TO: C. T. Clingen
F. J. Corbatd
R. J. Feiertag
J. W. Gintell
N, I, Morris
M, D, Schroeder
J. H, Saltzer
S, H, Webber
B, L., Wolman
V. L. Voydock
FROM: Richard Gumpertz
DATE : June 14, 1971

SUBJECT : Use of itb pointers in argument lists

One of the inefficiencies in the current Multics PL/I Compiler is that
it must build argument lists at run-time. This is, in many modular pro-
grams, an extreme drawback because it makes the '"call" statement an

expensive statement to use,

It would be nice if the argument list could be created at compile time
rather than at run-time., Unfortunately, the location of most arguments
is not known of compile time for two reasons. The first, which is the
most obvious, is that the segment number of the segment containing the
argument is not known at compile time. Another problem, however, is that
the offset within the segment is not always known, as in the case of items

in a program's stack frame,

Arguments to procedures may be classified into 6 general classes:

1) automatic in the caller's stack frame at a known offset
from the beginning of the frame.

2) internal static in the caller's linkage section at a known off-

set from the beginning of the linkage section,



-3-

How can we translate this information into argument lists of pointers to
be set up in an argument list? The current compiler does an "eapbp"

for each of its arguments and then an 'stpbp'' into the stack to set up

the argument list, I would like to propose that this method be used

only if many arguments of type 6 are used in a calling sequence, In all
other cases an argument list may be constructed in the text section of

the procedure at compile time, (Actually it might have to be moved for
execute only procedures.,) Arguments of type 6 could be converted to

type 5 at run-time by an "eapbp; stpbp sp|temp_ptr" sequence. The argument
addressing by the callee would be very similar to that used above, with one

exception; the ''sp'

and "lp" are changed while running the callee, There-
fore, two new base registers must be reserved, called 'old sp” and 'old 1p"
respectively, These would be reserved to point wherever "85" and "Ip",
respectively, pointed to just before the call statement, That is, 'old sp"

1"

points to the previous stack frame and 'old 1p' points to the previous
linkage frame, The argument list double word pointers used in each of the

5 classes would then be:

1) automatic itb old_sp, offset

2) internal static itb old_lp, offset

3) constants arg offset; arg O

4) external static itb old lp, offset, *

5) based (internal pointer) itb old sp, offset, * or

(with O offset) itb old_lp, offset, *



-5-

eapbp 'desc;_fop_d-*, ic
stpbp splarglist+18
eapap 8p [arglist

"rest of call operator
Under the proposed system the code would be:
eapap arglist_*, ic

"rest of call operator

arglist: zero ’ 2%4, 4
zero 2%4, 0
itb old sp, a
itb ‘ old 1p, b
itb old lp, c ptr, *
itb old sp, p, *
arg descq_foq_éﬁ zero
arg deéc;_for_b; zero
arg desc€;f§p;c; gé;;
arg des;€;f0¥;d; zefo

The PL/I call (or entry) operator would have to be expended by two
instructions:
eapold sp sp|0

eapold 1p 1p |0



The extra indirection is clearly cheaper than the two instruction sequence
"eapbp; stpbp' now performed by the caller., If the arguments are referenced
frequently the indirection can be saved by copying this argument pointer

once at entry to the callee,

The location of a procedure's linkage and stack frames are well-defined

and can be found in the dump, These pointers can be added easily to

the offset specified in the "itb" pair.

5) This is clearly just a matter of changing the specifications., It

must be done soon, however,

I would appreciate any comments you have on the above proposal, and any

suggested improvements will be welcomed,



