TO:

FROM:

DATE:

SUBJECT:

Clingen
Corbatd
Fenichel
Freiburghouse
Gintell
Meer
Morris
Saltzery
Voydock
Webber
Wolman

COTTO

e o e e e » . e e

mn<eLZ

Mike Spier

L/727/71

The Multics Standard Object Segment

Multics Standard Object Segment =~ Draft #2 4/27/71 Page 1

This document presents a standard format for the Multics
object program to assure its compatibility with the 'Multics
machine', the implication being that a piece of code which
successfully executes on the 645 processor is not necessarily a
standard Multics object program, and that the concept of
execution on the 'Multics machine' 1includes notions of pure
recursive re-entrant procedure, access control, and such
functions as dynamic linking, machine independent diagnostics and
debugging, binding etc. This standard relates primarily to the
external interfaces of an object program, the objective being to
leave as much freedom of code generation as possible to the
language processors, and to impose a certain discipline only in
regards to code which interfaces with the external world.

The Multics standard object program is the only type of
object program guaranteed to be supported by the Multics standard
service system tools.

Iable of Contents

1. OVERVIEW

2. DATA STRUCTURES

2.1. The Text Section (TO BE SUPPLIED)
2.2. The Definition Section

2.2.1. The Definition

2.2.2. The Expression Word

2:2+3., The Type Pair

2.2,4. The Trap Pair

2.3. The Linkage Section
2:.3.1. The Linkage Section Header
2.3,2. The Internal Storage Area (TO BE SUPPLIJED)

2,3,.3, The Links

2.4, The Symbol Section

2,4,1. The Symbol Section Header

2.4,2. The Symbol Block Header

2,4,3. The Relocation Blocks

2. 4,4, The PL/1 Symbol Block (TO BE SUPPLIED)
2,4,5, The ALM Symbol Block (TO BE SUPPLIED)
2,4,6, The Binder's Symbol Block

2,4,7. Debug's Symbol Block (TO BE SUPPLIED)

3. GENERATED CODE

3.1, The Text Section
L, 1. The Entry Sequence (TO BE SUPPLIED)
L,2. The Relocation Codes (TO BE SUPPLIED)

3

3,2. The Definition Section
3,2,1. Implicit Definitions (TO BE SUPPLIED)

Multics Standard Object Segment - Draft #2 4/27/71 Page 2

3.3. The Linkage Section
3,5.1. The Internal Storage (TO BE SUPPLIED)
3.3.2. The Links (TO BE SUPPLIED)
3,3.,3. The Relocation Codes (TO BE SUPPLIED)

3,4, The Symbol Section
3.,4,1. The Relocation Codes (TO BE SUPPLIED)

4. FUNCTIONAL INTERFACES
L,1. Loading (TO BE SUPPLIED)
L,2. Dynamic Linking (TO BE SUPPLIED)

)3 Nowing Comvechions

Multics Standard Object Segment - Draft #2 4/27/71 Page 3

l. OVERVIEW

The Multics standard
hardware-level (i.e., machi

object program is the executable
e code) representation of some higher
language algorithm, duced by the appropriate language
processor. Physically, is a single fixed-length array of
words, which always résides at the base of a distinct segment,

and is commonly known as[ggiggg segment.

o~

The generated object code falls into several categories, the
most important of which are,

Text - the executable machine code representation of the desired
algorithm.,

Definitions - symbolic information with the aid of which certain
variables which are internal to the object program are made
known to the external world and accessible to the dynamic
linking mechanism (The Multics @&nker).

Links - symbolic representation of variables whose address is
unknown at compile time, and can only be evaluated (i.e.,
resolved into a machine address by the dynamic linking
mechanism) at execution time.

2ymbol Tree - Internal definition of symbolic source language
variables, their attributes and relative address within the

object segment; needed for the execution of Iinterpretative code
such as PL/1 Input/output as well as for debugging purposes.

Historical Information - information describing the circumstances

under which the object segment was created, such as name and
version of language processor, creation time, identification of
input source, identification of user who initiated the object

segment creation, etc.

Relocation Information - which identifies all instances of
Iinternal relative address references.

i ti Alds - information which allows standard system tools
to extract useful information out of an object segment.

control Information - to allow the "Multics machine' (e.g., the

Linker) and the Multics standard service system tools to
recognize the structure of the object segment,

The generated information items listed above are not stored,
intermixed, within a monolithic object segment. Rather, the
object segment is structured into four sections, named text,

definition, linkage and symbol. A section is a fixed length

array of words, The object segment is a concatenation of these
four section, in the following sequence,

1

Multics Standard Object Segment - Draft #2 4/27/71 Page 4

text || definition || linkage |] symbol

the length of all but the last (i.e., symbol) section must be an
even number of words.

The affectation of any item of generated code to one of the
four sections s decided on the basis of such considerations as
access attributes and efficient resource management. The rules
of affectation are as follows,

Text Section - contains only the pure (non selfmodifying)
executable part of the object program, that is instructions and
read-only constants. It may also contain relative pointers into
the definition, linkage and symbol sections as described below.

Definition Section - contains only non-executable read-only
symbolic information which 1is intented for the purpose of
dynamic linking and symbolic debugging. It is assumed that the
definition section will be infrequently referenced (as opposed
to the constantly referenced text section); this section |Is
therefore not recommended as a repository for read-only
constants which are referenced during the execution of the text
section. The definition section may sometimes (as In the case
of an object segment generated by the Multics Binder) be

structured into definition blocks, which are threaded together.
~ o fotebyge o)
Linkage Section - contains, the impure (i.e., modified during the

types of data @)/ linkpairs (described further on) which are
modified .at un time by the Multics Gﬁnker to contain the
machine address of external variables, and b) internal storage

program's exeiifjon) parts of the program, which consist of two

of the type called "own" in ALGOL and "internal static" in
PL/1.
Symbol Section - named so because it was initially designed to

store the language processor's symbol tree, is the repository
of all generated items of information which do not belong in
the first three sections. The symbol section may typically be
further structured into variable length symbol blocks, stored
contiguously and threaded to form a list.

Multics Standard Object Segment - Draft #2 L/27/71 Page 5

2. DATA STRUCTURES

This section describes the main data formats and structures
which may be encountered within the four sections of an object
segment., Definitions are given in PL/1.

2.1. The Text Section

TO BE SUPPLIED

Multics Standard Object Segment - Draft #2 4/27/71 Page ©

2.2. The Definition Section

For historical reasons, character strings are represented

within the Definition Section in ALM 'acc' format which may be
defined by the following (free style) PL/1 declaration,

declare 1 acec,
2 char_count bit(9) unaligned,
2 string char(char_count) unaligned;

For the purpose of this document, we shall use the notation 'char
acc' to represent an ‘acc' string. Note that a) the length of
such a varying string is incorporated within the string, and b)
'acc' strings are padded to the right (when necessary) with —naul}

7 ernes.

The definition section contains a number of data structures
which are,

2.2.1. The Definition
The format of a definition is as follows,

declare 1 definition based(p) aligned,
forward_thread bit(18) unaligned,
backward_thread bit(18) unaligned,
value bit(18) unaligned,

flags,

3 new_format bit(l) unaligned,

3 entrypoint bit(1l) unaligned,

3> retaln bit(1l) unaligned,

3 ignore bit(1l) unaligned,

3 unused bit(5) unaligned,

class bit(9) unaligned,

symbol_ptr bit(18) unaligned,
segname_ptr bit(18) unaligned,
n_args bit(18) unaligned,
descriptor(n_args) bit{(18) unaligned;

NN NN

NN NN

forward_thread - thread (relative to the base of the definition
section) to the next definition. The thread terminates when it
points to a 645 word which is all zero. This thread provides a
single sequential 1list of all the definitions within the
definition section.

backward_thread - thread (relative to the base of the definition
section) to the preceding definition. The thread terminates
when it points to a 645 word which is all zero. This thread
provides a single sequemtial list of all the definitions within
the definition section.

value - this is the offset, within the section designated by the
class variable, of this symbolic definition.

flags - 9 binary indicators to provide additional information
about this definition,

Multics Standard Object Segment - Draft #2 4/27/71 Page 7

new_format -> "1"b definition has the format described in
this document, as distinct from the older definition
format.

entrypoint => "1"b this is the definition of an entrypoint
(i.e., a variable referenced through a transfer of control
instruction),

retain -> "1"b this definition must not be deleted from the
object segment.

ignore -> "1"b this definition does not represent an
external symbol and must therefore be ignored by the
Multics linker.

class - this field contains a code which indicates relative to
which section of the object segment the value is, as follows,
0 -> text section
1 -> linkage section
2 -> symbol section
3 => this symbol is a segment name

symbol_ptr - pointer (relative to the base of the definition
section) to an aligned acc string representing the
definition's symbolic name.

segname_ptr - pointer (relative to the base of the definition
section) to the first class-3 (see below) segname definition
of this definition block.

n_args - a positive fixed bin(17) integer whose value
corresponds to the number of arguments expected by this
external entrypoint.

descriptor - an array of pointers, relative to the base of the
Text section, which point to the descriptors of the
corresponding entrypoint arguments.

In the casé/of a class=3 definition, which is the segname
header of a definition block, the above structure is interpreted
as follows,

declare 1 segname based(p) aligned,

2 forward_thread bit(18) unaligned,
2 backward_thread bit(18) unaligned,
2 segname_thread bit(18) unaligned,
2 flags bit(9) unaligned,
2 class bit(9) unaligned,
2 symbol_ptr bit(18) unaligned,

defblock_ptr bit(18) unaligned;

o

segname_thread - thread (relative to the base of the definition
section) to the next class=-3 definition. The thread terminates
when it points to a 645 word which is all zero. This thread
provides a single sequential list of all class-3 definitions.

defblock_ptr - this thread (relative to the base of the
definition section) points to the head of the definition block
associated with this segname. Definition blocks (which are

each a list of non class-3 definitions threaded together by the

Multics Standard Object Segment - Draft #2 by27/71 Page 8

forward_threa@ fﬁrea are preceded sequentially (within that ¥

thread) by zero or more class-3 definitions each of which has
its defblock_ptr pointing to the block's first non class~3
definition,

The end of a definition block is determined by one of the
following conditions (whichever comes first),

a) forward_thread points to an all zero word.

b) the current entry's class is not 3, and forward_thread
points to a class-3 deflinition.

c) the current definition is class-3, and both forward_thread
and defblock_ptr point to the same definition.

Figure-1l illustrates the threading of definition entries.
2.2,2. The Expression Word
The expression word is the item pointed to by the expression

pointer of an unsnapped link (see below), and has the following
structure,

2 declare 1 exp_word based(p) aligned,
—_ 2 type_pair_ptr bit(18) unaligned,
2 expression bit(18) unaligned;

type_pair_ptr - pointer (relative to the base of the definition
section) to the link's type-pair.

expression - a signed fixed binary(17) value to be added to the
value (i.e., offset within a segment) of the resolved 1ink.

2:,2.3. The Type Pair

The type pair 1|is a structure which defines the external
symbol pointed to by a 1link.

declare 1 type_pair based(p) aligned,
2 type bit(18) unaligned,
2 trap_ptr bit(18) unaligned,
2 segname_ptr bit(18) unaligned,
2 entryname_ptr bit(1l8) unaligned;

type - this is a fixed binary(l7) positive integer which may
assume one of the following values,

1 -> this is a selfreferencing link (i.e., the segment in which
the external symbol Is located is the very object segment
containing this definition) of the form
mysel f|0+expression,modifier

2 -> unused

3 ~> this is a link referencing a specified segment, but no
symbolic entryname of the form

&

Multics Standard Object Segment - Draft #2 L/27/71 Page 9

segname| O+expression,modifier

L -> this is a 1ink referencing both a symbolic segmentname and
a symbolic entryname, of the form

segname$entryname+expression,modifier

5 => this 1is a selfreferencing 1link having a symbolic
entryname, of the form

myself$entryname+expression,modifier

trap_ptr - if non-zero then this is a pointer (relative to the
base of the definition section) to a trap-pair.

segname_ptr - is a pointer to the referenced segment; its value
may be interpreted in one of two ways, depending on the value
of the type Item,

a) for types 1 and 5, this item is a fixed binary(l7) positive
integer code which may assume one of the following values,
designating the sections of the selfreferencing object segment,

0 -> selfreference to the object's text section; such a
reference Is represented symbolically as '#*text' ,

1l -> selfreference to the object's linkage section; such
reference is represented symbolically as "*link'

2 => selfreference to the object's symbol section; such
reference is represented symbolically as '#*symbol"

b) for types 3 and 4, this item is a pointer (relative to the
base of the definition section) to an aligned ‘acc' string
representation of the referenced segment's symbolic name.

entryname_ptr - is a pointer to the referenced item (i.e., offset
within the referenced segment); its value may be interpreted in
one of two ways, depending on the value of the type item,

a) for types 1 and ngthis value is ignored and an offset of 0
(zero) is assumed. .

4 -
b) for types#}'and,){/this item is a pointer (relative to the
base of the definition section) to an aligned 'acc' string
representation of an external symbol,

2,2,4, The Trap Pair

The trap pair is a structure specifying two external symbols
(i.e., pointing to two links), the first of which 1is the call
pointer and the second being the argument pointer. During the
process of dynamic linking, the Linker -while processing a type
pair- may encounter a non-zero trap_ptr; in that case, prior to
the snapping of the actual 1link, the 1linker first invokes the
trap procedure wusing the specified call and argument pointers.
The trap pair is structured as follows,

Multics Standard Object Segment - Draft #2 L727/71

declare 1 trap_pair based(p) aligned,
2 call_ptr bit(18) unaligned,
2 argument_ptr bit(18) unaligned;

call_ptr - a pointer (relative to the base of the
section) to a 1link specifying the entrypoint of
procedure,

argument_ptr - a pointer (relative to the base of the

Page 10

linkage
a trap

linkage

section) to a link specifying the base of an argument 1list to

be passed to the trap procedure.

Multics Standard Object Segment - Draft #2 L/27/71 Page 11
2.3 The Linkage Section

The Linkage section is substructured into three distinct
components, which are a) a fixed-length header which always
resides at the base of the linkage section, b) a variable length
area used for internal storage and ¢c) a variable length structure
of links, These three components are allocated within the
linkage section in the following sequence,

linkage header || internal storage || 1inks

with the further restriction that the link structure must begin
at an even location (offset) within the linkage section.

2.5.1. The Linkage Section Header
The header of the linkage section has the following format,

declare 1 linkage_header based(p) aligned,

2 object_seg fixed binary,

2 def_section bit(18) unaligned,

2 ignorel bit(18) unaligned,

2 forward_thread pointer,

2 backward_thread pointer,

2 begin_links bit(18) unaligned,

2 section_length bit(18) unaligned,
2 object_seg bit(18) unaligned,

2 combined_length bit(18) unaligned;

object_seg - reset to zero.

def_section - a pointer (relative to the base of the object
segment) to the base of the definition section.

ighorel - unused

Note: when the object segment is 1loaded into memory for the
purpose of execution, the impure linkage section is copied into a
per-process writable data base (known as the combined linkage
section) and the preceding items (which are intentionally
allocated to occupy a contiguous pair of words) are overwritten
with a pointer variable (G645 ITS pair) pointing to the base of
the definition section).

forward_thread - under certain applications, linkage sections may
be threaded together, to form a linkage list; such applications
are not discussed within this document. The forward_thread 1is
an absolute pointer to the next linkage section in the list,
allowing a list to spread over more than a single segment,

backward_thread - is an absolute pointer to the preceding linkage
section in the 1list,

begin_links - this is a pointer (relative to the base of the
linkage section) to the first 1link (the base of the 1ink
structure). The length of the linkage header is known to be set

o,

Multics Standard Object Segment - Draft #2 4/27/71 Page 12

to the fixed value 8, providing an implicit relative pointer to
the base of the Internal storage area.

section_length - this Is a fixed binary(18) positive integer
value representing the length, in words, of the 1linkage
section,

1S
object_seg - when the 1linkage section Qg§7 copied into the
combined 1linkage section, the segment number of the object
segment is put into this item.

combined length - when several linkage sections are combined into
a list, this item (of the first linkage section in the 1list)
contains the length of the entire list.

2.3,2 The Internal Storage Area
TO BE SUPPLIED

2.3,.3 The Links

This is an array of links, each defining an external symbol
referenced by this object segment whose effective address is
unknown at compile time and can be resolved only at the moment of
execution,

A link must reside on an even address location in memory, and
must therefore be located at an even offset from the base of the
linkage section. The format of a link is,

declare 1 link based(p) aligned,
header_pointer bit(18) unaligned,
ignorel bit(12) unaligned,

tag bit(6) unaligned,
expression_ptr bit(18) unaligned,
ignore2 bit(1l2) unaligned,
modifier bit(6) unaligned;

NN

header_pointer - is a backpointer (relative to the head of the
linkage section) to the head of the 1linkage section. It is, in
other words, the negative value of the 1link pair's offset
within the linkage section.

ignorel - unused. Reset to zero.

tag - a constant (46)8 which represents a 645 fault tag 2 and
distinctly identifies an unsnapped link. The snapped link (ITS
pair) has a distinct (43)8 tag.

expression_ptr - pointer (relative to the base of the definition
section) to the expression structure defining this link.

ighore2 - unused. Reset to zero.

modifier - a 645 address modifier.

Multics Standard Object Segment - Draft #2 b/27/71 Page 13

2.4. The Symbol Section

The symbol section consists of a section header, followed by
one or more symbol blocks, allocated contiguously and threaded to
form a single 1list, and terminated with a single 645 word
containing an 18-bit pointer (relative to the base of the object
segment) to the base of the symbol section. This pointer must
always constitute the last word of an object segment. The size
(in words) of the object segment is a quantity which may be
obtained from the Multics file system. Using this value, it is
possible to locate the object segment's symbol section which in
its turn contains all the information necessary in order to
identify and access the divers components of the object segment.
Knowledge of the symbol table is the key to the decoding of an
object segment, and the convention by which the last word points
to the symbol section provides that key.

The symbol section contains a significant number of variable
length character strings which should preferably be directly
accessible, but which (for the sake of economy) should be stored
in packed format. In order to achieve such storage organization,
strings within the symbol section may be pointed to by a string
bointer, which contains both offset and length of the string in
packed form,

declare 1 string_pointer aligned,
2 offset bit(18) unaligned,
2 length bit(18) unaligned;

where offset is a pointer (relative to the base of the symbol
block) to the first character of the aligned string, and length
is a fixed binary(17) positive integer representing the length of
the string in characters. This representation allows easy access,
to the string by using the PL/1 built in functions addrel’,

and ‘substr? In. the following description, we shall use the
notation ‘stringpointer! to denote such a pointer; a
stringpointer is null if its value is all zero. :

2.4,1 The Symbol Section Header

The symbol section header is a fixed length structure
residing at the base of the symbol section. It contains all the

necessary structural information pertaining to the object
segment,
declare symbol_section_header based(p),

1
2 identifier char(8) aligned,

2 text_offset bit(18) unaligned,

2 text_length bit(18) unaligned,

2 definition_offset bit(18) unaligned,
2 definition_length bit(18) unaligned,
2 linkage_offset bit(18) unaligned,

2 linkage_length bit(18) unaligned,

2 symbol_offset bit(18) unaligned,

2 symbol__length bit(18) unaligned,

2 first_block bit(18) unaligned,

‘fixed X

Multics Standard Object Segment - Draft #2 4/27/71 Page 14

2 number_of_blocks bit(18) unaligned,
2 format aligned,
3 procedure bit(1l) unaligned,
gate bit(1l) unaligned,

execute_only bit(1l) unaligned,
mastermode bit(1l) unaligned,

3
3
3
3 relocatable bit(1l) unaligned,
3
3
o}

unused bit(13) unaligned,

call_delimitor bit(18) unaligned,
2 objectname char(32) aligned;
identifier - must be the constant "symbsect".

text_offset - offset (relative to the base of the object segment)
of the text section.

text_length - a fixed binarry(1l7) positive integer representing
the length In words of the text section.

definition_offset - analogous to text_offset

definition_length - analogous to text_length

linkage_offset - analogous to text_offset

linkage_length - analogous to text_length

symbol_offset - analogous to text_offset

symbol_length - analogous to text_length

first_block - pointer (relative to the base of the symbol
section) to the most recent symbol block. An object segment may
have one or more symbol blocks which are threaded on a list in
reverse historical order,

number_of_blocks - this is a fixed binary(17) positive Integer
displaying the number of symbol blocks within this symbol
section.

procedure = 0 -> this is a non-executable object segment (e.g.,
an ALM database).

31 -> this 1s an executable procedure.

gate = 1 =-> this object segment Is generated in gate format.

execute_only = 1 =-> this object segment is generated in execute
only format.

mastermode = 1 -> this object segment is generated in mastermode
format.

relocatable =1 -> this object segment has relocation information
in its single symbol block

call_delimftor = if the gate flag is "1"b then this item is a
fixed binary(17) value representing the gate's call delimitor.

Multics Standard Object Segment - Draft #2 /27771 Page 15
objectname - the segmentname of this object

2.4,2. The Symbol Block Header

The symbol block has two main functions, a) to document the
circumstances under which the object was created, and b) allow
for modular on-line expansion of the object segment (e.g., by
debug). The symbol section must contain at least one symbol
block, describing the creation circumstances of the object
segment, A symbol section may also contain more than one symbol
block, for example in the case of a bound object, where in
addition to the symbol block describing the object's creation by
the binder, there 1is also a symbol block for each of the
component objects. The size and structure of a symbol block are
variable, depending upon their purpose. All symbol blocks have a
standard fixed format header, as follows, éxf

declare 1 symbol_block_header based(p),
identifier char(8) aligned,
generator char(8) aligned,
object_creation_time fixed bin(71),
gen_creation_time fixed bin(71),
gen_version_number fixed bin,
gen_verslion_name stringpointer,
userid stringpointer,

source_map bit(18) unaligned,
n_source_files bit(18) unaligned,
block_pointer bit(18) unaligned,
sectionbase_backpointer bit(18) unaligned,
block_size bit(18) unaligned,
next_block_thread bit(18) unaligned,
rel_text bit(18) unaligned,

rel_1ink bit(18) unaligned,
rel_symbol bit(18) unaligned,
mini_truncate bit(18) unaligned,
maxi_truncate bit(18) unaligned;

NN NNNNRNDNRN NN

&

sdentifier - symbolic code to define the purpose of this symbol
block. It may assume one of the following values,

"symbtree" => compiler symbol tree
"bind-map" -> bind map
" reak" -> debug breakpoint information

generator - symbolic code defining the processor which generated
this symbol block. It may assume one of the following values
(which are subject to change or expansion),

| “"fortran'

t " "
llbcp'l'"
"binder"
"debug"

Multics Standard Object Segment - Draft #2 4727771 Page 16

object_creation_time - a clock reading specifying the date/time
at which this symbol block was created.

gen_creation_time - a clock reading specifying the date/time at
which this block's generator was created.

gen_version_number - a positive integer defining the generator's

version number. ;><<

gen_version_name - the generator's version in directly printable
character string form.

userid - the standard Multics @ identifier of the wuser in
behalf of whom this symbol block was created.

source_map - a pointer (relative to the base of the symbol
block) of an array of stringpointers defining the pathnames of
the source files.

n_source_files - size of the source_map array.

block_pointer - pointer (relative to the base of the symbol
block) to the actual symbol block information (e.g., symbol
tree, bind map etc.).

sectionbase_backpointer - pointer (relative to base of symbol
block) to base of symbol section. This is a negative quantity,

block_size - fixed binary(17) integer representing size of
symbol block in wordsg (iwd. si)c ,,& heodot),

next_block_thread - thread (relative to base of symbol section)
to next symbol .block.

rel_text - pointer (relative to base of symbol block) to text
section relocation information, as defined below.

rel_link - pointer (relative to base of symbol block) to linkage
section relocation information.

rel_symbol - pointer (relative to base of symbol block) to
symbol section relocation information.

mini_truncate - offset (relative to base of symbol block)
starting from which control information (such as relocation
bits) may be truncated from symbol section, while still
maintaining such information as the symbol tree.

maxi_truncate - offset (relative to base of symbol block)
starting from which the symbol block may be truncated to
achieve maximum reduction in size.

Multics Standard Object Segment - Draft #2 4/27/71 Page 17

2.4.,353. The Relocation Blocks

The relocation information describes relative addressing
within a given section of the object segment, so as to enable the
relocation of such a section (as in the case of binding). A
variable length prefix coding scheme is used, where there is a
logical relocation item for each halfword of a given section. If
the halfword is an absolute value (non relocatable) that item is
a single bit whose value is zero. Otherwise, the item is a
string of either 5 or 15 bits whose first bit is set to one. The
relocation information is concatenated to form a single string
which may only be accessed sequentially; if the next bit is a
zero, it is a single-bit absolute relocation item, otherwise it
is a 5 or 15 bit item.

There are three distinct blocks of relocation information,
one for each of the three object segment sections: text, 1linkage
and symbol; these relocation blocks are known as rel_text,
rel_link and rel_symbol, correspondingly. The definition section
is not relocatable and consequently has no corresponding

W are not true symbol section blocks in
gff; sense that theéy reside within the symbol block of the /%/

generator which produced the object segment. Moreover, the
relocation blocks must reside at the very end of the generator

block so that they may be stripped off when they are no longer
needed.

The correspondance between the relocation items and the
halfwords in a given section is made by matching the sequence of
items with a sequence of halfwords, from left to right and from
word to word by increasing value of address.

The relocation block pointed to from the symbol block header
(e.g., rel_text) is structured as follows,

declare 1 relinfo based(p),
2 n_bits fixed bin(17), %
- . b.]l‘ ;
vk — . Gfkrelbats bit(n_bits) aligned

Following 1Is a tabulation of the possible codes and their
corresponding relocation types,

0 -> Absolute

10000 -> Text

10001 -> Negative Text

10010 -> Link 18

10011 -> Negative Link 18
10100 -> Link 15

10101 -> Definition

10110 -> Symbol

10111 ~-> Negative Symbol
11000 -> Internal Storage 18
11001 -> Internal Storage 15
11010 -> Self Relative

11011 -> Unused

Multics Standard Object Segment - Draft #2 4/27/71 Page 18

11100 => Unused
11101 -> Unused
11110 -> Expanded Absolute
11111 -> Escape

Absolute - do not relocate
Text - use text section relocation counter

Negative Text - use text section relocation counter. The reason
for having distinct relocation codes for negative quantities is
that special coding has to be used in order to convert the
18-bit field in question into its correct fixed binary form.

Link 18 - use linkage section relocation counter on the entire
18-bit halfword., This, as well as the Negative Link 18 and the
Link 15 relocation codes apply only to the array of 1links in
the Tlinkage section (i.e., by definition, usage of these
relocation codes implies external reference through a 1ink).

Negative Link 18 - same as above

Link 15 - use linkage section relocation counter on the low order
15 bits of the halfword. This relocation code may only be used
in conjunction with a 645 instruction featuring a base/offset
address field,

Definition - indicated that the halfword contains an address
which 1is relative to the base of the definition section,
Definition sections are not relocatable.

Symbol - use symbol section relocation counter.
Negative Symbol - same as above

Internal Storage 18 - use internal storage relocation counter on
the entire 18-~bit halfword.

internal Storage 15 - use internal storage relocation counter on
the low order 15 bits of the halfword.)

Expanded Absolute - it has been established that a major part of
an ohbject program has the absolute relocation code; for
efficiency reasons, the expanded absolute code allows the
definition of a block of absolutely relocated halfwords. The 5
bits of relocation code are immediately followed by a fixed
tength 10=-bit field which is a count of the number of
contiguous halfwords all having an absolute relocation,
Evidently, the expanded absolute code is used economically only
if the number of absolute halfwords exceeds 4.

Escape - reserved for possible future use.

Multics Standard Object Segment - Draft #2 4/27/71 Page 19
24,4, The PL/1 Symbol Block

TO BE SUPPLIED

2:4.5. The ALM Symbol Block

TO BE SUPPLIED

2.4,6., The Binder's Symbol Block

The binder's symbol block contains the pind map, describing
the relocation values assigned to the various sections of the
bound component object segments. The block consists of a variable
length structure, followed by an area in which variable length
symbolic information 1is stored. The format of the bindmap
structure is,

declare 1 bindmap based(p) aligned,

2 n_components fixed binary(17),

2 component(n_components) aligned,
name stringpointer,
text_start bit(18) unaligned,
text_length bit(18) unaligned,
stat_start bit(18) unaligned,
stat_length bit(18) unaligned,
symb_start bit(18) unaligned,
symb_length bit(18) unaligned,
defblock_ptr bit(18) unaligned;

W W W W Ul W W

n_components - number of component objects bound within this
bound segment.

component - variable length array featuring one entry per bound
component object segment. :

name - pointer to the symbolic name of the bound component. This

is the name under which the component object was identified
within the archive file used as the binder's input (i.e.,, the

name corresponding to the object's 'objectname' entry in the
bhdfile).

text_start - fixed binary(17) integer value of the component's
text section relocation counter.

text_length - fixed binary(17) integer value of the component's
text section's length.

stat_start - relocation counter for component's internal static.

Multics Standard Object

stat_length - length of
symb_start - relocation

symb_length - length of

Segment - Draft #2 4/27/71 Page 20

component's internal static.
counter for component's symbol section.

component 's symbol section,

defblock_ptr - If non-zero, this is a pointer (relative to the
base of the definition section) to the component's definition
block (first class-3 segname definition of that component's

definition block).

Bé&ck 4

Forviard 3 ackoard ®
Seqmane Thmd | lnss = 3
Striug P Deflleck —ptr

= F laa %zé

Block
S.T. Loss = 3
S P Ded Clocte_ptr or— ‘
— F B 4
- <. 7 Hloss =8 |
3. P Def hack _ptr —
F B P
Value Aasssh 3
S.P Seqnane gt /
ﬂ F : B N rd ok 5
| S. T, dAssa 3 i |
S.P Pedlbeck_ptr '_—[
= R 7
Velaie Ranss a2 4
S.P. Seqnanart o N ~p
: .$ F B |
Vel closs sk 73
s. P Seorone ptr o
) A2 evro ovel

F—;‘Gﬁ\fc 1'7T\; th)"\-%'dk Sechion ﬂveao(s

I Mrér«mf auwk

LinK

e ta call £:uk

(46) g

\ Expressiom-yptr

L hkewge

g?c hRem

\ ExpV‘(‘Sid‘K— waM

Da (F\,\IHM

Trap Paiv

—___bt\og_pu;r.(m‘ + expvessiomn Sa Lo
<
Ture Paivr
Tupe Trap _ptr .
ﬂga-?\cuu_-pf‘r E\"Yt‘v\o\wh‘ Q
Seqmare. Acc shr'wg Extrpnane ACC shang

Cad ptr

Ars

pHr

Figpmve 2. The Shroctupe of o £ink

v

