To: Multics Administrative Distribution

¢From: T. H. Van Vleck

Date: September 13, 1971

- Subject: Absentée prices and priorities

RECEIVED
SEP 2 (1971
J. H. SALTZER

Several of us discussed this proposal at a system-administration

meeting some time ago, v and I promised I'd write it up. The proposal

aims at making "what the user buys'' for his absentee charges more
4

specific strategy is also proposed.

| , 'straightforward and at cleaning up some ungeneralizable code. A

We have recognized that judicious use of a "timax'' on long-running

programs like the backup daemon can improve system operation and

allow these programs to keep going even duringf the day. It has been

suggested that absentee be given a larger timax; the most general solution

is to provide a table which specifies the timax for each queue level.

A recent change moved the per-shift prices from constants in the

billing programs out into an external segment (installation-parms).

'The absentee prices are now half and half, since the current programs

assume that there are exactly three queues and that the prices table

looks like this:

queue 1
queue 2
queue 3

CPU

1.5 » current shift
1. 0 « current shift
shift 3 price

plus

- $1/hr

$1/hr
$1/hr

Notice that the numbers 1.5 and 1. 0 are program constants, as is the

_ subscript 3 for queue 3. A most general solution would be to make the
rate be

a(i) % current shift + b(i)
.per CPU hour, and similarly for connect ime, where the a's and b's
. are tabular constants, indexed by queue. Sticking in zeroes in appropriate
slots can get us our current rates. (The b(i) term could be eliminated --
currently, there is no difference in price between queues 2 and 3 when
‘the shift is 3, but there is a scheduling difference. However, it is

- simple to leave in and implement, and some installation may want it,

B so I think we should have the code.)

How many queues should we have? We have three price queues now,
“with the ""queue 4'"' compilations crocked to be treated as queue 3. I'm
. sure everybody can concoct a class of service which isn't covered and
needs another. But every queue we add requires more storage in the
per-user usage-recording data bases, more columns on the bill, and
so on. My vote is for four. Eight isn't unreasonable. More than eigh:c
_is.
Some of the absentee scheduling parameters should also be made
data instead of program constants. The following occur to me:
1. Maximum CPU time, indexed by queue.
2. Minimum underload (i.e. number of "free slots' on the system)
if a job is to be scheduled, indexed by qieue and by shift. This allows
one to shut off queue 3, say, during prime shift.

3. Maximum number of absentee users, indexed by shift. This
should be expressed as a percentage of maxunits to allow for

different configurations.

4, Timax, indexed by queue and shift.

All of the above sound extremely elaborate, although clearly not
difficult to implement. Suggestions as to which areas of generality
are superfluous would be welcome.

A specific proposal for MIT's prices follows.

queue CPU Connect Timax Max CPU
1 1.2 x current shift 1.0 ., current 16 5 min
2 1.0 * current shift 1.0 *current . 8 15 min
3 .8 * current shift 0 8 30 min

The maximum number of absentees table would look like

shift max
1 1/40 = . 025 =1.5/60
2 2/40 = .05 = 3/60
3 4/40 = .10 = 6/60
4 3/40 = .075 = 4.5/60
The minimum-free-~slot table would be
shift 1 queue .
1 .10 .10 1.0
2 .10 .10 .10
3 .10 .10 .10
4 .10 -.10 .10
Comments
1. This provides a price break to queue 3 users on shift 3.

2, The free-slot table shuts off queue 3 on prime shift.

3. Super-long jobs must run on queue 3. They are less likely to crash
there, and they get a break in that they don't pay a real-time charge.

4. Queue 1l can be used for compilations during the day. It's more expen-
sive than just leaving your console, but it runs better and can restart
after a crash. '

