with the most recent. For purposes of discussion, it is assumed that
unwinder does not initially create a frame of its own, however, when
implemented it may be.more convenient to do so. The unwinder must keep
the procedure pointer and stack frame pointer in the label given it in

pointer registers.



P B “\Y\ e

‘,“XV‘;\ v
\ Ve

AN .

-3

For each stack frame, the unwinder first checks to see if tﬁis is the
target stack frame, 1f so, the unwinding is complete and the unwinder
simply fransfers to the location indicated in the label, Before per-
forming this transfer, the unwinder must restore enough of the language
environment to allow the target procedure to run. Wwhat is restored
depends on the language; the unwinder must have builtin knowledge of the
run-time enviromment of every language that invokes it. For PL/I version
1 the ap register must be restored., If this frame is not the target
frame a check is made for a cleanup procedure established in this frame.
If one is established it must first be reverted and then invoked (note
that invoking the cleanup procedure will require doing a push and saving
the label stored in the pointer registers). When the cleanup procedure
returns, the unwinder pops its stack frame SO that it is again operating
in the frame of the activation being unwound. Now the unwinder places a
pointer to itself in the return pointer in the stack frame preceding the
one being unwound and a normal return is performed. This serves two
purposes, It destroys the stack frame just examined and causes the
unwinder to continue.operation in a different ring if the next most
recent stack frame is/in a different ring. The latter is a consequence
of the operation of the rted instruction, In this way unwinding across
a ring is performed automatically without special code., Now the unwinder

begins examining the new frame.



2 pes N

-

The above algorithm is only one means of accomplishing the umwinding
process, but does illustrate the necessary functions which must be per-

formed, Particular implementations may vary in exact technique,

Automatic Ring Abort

When the condition mechanism cannot find a handler for a signalled condi-
tion in a given ring an automatic ring abort is performed and the condi-
tion is again signalled in the calling ring, This feature will continue

to operate on the follow-on,

The design outlined below assumes three important decisions, First, the
machine conditions of the wall-crossing fault at the time of the inward
call which resulted in the ring abort will no longer be returned to the
calling ring. This is necessary because the wall-crossing fault no
longer occurs on the follow-on machine, Secondly, a hamdler of a condi-
tion which has already resulted in a ring abort cannot return to the
condition mechanism and expect it t. reexecute the inward call as is
currently the case. This is also the result of the lack oé an inward
wall-crossing fault, because the condition mechanism no longer knows what
the inward call was, Finally, the conditioﬁ mechanism will, after a ring
abort, continue to pass to the handler, the condition name, and machine
conditions, 1if any, associated with the original raisimg of the condition

in the inner ring, It is not clear that this is not am access viclation,

-



-5-

because, an outer ring does not necessarily have the right fo know about
anything that occurred in an inner ring, The machine conditions may con-
tain sensitive information as contained in the machine registers and
exscuting instructioms. This policy of passing the condition name and
machine conditions of a condition raised in an inner rimg is being
cor.tinued for ease of debugging, However, this policy should be reviewed

at a later date,

When a condition is raised, the condition mechanism searches for a handler
by examining each stack frame, starting with the most recent frame, looking
for a handler established for that condition. As it examines each frame

it checks the stack frame back pointer to see if that pointer contains a
ring number greater than the current ring. If the ring number in the back
pointer is greater than the current ring then this stack frame is the
earliest in this ring énd if no handler for the raised condition has been
found then an automatic ring abort is initiated, The condition mechanism
constructs a dummy stack frame on tle calling ring stack (the calling

ring stack is determined from the back pointer containing the ring number -
greater than the curreﬁt ring). Into this dummy frame is copied the condi-
tion name and machine conditions associated with the raised condition. |
A label is constructed containing a pointer to the dummy frame as the

stack frame pointer and a pointer to a special AIM procedure as the proce-

dure pointer, The unwinder is then invoked with this label. As explained

-



'
et

-6-

earlier the unwinder will perform the ring abort and will finally call

the special AIM procedure in the calling ring as indicated in the label,
This AIM procedure will fabricate an argument list for a call to signal_
giving the condition name and the machine conditions copied into'the

dummy frame. This procedure will then call signal ., Thus the automatic
ring abort is complete, If signal returns to the special AIM procedure

it will signal a special condition indicating ;ﬁmiiiégal attempt to restart
an operation which resulted in a ring abort. fhé direct call to signal
after the ring abort causes problems, For certain conditions the pgl signal
statement generates a call to a procedure which takes special action before
calling signal . The signalling mechanism has no knowledge of this proce-
dure and thus will not invoke it after a ring abort. This is a-special
case of a general problem; we do not plan to solve it at this time, Note
that the problem already exists in the current crawlout mechanism, It

is not currently a proﬁlem since thevrings in use (1 and 0) do not use

the conditions which cause this problem to occur,

OQutward Ring Transfers

The current Multics é&stem supports a simplg outward ring transfer mechanism
which allows a procedure to invoke another procedure in a higher ring
provided no arguments are passed. The target procedure is not permitted

to return and all active rings lower than the target ring are aborted.

This form of ring abort is not a normal ring abort in that no cleanup



LIRS

-7-

procedures are invoked, This limited form of ring abort is only a temporary

solution and should be expanded to perform a full ring abort for all

e —

currently active rings, However, the means of doing this are not obvious
at this time, but should be explored at a later time, The Multics
follow-on system will support only the limited form of ring abort for

outward ring transfers initially,

On the follow-on machine, an attempted outward call will result in a

fault that will be handled by the gatekeeper. The gatekeeper determines
the target ring by looking at the ring brackets of the target procedure,
It then sets the stack end pointer of each existing stack associated with
a ring between the faulting ring and the target ring inclusive to be equal
to the stack begin pointer in cases where that is not alreadyvthe case,
This logically truncates the stacks inzzﬂgéévfiﬁgéji The gatekeeper then
zeroes the registers and nulls the poiﬁfééhgééiété;s in the machiﬁe condi-
tions associﬁted with the outward call fault, since they contain privi~
leged information., The gatekeeper then sets pointer registers 6 and 7

to point to the base of the target ring stack, (the format of the stack
header is such that this will cause the target procedure to establish

its frame at the beginning of the stack), It sets pointeg register O

to point fo a zero length argument list, It then sets the procedure

ring register of the machine conditions to the target ring and returns

to the fault interceptor which restores the altered machine conditions

and completes the out:wérd call,



