July ¢, 197
-1-

.This document is meant to give a description of the proposed alter-
ation to the Multics virtual memory implementation often referred to as
either "drum multi-level” or as will be used in this write-up, "page
multi-level’, The reasons for undertaking the proposed change are many,
The prime reason is to take fuller advantage of the ''small’’ latency
time and fast transfer rate of the current drum, Under the current organ-
ization the drum rarely is taxed to 25% capacity, This problem is not
only a serious waste of resources but will likely be amplified by an even
faster device as is being proposed for the follow-on hardware, What--
ever device is available, be it drum or bulk store of some type, there will
be precious little of it and it will be up to the system software to take
full advantage of it, Leaving a rarely used page on the fast device is
clearly not the most -optimum approach, The rest of this write-up des-
,cribes a general approach to take which has several options at a detailed
level, Before describing the detailed plan, however, it should be.stated
that current ﬁeters in the system clearly show that the main-s;stem bottle-
neck is disk channel capacity and disk latency time, These same meters
will obviously be chosen to test the success of whatever page multi-level
scheme is implemented, However, there should also be several other meters
in the system better designed to measure the actual changes that should
result from the page multi-level schemé. These should include some measure
of "drum residency time', some measure of the success of the replacement
and displacement algorithms, and some measure of any overhead brought

about as a direct result of the page multi-level implementation, -

\

The page multi-level scheme is a departure from the current Multics

The Basic Philosophy

virtual memory implementation, Currently, a page is either in core or
it is not, If it is in core there may be a valid copy of the page on
"secondary' storage, Secondary storage currently is everything other

than core memory and includes the drum and the disks and could logically



-2-

include tape storage for "removed” files, The page multi-level scheme
would intrgduce a third logical storage device between core and secondary
storage, This device (the drum in our current pians) is meant to hold a
copy of the n most recently referenced pages in the system where n is
the number of records on the drum (or whatever device is chosen)., (The
actual algorithm for deciding which pages‘will be placed on this device
will be discussed later,) 1In an analogous fashion core memory contains the
M most recently references pages where M is the number of pages of core
available, 1In other words core pages are stand-ins for drum pages which
are in turn stand-ins for pages somewhere in secondary storage,

We will speak of the drum (or whatever device is used to hold the
recently referenced pages) as the 'paging device'. The basic goal of
page multi-level can be stazed simply as keeping the most frequently
feferenced pages on the paging device,

There are two basic questions which the system must dynagkcally answer
in order to implement page multi-level, The first is, 'When do we place
a page on the paging device?" and the second is, 'Which page must be
moved off the paging device when a record of the paging device is needed?"
These questions must be asked while processing a page fault and hence the
information needed to answef these questions must be wired-down, It is,
of course, best to minimize this wired-down data but it is also important
to keep enough information around so the scheme not only performs well
(keeps most paging from the paging device), but also pefforms efficientiy.

The algorithm used to decide when a page is brought up to the paging
device should be siﬁple and easy to implement, At first the algorithm
will probably be to bring a page up whenever it is referenced and is not

on the paging device, However, there are several refinements which may

_ be worth thinking about and will be listed below,

1) Don't bring a page up until its second reference within a cer-

O A PR ——

tain time interval,



-3-

|
2) Have a primitive (file system) which can control how the pages
| of the segment are treated,

a) Treat as sequential file,
b) Don't move up at all,
¢) Move up and keep up, etc.

3) Don't bring up pages of a ‘'sequential’ file, Let the algorithm
try to determine if the page references are sequential -- from
zero, etc,

4) Only bring a page up if it is modified.

5) Only bring a page up if it is‘in the process directory or
shafed, etc, ’

6) "Bring up' every newly created page.

' Some of the above recommendations are probably unreasonable not only
because they are too expensive, but also because they go agafhst the
basic strategy by trying to second guess the system rather than let the
system tell you what it's doing, These are listed mainly to illustrate
the possibilities.' .

The algorithm used to decide which page is to be moved down when .
another record of the paging device is needed is basically a least-recently-
used algorithm, That is, the page which has gone the longest without a
page-fault (and which is not in core) is chosen to be moved down, In a
manner similar to that of the core replacement algorithﬁ, information will
be kept as to whether the page has been modified since it was brought
up and if not, it i; probably not necessary to move the page from the
paging device to secondary storage, .

There are two ways of keeping track of which pages have been used
receﬁtly and which have not, The first is to keep a threaded list
of all pages on the paging device with the head of the list being the least
most recently used page., The list will be kept up-to-date by moving a

page to the end of the list whenever a fault occurs on it and by placing



-
free pages at the head of the list, A second approach is to approximate
the least-recently-used élgorithm by using a counter for each record of
the paging device, This counter could reflect the activity of a page
in several ways the details of which need not be spelled out, The table
of these usage counters would be scanned sequentially (by record number)
“when searching for a record to be used.

The main difference between these two approaches is the amount of
storage they would require, The thread approach would require a two-way
thread, The counter would likely be several bits wide,

An important decision to be made is whether or not to implement
the removal algorithm in wired-down code or not, When a record of the
paging device is needed’ (at page-fadlt time) there are two approaches '
which could be taken, First, page‘control could look for a free rgcord
(or at least one that need not be updated onto secondary stordge) and then
use it, In this search it may be necessary to initiate the mechanism to
move several pages down by first reading them into core and when that
read is complete writing the page out onto secondary storage, This read/
write sequence will be necessary no matter what, the question is whether
it should be initiated by page coﬁtrol.or by some other (non-wired) program,
The second approach is to have this read/wr;te sequence initiated by some
other program at specified times, This approach would work by keeping a
free list of paging device records which is replenished when it is noticed
that the free list is too small, The free list itself must be wired-down
but the code to repienish it need not be, This second approach has the
advantage that it avoids an interesting recursion problem in page control,

When page control initiates the move down i£ requires a block of core |
to use, However, page control is right in the middle of the code to find
a block of core when it runs into the move-down requirement. If another
program were to request the core and initiate the read/write sequence =--
independently of page control -- the recursion is avoided, The disad-

vantages to the second approach are first, part of the paging device will



-5- -

always be free (not in use) and second, there will be times when page
control would like to move a page to the paging device but there are no
free pages, Page control would have no choice but to leave the page on
secondary storage until some paging device records free up and a page

fault occurs on the page in question,

The programs which would keep the free list full could possibly
" be the AST management programs, -They could check, say, whenever a
segment is activated to see if there are.enough entries in the free
list, If not they would initiate the appropriate read/write requests to
again fill up the free list,

The algdrithm to move a page down can be arbitrarily complex, It
could use information analogous to ﬁhat was mentioned above for the
move-up criterion (in addition to the activity and/or use of the page).
It would be easier to implement a more complicated algorithm (if so
desired) if the algorithm existed in paged (PL/I) segment control code.

' The read/write sequence alluded to above requires changes to page
control at 'posting’ time., The core map entry associated with the block
of core being used to perform the move-down must contain a flag which
differentiates the current use of -that block of core from normal use, -
This flag effectively says, 'Instead of turning access ON when the read
completes, initiate a write to the specified secondary storage address, "
When the write completes the flag directs page control not only to thread

the core block into the front (free end) of the core map but also to |
mark the paging device record as free (by whatever technique will be used --
i,e,, free list or free end of usage list), Note that Both device

addresses are needed at posting time,

The Device Address Format

The device address currently consists of a record number and a
"moved" bit which says whether or not this page has yet been 'moved"
(in the file multi-level sense), The device ID is currently extracted

from the AST ehtry (as is the move device ID if the moved bit is ON),



-6- .

With-page multi-level there will be times when we have a device address
but do not have an AST ehtry for the segment to which the page belongs.
For this reason the device address must be extended to include the device
ID as well. The need for the moved bit goes away as we no longer need
to decide which device ID in the AST entfy is appropriate, If a segment
is being moved (in the file multi-level sense) the move device ID is set
. approprlately in the AST entry and each page is brought into core, As V
page control writes the pages out of core it deposits (frees up) the old
addresses and withdraws new addresses from the free list of the move device,
Page controi places the move device ID in the device addresses it creates
for the moved pages, For page control to determine whether a page has
been moved or not it must merely compare the device ID in the device
address with the move device ID in the AST entry., At deactivation time
it will be noted whether or not all pages have been moved and if so it
will mark the move as complete by copying the move device ID into the
device ID and zeroing the move device ID, a

The device address will, therefore, include both a record number and

a device ID,

Changes to Direetory Control

The new device address format means that the file maps in directories
must be changed. 1Instead of the current 18 bits a device address will
now contain 36 bits, Not all of these will be used by bage control and
it is recommended that the unused bits which will exist in the file map
"be used to carry redundant information which can be used to avoid re-used
addresses when hardware errors occur, The fact that directories must
ehange means that we are at a convenient place for doing several other
directory }eformatting jobs, 1In particular, retro-fit part (3) (allocating
file maps as a function of size) should be done at this time, 1In addition,
it is recommended that the following be done at the same time:

1) Do whatever is to be done with respect to CACL's,



-7-

2) Change the charging scheme for disk records uéed.>
3) Leave handles (QELZ) for
a) new backup requirements
b) new multi-level requirements
c) tape archiving |
It is recommended that no changes be made for the explicit use of
" secondary storage reconfiguration, The main requirement here is for all
file maps in the system to be localized, This is too large a change fér

now as there is no immediate need for secondary storage reconfiguration,

Deleting Segments

A problem arises when it is desired to delete a segment which has
pages on the paging device yet which 1s not active, Since the file map

in the directory will contain the secondary storage device address there

is no obvious way to find the paging device addresses for any pages which
have been moved up, The proposed solution is as follows: fi;st, the

file map in the directory will contain a flag for each device address which
specifies whether or not the page exists on the paging device, If so, the
secondary storage device addressed is hashed to come up with an indexj

into a hash table, The hash table entry will point to a list of entries

in the paging device map which have the same hash code, This list will

be searched for.the appropriate entry (which contains the secondary storage
"device address) which will then be "freed",

It was mentioned above that the secondary storage address would always
be in the diréctories, When a segment is activated this address is placed
in the page table word until the page is brought into cbre in which case’
‘it is placed in the core map. If the page is written out onto the paging
device the secondary storage addréss will be copied into the paging device
ﬁap entry and the paging device address will be placed in the page table
word, Froﬁ this time on any page faults which occur will read the page in
from the specified paging device record, If the secondary storage device
address is ever needed (for a given page) it can be found by going to the
appropriate paging device map entry (indexing by the address found in the

page table or core map entry),



-8- -
When a segment is deactivated it must be determined which of its
pages exist on the secondary storage device and set the flags in the file

map appropriately..

Data Base Organization

The data layout needed to implement the page multi-level scheme

requires changes to the following data bases: _

1) core map. must contain extended deﬁice addresé,

2) directories must have new file map format, File
maps should be allocated as a function
of size, (Other unrelated changes which
are convenient, )

3) pd map o . (paging device map) a new data base

which must be wired down, .;t will

contain either: N
two-way thread - .24-bits
hash-thread ~ 12-bits
device address 24-bits
modified bit 1-bit
or - '
usage -bits o n-bits
hash-thread 12-bits
device a&dress 24-bits
modified bit 1-bit

This must be wired-@own.
4) pd hash table paging device hash ﬁable. This must
be wired-down,
The page table word must be 6rganized so that a 24-bit device address
will fit into it if the page is not in core, This is reasonable on the

current and the follow-on hardware,



Pre-paging and Post-purging

The only change which affects pre-paging and post-purging in page
multi-level is the way the 'drum decision' is calculated, One of the
criteria for pre-paging a page is that it be on the drum, This information
must now be extracted from the device address itself rather than going

to the AST entry,

Emergency Shutdown .and Sélvaging

With a good deal of the Multics hierarchy residing on the paging
device it will be imperative that emergency shutdown and the salvager
work almost éver& time, Since it is not too unlikely that core memory
is lost the information needed to recover from a crash should frequently
be updated onto some more reliable device, In addition this updating
should not tie up any valuable resource. Since the data to be updated
is in the neighborhood of 10 pages and since we would like the update
done no less frequently than once every second or two the logical device
to choose (currently) is the drum, In fact, the drum can easily be
programmed once per bootload to automatically update these pages every
second or so, _ N

When emergency shutdown rumns it should do as much of the following
as it can: )

1) Write the pd map onto the drum,

2) Update the pd map in core with the most up-to-date information ‘

» from the AST entries,

3) Write the pd map onto the drum again, N

As a final step in the shutdown proces$ (after all paging has been

completely and all data bases are consistent) the pd map should be

written out one last time,
" "The salvager must likewlse recover as much from the pd map as it can,

The salvager will know whether or not an emergency shutdown was run and how



-10-

successful it was (whether it completed), At any rate the pd map will be

no more out-of-date than a second or two, The salvager must do the following

in addition to ité current tasks:

1)
2)
3)

4)

valid and recreate, if necessary, the pd hash table,
valid and recreate, if necessary, the pd free list (if being used),

Make sure that the file maps in each directory accurately reflect

‘the fact that some pageé have a.copy on the paging device.

Update onto secondary storage all pages which are marked as

modified in the paging device map,

Note that the salvager must be able to find the (dedicated) records of

the paging device map, This information must be kept in the fsdct,

'Programs to be Affected

The following areas will be affected by the page multi-léyel redesign:

1)
2)
3)
4)
5)
6)

page control page, pc o

segment control activate, deactivate

directory control extensive reformatting
~initialization tqut, uct as branches pd map on pd,
emergency shutdown " as noted above

salvager as noted above



