March 21, 1972

To: F. J. Corbato
R. J. Feiertag
R. A. Roach
H. Saltzer
V. L. Voydock
S. H. Webber

From: B. Greenberg

Subject: Proposal for a command metering facility.

The problem of command usage metering in Multics is analyzed, and

alternate approaches to its solution considered. A general scheme to meter
command use effectively is proposed.

To: Distribution
From: B. Greenberg
Date: March 20, 1972

Subject: Command Usage Metering Proposals

For several months I have investigated command metering in Multics,
and have reaced some conclusions and developed some software to this end. In this
memo, I will try to expound on what the problem is, what I have done to deal with it,
and what I feel should be done further.

I propose to measure how many of the various Multics standard commands
pass through the system each hour. I propose to measure the comparative popularity
of these commands, by metering the usage of commands by command name. I propose
the measurement of the average cpu time and generated page faults resulting from
the use of each of these commands, and thus, the average number of page faults
per average cpu second spent in these commands. As 3 longer range goal, I intend
to measure the effectiveness of shared procedure by obtaining figures on the
average number of users in a given command at a given time, and the resulting
reduction in page faults thus created. These objectives should give us a better
idea of where Multics is spending its time, and thus help us optimize its
performance. Also, to help us validate our improvements, I propose to measure
the total fraction of system up-time spent in these commands. This will help us
judge the effectiveness of any optimizations resulting from figures derived from
the meters described above.

Let us first define a 'command. Ostensibly, a command should be any
procedure described as such in the MPM or SPS. Considerations of implementability
motivate us to limit our definition to those invocations of these procedures
from the normal Multics command processor. As all the procedures described in
the MPM or SPS reside in the system libraries, we can use this fact to differentiate
between commands and user-written procedures. Hence, we define a command as
"any procedure residing in the Multics system libraries called by explicit
request from the normal mechanism in the Multics standard command processor. This
definition allows us a starting point for the construction of metering tool,
and gives us a clearer definition of what we are trying to meter. Note that this
definition does not cover the calling 6f procedures classified as 'commands' in
the MPM form within programs (not a recommended technique), but fully covers the
use of exec_com, quit, active functions, and other similar recursive command use.

Secondly, we wish to défine exactly what we wish to measure. We define

the cpu time extent of a given command to be all the cpu time spent from the time

Page 2

the Multics command processor calls the command procedure to the time the latter
returns, minus the cpu time extent of any recursively invoked command. Note
that this recursive definition always includes the system overhead of the actual
recursion mechanism in the cpu time extent of the outer command in the case of
recursive command use. This inaccuracy may be reduced by having . the metering
tools be knowledgeable about this overhead, and having them compensate for it

in their meters.

Hence, we wish to measure, for each command as defined above, the total
number of invocations and the sum of the cpu time extents spent therein, and thus
the average time in each command by the division of these two numbers. We wish
to count the number of page faults generated by a process during the extent of the
concerned command, and add this to a system-wide total for this command. This
should give us an idea of which commands have the smallest working sets, or make
inefficient use of the working sets they have, e.g., the hypothesized problem
involving the search of a list structure in the 'archive' command. With regard to
the shared-procedure question raised above, we would like to know what percent
of the cpu time and the page faults taken in a given command are accumulated
while n invocations of that command are active, nbeing 1,2,3,4, 'large number’'.
Although rather difficult to implement, the ring mechanism of the follow-on
processor should facilitate the complex interprocess communication required to
realize this aspect of the scheme. This last set of statistics appears to be
a potentially powerful index for the measuring of procedure and core sharing.

We can measure the total fraction of system up-time spent in these commands by
accumulating all system time determined by the metering system not to be in the
cpu time extent of any command, and using existant meters of cpu idle time.

There are several implications of these proposals which I feel need to
be discussed.

The first problem is security. The entire command system operates in
the user ring. Any temporary data which it accumulates is subject to willful
destruction by a malicious user. Any special gates provided to attempt to provide
some degree of security are user~-callable by definition. Although intermediate
measures can be taken to provide security against accidental destruction, it appears
likely that there is Do secure method of protection against a knowledgeable
malicious user, in the current or proposed hardware. Among the measures which can
be taken to insure against accidental or casual destruction of the master data base
(to be discussed later) on a large scale is the rendering of responsibility for
the maintenance of this data base to an administrative ring procedure, which will

perform perfunctory gullibility tests on its arguments. However, when one realizes

Page 3

that there can be no absolute security, and that the item whose security is at
stake is metering data, not system integrity, a completely unprotected system
in the user ring can well serve to provide us with the data we seek.

An implication of this security problem is where to put the master data
base, containing sytem-wide accumulted command statistics. Since this data is
capable of being destroyed, it should be freshly initialized regularly. Since
anything which is initialized every time Multics is brought up, however, must
be inspected regularly, if it contains metering data, it would seem that a
permanent place in the heirarchy, say system_control dir, would be an appropriate
place for the globally-written data base. A copy accessible only to the priveleged
should also be maintained, and used to compare to the master data base for
report producing programs, as is standard with Multics wmetering programs . The
resetting of the master data base should be done if and when the produced report
indicates tampered data.

A second problem is the use of non-standard command processors. Since
there is no way to tell how these 'command processors' interpret lines read in by
the listener, and map them into Multics or other "commands', there can be only
two ways of metering command use generated by these alternate processors. On one
hand, we may force commands to meter themselves by placing appropriate code in
each command. Although this may be a valuable approach for special metering of a
few specific commands (note that even this is subject to deliberate falsification),
it is not at all general, gives us no handle on the total situation, and would
require an inordinate amount of work to install in the existing command library.

On the other hand, we could ask users who use their own processors to modify them
to perform this metering. It is possible to modify the command utility segment cu_
to give us some idea of how many processes per day wuse their own command processors.

A third problem, related to the above, is the use of calls to commands
by explicit call statements. Obviously, the non-general solution of putting
metering in every command will handle this correctly. Other than this, it secems
that no solution short of drastic would be adequate to obtain time and page fault

data from such command use. Such a 'drastic' solution might involve reformatting

linkages to procedures deemed to be 'commands' to force calls to metering procedures,

this code being inserted by the linker when a link was snapped to such a procedure.
However, since this technique is not widely used, and should not be, such a measure
Seems unnecessary. If there is concern over the use of this technique, a meter may
be put in the linker to count calls (via the "link fault" entry only) to procedures
residing in the 'sss'' library. v

A fourth problem is ta distinguish between Multics ~commands and other

procedures called from command level. The only sure-fire way of accomplishing

Page 4
this 1is to ascertain whether or not an invoked procedure resides in the system
libraries. In the current implementation of Multics, this requires a call into
the hardcore ring. If this complete certainty is required, a new call entry
point into hardcore should be defined, to return superior directory pathname
along with the entry point pointer, when the command processor first searches
for the desired procedure. Alternatively, I propose to assume that the incidence
of user procedures (other than developmental stages of system commands) with the
same names as library procedures (specifically 'commands') is sufficiently small as
not to distort the resulting data. Thus, the name of a command can be taken as
an indication as to whether or not it is a library procedure, simply by hashing it
against a sufficiently large table of command names.

A fifth problem is the lack of efficient tools in the current implementation
for the implementation of the sharing metering discussed above. For these statistics
to be meaningful at all, we must count cpu time and page faults for every
process using a command, and subdivide these figures as per how many invocations
of that command were running for each second therein. Since the whole assumption
of the value of these meters implies that the statistics are substantially affected
by the number of invocations active, we must clearly peek into all processes running
@ given command at any time the number of invocations running changes. These inter-
process data retrievals imply that the hardcore traffic controller data base either
be read-accessible from the user ring, which seems unnacceptable to me, or from
@ gate which will extract the desired information. However, this gate would seem
to have a potential for fairly heavy use, and it seems that the gate mechanism of
the follow-on seems a first prerequisite for this scheme to be feasible in any way.

I have developed some software to create and maintain the data bases for
a prototype system operating in the administrative and user rings. I have developed

a prototype system, which runs in the user ring, and coynts Anvocations of
an arbitrary subset of Multics commands, and prints a regpkg

In light of all the preceding, I propose the following scheme: Provide
a completely unprotected system-wide data base in the user ring, as described above.
Provide, also in system control dir, a hash table, readable by all, writable by the

priveleged, of all known command names and synonyms, regardless of whether it is desire

to meter them or not. This allows more accurate determination of 'command' versus
'user procedure'. This hash table will map command names into '"command indices", or
into a reserved index if the name is not found. For each defined command index,

have a three cell bucket counting invocations, totalled cpu time extents, and totalled
page faults duriﬁg those extents, all for the command concerned. Also provide a bucket
for tlme and faults during time deemed not attributable to any command. This data

base will be updated by things compiling to "asa' and "aos" instructions, and thus

Page 5
need not be locked. The standard command processor will have two calls to a metering
program inserted around its existing call to the sought command (currently
implemented as a call to the command utility module cu_, entry cu_$gen_call). The
first entry of the metering program, or "start", will serve to chain recursive
invocations of the command processor, so that data for commands in progress may
be updated. Tt will also record .the process time (52-bit number returned by
'hcs_Susagq_values) it is called, hash the invoked command name to get the command
index, and obtain the process page-fault count up to this point. It will also
clear out a counter for "cpu time extent accumulated, this command". All these
quantities will reside in a storage structure in the current frame of the command
processor. Furthermore, the "start" entry will increment the count of invocations
of this command across the system by updating the master data base invocation count.
Also, the "start" entry must check for previous invocations of the command processor,
and compute cpu time extent and page fault figures for the previous command active,
and add them to the master data.base. The "stop'" entry point (the one after the
call to cu_$gen_call) will cause the final cpu time extent and page-fault figures
for the command just terminated to be computed, and added to the master data base,
Also, frames of previous invocations of the command processor are updated to
indicate a new tentative starting time for cpu extent calculations, and similarly
for page faults. In order to reduce the numberof hardcore calls (this scheme implia
at least two per command), the standard ready message printer could be rewritten to
take advantage of the calls that were already made to compute these time extents.

All time between 'stop'" calls and "start" calls on the same level have their
data attributed to "no command", as described above: Suffice it to say that the
proposed placement of process clocks in the user ring (and preferably, page-fault
count accesibility as well) will help this scheme considerably.

A copy of the global data base will be kept, updated periodically, and
reports produced from the difference between the two copies.

In summary, the scheme I have presented represents an effective compromise
between security, system overhead, and the desire to obtain the desired data. It
relies on the small incidence of malicious users, and system integrity is in no
way compromised. Further compromises torward security (still compromises, not
absolute security) may be made, but become efficient only on the follow-on.

The scheme presented is simple, general, easy to implement, and extensible. 1In

the current hardware, I believe it presents an effective menas of obtaining data

on standard command use in Multics.

