A PROPOSAL FOR IMPLEMENTING SNOBOLY¥ ON MULTICS fpﬁwhl“

by Richard H. Gumpertz

Messrs. Griswold, Pomge, and Polonsky at BTL have developed a macro implemen=~
tation of SNOBOL@’,V which is fairly machine independent. I have contacted Mr. Gris-
wold and discussed the possibility of using this program to implement SNOBOL?’on
the Multics system. He was quite helpful and has sent me listings and documenta-
ticn of the program. I have reviewed this carefully and believe that the program
would fit nicely intolthe Multics environment.

The program is formed from 131 macros and is written in a format acceptable
to most macro-assemblers. The definition of these macros is left to the implementer
for a particular machine. 1In addition, a few assembly parameters and tables are |
left for definition. Most of these macros can expand into a few lines of GE-645
machine code. The others can expand into calls to subroutines.

There are several avenues open for compiling/assembling the program on Mul-
tics: '

1) Define the macros in G§:635 GMA® (this has actually been done already).

Assemble under GMAJ and load as a GECOS-SE§ activity.

2) Extend the Multics assembler (mass, mal, ma_645, ma, alm, or whatever
it ends up being called) to handle macros in a pass 0. Define the macros
to run under this assembler,

3) Write a prepocessor for PL/I which could implement the compile time
facilities defined for the language.

;#:h~“,4) Write a specialized program to read the macro. deck and produce assembly
language source. It would implement only the 131 macros being used.

5) Same as 4 except produce PL/I source code. v

Each method has its own distinct advantages and disadvantages. Some arguments
are listed below.

1) Use of GMAQ, as witnessed for eplbsai, is a pain in the neck to maintain.

Also it is very difficult to produce pure code using GMAP.

2) This has the advantage that we would obtain a useful by=-product from the
project - a macro assembler. There is some debate, however, whether a
macro assembler would be worthwhile.

3) This would probably be the most difficult route but might have the highest
overall value in that we would have greatly extended the capabilities of
PL/I.

4) This implementation would probably be the fastest to reallze (other then
number 1),

5) This would also be fairly good,to implement, but would have the distinct
disadvantage of inefficiency. The SNOBOUV program is semi-~interpretative.
Statements are translated into tre%structures but are executed interpretive-
ly. After much consideration, I think that the overhead involved in main~-
taining the lists and accessory data would greatly slow down execution. I
would estimate a possible order of magnitude decrease in speed between
éssembly language and PL/I. 50

I feel that method 4 is probably the best one to choos%,//;t would allow good

execution speed, easy maintenance (at the macro level) and would not be too hard to
implement, '

The method I propose for implementing the system is as follows:

1) All data will be kept in a data segment, pointed to by the ap base register
ﬁzizs. This would be initiated by calling hes_$initiate on the segment
with the copy switch on. This data would use up to 64K words.

2) The tables which are used for syntax analysis would be assembégg into the
linkage section of the paxsing ro%.tlne (pointed to by Hb@table) These
syntax tables would take up about 3K. The reason for putting the tables in
the linkage section is that one of them is writable., It would conceivably
be possible to special-case this table and put the rest in the text por-

tion of the program. X,/ ?’ AVJQ ”“’4LP
T

3) The program would run only as a bound segment his would mean that tsxo 'ﬁﬁlf
/

can be used for subroutlne calls and no entry sequence would be needed

at internal entry peﬁbe (the linkage pe;zben would not need resetting). Z 4Zi{/
4) 1Index register 7 would be reserved for use as an internal /étack pointer.
5) Most data would be manipulated as double word entries kngé;:;;jZescrlptors. ?D

6) Standard MulFics ASCII will be used internally.

7) 1Initial implementation would simulate the batch system which the program
originally handled. That is 3 files would be used to simulate the card
reading, card punch, and line printer. As soon as the system runsand is
debugged, the I/0 structure will be modified to allow use from an interm

active console. Jéiﬂmf Azéé;ﬁ;7L_

In conclusion, I believe that it would be possible to install SNOBOLY on Mul-

tics in a reasonably short periogd. am tempted to make a time estimate of one man-
month but I know that Murphy's law would invalidate it. I would be very much in-

terested in working on this project, and would be willing to continue into the school

year if it cannot be completed.before the fall. /;jkfz§7:;li

-2a

