W

.TO:

‘Bensoussan
Clingen

J. Corbatd
Gintell
Morris
Roach
Saltzer ¢
Schroeder
Webber

[/ Q< La?’?:h N

.

FROM: V. Voydéck, R. Feiertég
DATE: October 6, 1971

SUBJECT: Access Control Proposals

Enclosed is a document describing our proposals on access control, as
modified by the meeting of September 8, and subsequent discussions,
The proposal concerning gate lists has been tabled until Schrgeder
finishes documenting his plan to make it possible for a user to use
more than one protected subsystem, There will be a meeting to dis-
cuss these proposals on October 13th at 2:00 p.m. in Room 511,

\

Page -1

‘This document describes a number of proposed changes to the access control
.mechanism that have evolved over the ‘space of several months, These include:

I. A new set of dlrectory ‘access attributes, and a plan to make all
8uperv130r modules enforce access the same way,

IT, Associating .three ring numbers with a directory.

I1I,- Removing the append access attrlbute on non- dlrectory segments, and
introducing the 'maximum length' attribute,

- IV, Having one set of fing brackets per segment,
V. Adding a ''safety switch' to segments,

VI. Eliminating CACL's and replacing them with initial ACL’s,
- S QQ’CL) lLA\+\~J "

VII, Using extended access to 1mp1ement access control on dlrectories

VIX{, Re-defining access control for System daemons,
, . .
This section describes the newly proposed set of directory access modes
and presents a plan for making all supervisor modules enforce access in
the same way, 1In addition, a proposal to associate three ring numbers
with a directory is introduced,

" First we must establish some terminology. An A-operation is an operation
performed on the attributes of a segment., This includes modifying its
names, its ACL, its ''safety switch', and its maximum length, deleting
it, and listing its attributes, It also includes adding a2 segment to a
directory, A D-operation is an operation performed on the data of a
segment, This includes initiating the segment, reading it, writing it,
executlng it, truncatlng it, setting its b1t count, and getting its bit
count,

The major change proposed is to get rid of the 'execute' directory
access mode and to say that one's right to perform a D-operation on a
‘segment is completely determined by the access information appearing on
that segment's ACL, That is, to initiate a segment one needs non-null
access to that segment, to get its bit count or read it, read access,
to execute it, execute access, to write it, truncate it or set its bit
count, write access, One's access to the directory containir, the seg-
ment is not taken into account when performing a D—operatlon. Because
a certain class of. users have neeed of more security than this plan
provides, we have had to modify this proposal to provide a sure means
of denying access to an entire subtree of the hierarchy, This will be
discussed in detail below,

\

Page 2

D-operations on a segment are controlled by one 's access to that segment
-(almost), ' A-operations are controlled by one's access to the directory
containing that segment., Let us now describe the various directory
access /attributes: '

I. null (i.e., no access attributes at all), If a user has aull
access on a directory, he has no access to the contents of
the directory or any of its subdirectories (i.e,, to the
subtree of the hierarchy whose root node is that directory).
In no way can he obtain information about anythlng in that
subtree,

II, |use If the user has use access on a directory, he has the poten-
tial ability to perform operations on the contents of that
directory. That is, he can perform any D-operation on a
given segment in that directory subject to the access that
" appears on that segment's ACL, For example, he can execute
any segment op which he has execute permission, He can
perform any A-operation on any segment in that directory
subject to the other access attributes appearing on the ACL
‘of that directory. No combination of status, modify and
append access (see below) is allowed without use access,

III, status (formerly read) If a user has status access on a directory,
he can list the contents of the directory and find out any
and all information about the attributes of any entry in
that directory, he cannot d4dd entries or change the attri-
butes of existing entries,

IV, modify (formerly write) 1If a user has modify access on a dlrectory,
he can change the attributes of ex15t1ng ‘entries, He cannot
add entries or list the attributes of existing entries,

V. append If a user has append access on a directory he may add entries
to that directory., He cannot add entries or list the attri-
butes of existing entries,

There are certain combinations of directory access attributes that do not
make sense, For example, as mentioned above, it does not make sense to
have any combination of status, modify or append access without having
use access, The file system will, therefore, not allow any of these
nonsensical access combinations to be placed on a directory ACL. . The
following is a list of all legal access combinations: null, U, US, UA,
USA, USM, USMA,

Use access has been added to provide another level of security for a
certain class of users, For example, some project administrators would
like to allow sharing of information among project members (including the

Pége 3

" right of one project member to give or deny access to other project
members), At the same time they would like to be sure that no project
member, either accidentally, or deliberately, can give access to anyone
outside that project to any of this information. They can do this by
giving project members use access in the project directory and everyone
else null access there. One could argue that a project administrator
has to trust his project members and that they could (for instance)
print out a copy of confidential information and give it to someone who -
has no right to have it, This is true, but in the event of an informa-
tion leak, use access narrows down the possible sources of the leak.
The project administrator who has used use access to limit access to
information knows that the leak must have occurred outside the system,
That is, by someone making a physical copy of the information rather
than by someone inadvertantly or deliberately giving an unauthorized
person access to the information on-line.

Now let us consider what may happen if a user tries to perform an opera- .
tion on an entry whose pathname is >D1>,,,>Dn>E, Seven distinct error
conditions (related to access control) may occur,

I, erro;_tablq_$noentry ("Entry not found')

E does not exist,

II, error_table $no_directory ('Some directory in path specified.
does not exist')

One of D1, ,..Dn does not exist,

III, error_table $incorrect_access ("Incorrect access to directory
: “containing entry')

The user does not have correct access om Dn to
perform the operation,

IV. error_table $moderr ('Incorrect access on entry")

The user does not have the correct access on E
to perform the operation,

V. error_table $safety switch_on ('Attempt to delete segment whose
safety switch is on"

The user tried to delete E and the safety switch of E is on,

Page 4

VI. error table $null access ('No access to subtree of hierarchy")
The user has null access on one of D1, .,.,Dn,
VII, - error_table_$no_info (’'Insufficient access to return any information')

The user does not have enough access to be given any
information,

The following flow charts describe what access checks must be made by
all modules of the supervisor that manipulate segmemts, These checks
should be made when a segment fault,XinCOrrect access fault and unde-
fined access fault occurs as well as by the file system primitives,

The following principles are implicit in the flow charts, The motivation:
for them is that they simplify the access checking mechanism and that they’
give away little (if any) information that couldn't be determined by
experimentation, '

1, If one has non-null access on a segment (directory or non-directory)
one has the right to know of its existence and one's effective access
to it, '

2, If one has deductive access on a directory, one has the right to know
of the existence of particular entries in it and one's effective
access to them, where deductive access is defined to be one of US, UA

USA, USM, and USMA,

As an aside, note that these principles imply that if one has non-null
access to a segment or deductive access on the directory containing the
segment, the status primitive should admit the segment exists and return
one's effective access to it -- even if ome does not have status per-
mission in the directory containing the segment,

Let us now consider the flowcharts:

Page 5

i=0

es

i=i+l

i>n?

yes

- go to

no-
A%

¥

Does Di exist?

no

Does user have

no

Does user have
deductive access
| on Di's parent

no

yes u access on
bi
yes
——
return

error_tasle $null access

no

" Does user have
deductive accesd
on Di's.parent

»

/'yes

return

“error_table $no_directory

return

error_table $no_info

Page 6

:"‘ at
/ D-operation What type A-operation
of opera-
tion? .
no .
) -l
Does E o Does user have os Does user have
exist? deductive Y correct access
access on on Dn to perform
n_ ' operation?
yes '
return error_ return error_ yes no
table $ne®_ table_ S$noentry]
info
‘ : .
Does user have Try to perform Does user havsg
correct access yes operation., If deductive
on E to perform successful, re-- [access on Dn?
the operation? turn error code
that gives most es no
information ye
return error_ Does user have
- . table $in- yes |deductive
Does user have es return error_| |correct_accesg access on
non-null accéess Y table $moderr|. Dn-17?
on E?
no
no Does E
exist?
Does user have
. yes
deductive access
on Dn?
Is E a
link?
no
rno
return y

error_table $no_info

no

Does user have
non-null access
on E?

yes

return error
table $
incorrect_acces

‘Page 7

Finally, we propose that every directory have three ring numbers

'rl, r2 and r3 associated with it, Rl is called the modify ring and

is defined to be the highest ring in which M and A access applies. R2 is called
the status ring and is the highest ring in which § access applies, R3
is called the use ring and is the hlghest riag in which U access applies,
We require that rl<r2<r3, The use ring needs to.be distinct from the
status ring to allow for subsystems where it is desired to give the user
direct access to the data of a collection of segments in a given ring
but ability to obtain information about the- attributes of these segments
only in a lower ring., The file manager of A. Bensoussan is one example
of such a subsystem. -

Now consider non-directory segments. They currently have the access
attributes read, execute, write, and append. The latter attribute
append, was intended to allow a process to add data to the end of a
segment but not allow modification of the data already in the segment.
Unfortunately, we are not currently able to implement this attribute,
The append attribute-is currently used to allow growing of the segment,
i.e,, add new pages to the end of the segment, The current use of the
append attribute is not well known or well used, It is primarily used -
to artificially set a maximum length on a2 segment, a feature that should
be more properly implemented by adding a maximum length attribute to a
segment, Since there is currently no proper use of the append attribute
it should either be deleted from ACLs or it should have no interpreta-
tion, i,e,, reserved for a later proper implementation,

Besides the access attributes, segments also have sets of ring brackets,
The current association of a set of ring brackets with a segment and a
user has the disadvantage of being difficult to explain and visualize,
With the current scheme a segment exists in different rings for different
-processes, A great deal of simplification is achieved by having only
one set of ring brackets associated with a segment, This simplification
causes no loss of functional capability because any accessing rights that
can be granted by multiple sets of ring brackets on a segment can be
achieved by having a procedure in a privileged ring simulate the access
associated with the segment, This modification also solves the problem
of what ring brackets are to be associated with a procéss not specified
on the ACL, Clearly with one set of ring brackets, those are the only
brackets that apply,

The current delete primitive requires both write permission on the segment
and modify permission in the'directory in order to delete a segment, This
property has been used as a means of providing self-protection against
accidental deletion of segments, i,e.,, if the segment does not have

write permission, it cannot be deleted, This has the strange property of
protecting object segments but not protecting data segments against

\
Page §

-deletion, It, therefore, seems more useful to provide an attribute
which allows any segment to be protected. For this purpose the 'safety
switch' is introduced, 1If the "safety switch'' is on, the segment cannot
be deléted 'This added protection eliminates the necessity for requiring
write permission on a segment in order to delete it. Therefore, the
delete primitive will require modify permission in the directory. and

the "safety switch" being off in order to delete a segment,

The CACL is a means by which access to a group of segments can be con-
trolled easily, Unfortunately the grouping used by the current CACL
mechanism, i.e., all segments in a single directory, is not an appro-
priate one; It is usually not the case that all segments in a particular
directory want similar access. Secondly, since the CACL is logically
appended to the ACL of a segment the effect of changing a CACL upon the
access to any particular segment is unclear, It depends on the contents
of that segment's ACL. Thirdly, in a multiple ring situation, the rules
concerning modification and use of CACLs become complex and unworkable
and render the CACL useless, For these reasons the CACL is to be eliminated
from Multics, The detailed arguments are given in the memo on CACLs :
dated June 7, 1971, - '

.) .

Some useful features of CACLs will be preserved, Access to large classes
of segments can be modified by use of the star convention in ACL commands,
Also default initial values for ACLs can be established by the use of the
initial ACL,

"The initial ACL is a means by which a uder can specify the ACL to be added
to a newly created segment in a specific directory, Each directory will
contain two sets of initial ACLs, one for newly created directories and.
one for newly created non-directory segments, Each of these two sets
will contain an initial ACL for each ring. '

Each initial ACL will consist of a list of ACL enttries, When a new
segment is created via a8 call to append, the appropriate initial ACL

will be found by using the type of the segment (directory or non-direc-
tory) and the current validation level, The list of ACL entries contained
in this initial ACL is then used to form the ACL of the new segment,

‘The ACL entries specified in the call to append are then added to the new
ACL,

New primitives and commands will be provided to manipulate initial ACLs,
Separate commands will be provided to set entries (add or chamge), list
entries, and delete entries for both initial ACLs applying to directories
and non-directory segments, The validation level at the time of the opera-
tion will determine which ring's initial ACL is involved, When an entry

is added to an initial ACL it is checked to make sure the specified user

id is valid, This guarantees that the initial ACL can be validly added

\

Page 9

to a new segment with no possbility of error,
The file éystem currently supports a feature called extended access, the
purpose of which is to allow subsystems a convenient way of specifying
access attributes other than the standard attributes, on segments which
those subsystems manage. Extended access is implemented simply as a set
of bits in each ACL entry which the subsystem may set and interpret as
it pleases; the file system does not interpret these bits in any way.
Currently, extended access is used only by the message segment primitives
as a means of specifying access to message segments.

Directory control is another logical candidate as an application of

extended access. Currently the directory access attributes occupy the

same bits as the standard segment access attributes and the directory

ring brackets also occupy the same storage as the standard segment ring
brackets. This duplicity of use has led to the unfortunate result of un-
wanted similarity between non-directory segment and directory segment access
attributes. In order to allow full independence in the selection of
directory access attributes, and make directory control and segmgent control
more independent, the directory attributes should be handled separately from
segment access attributes. The obvious separate mechanism is that of
extended access. Directory segments would have standard access which would
be rw for all users on the ACL with ring brackets of 0,0,0 on the segment
and would also have some form of theSUMA directory attributes as extended
access. As stated above this has the significant advantage of permitting
the segment management facility to compute access in a uniform manner for
all segments without having to special case directories as. is presently
done., ' :

As currently implemented extended access providés extra bits for access
attributes on each ACL entry. However, the proposed modification of making
ring brackets a per segment rather than per ACL entry attribute means that
some standard access attributes are no longer in the ACL entry. For
consistency, therefore, an extended ring bracket field should be added to
each branch as an extension of the standard ring bracket field in order
that subsystems using extended access can treat ring brackets in a manner
akin to the standard access. '

Multics currently supports several service processes known as daemons,
The daemon processes now includes backup, dumper, retriever, to, and
translator., It is expected that sometime in the future this list will
change to include backup, dumper, retiever, io, and offline segments,
Each of these daemons require access to the particular part of the file
system hierarchy upon which they are currently operating, This access
is currently achieved by having these process's ids appear on the SPACL

\

Page 10

and on all ACLs upon which they will have to operate, This current
‘'scheme forces users to be aware of the daemon accessing problems, This

is unnecessary because the daemons are system processes and can be pro-
grammed so as to not reference segments unless they have a legitimate
reason to do so.

Daemons can be split into two categories: those which perform operations
at the explicit request of a user and those which perform operations with-
out the knowledge of the user, The former category includes io, offline
segment, and retriever which perform these specified operations only after
receiving an explicit user request either by a command or by written

form, 1In these cases the daemon only needs to verify that the user making
the request has appropriate access to the segments in question, The
daemon process itself can have access to all segments in the file system
since it will, if coded properly only reference those segments implied

by the explicit request and to which the requestor has appropriate

access, The latter category includes backup and dumper, These daemons
should, in theory, have acecess to all segments in the file system since
they are supposed to reference all segments, If the Multics backup system
were totally transparent and secure, these daemons should have free access
to all segments, however, we will acknowledge that this is not the case

by allowing users to inhibit the backing up of certain segments by turning
off a backup attribute in the branch of that segment,

Essentially what is being proposed here is that all daemon processes
_potentially have full access to all segments and that the processes
themselves have the responsibility for making sure they are legitimately
referencing the segments. This has the advantage of isolating the
facilities and services provided by these daemon processes from their - -
implementation, i.e., that they are separate processes, The naive user
should not have to be aware that the backup.daemon needs access to his
files or that he must grant some process called the IO Daemon access

to his files in order to dprint them, The issuing of a dprint command
or a retrieval request is all that should be necessary, This scheme also
eliminates the need for the SPACL,

Daemon processes, for very practical reasons, should not have blanket
access to all segments in the file system, This could lead to chaos
should there be bugs in the implementation of a daemon process, Daemons
should simply be given the right. to specify their access to specific
segments or perhaps reference segments through special primitives,

This would minimize the potential damage in case of bugs... <

The means by which daemons access to segments would be limited is as
follows, Each daemon process would be granted special access properties
when it is created, These properties would specify the type of access

\

Page 11

necessary for the particular daemon to perform its functions, For
example, the backup daemon needs read permission on all segments, status
and use; permission on all directories, plus the ability to modify the
backupslnformatlon in directories such as the date-time dumped, The
special properties given the backup daemon process would give this pro-
cess the ability to attain these access rights to all segments, Each
particular daemon process is given only the access properties it needs
and since the properties are granted at process creation time they are
granted by the system control process which-is the only process granted
the right to distribute special properties, therefore keeping these
special rights under tight control,

However, having these special rights is not in itself sufficient to
allow the daemon processes to perform their functions, Each daemon must
invoke special primitives in order to apply the access properties to
specific segments. In the case of directory operations special primi-
tives will be provided to accomplish the desired fumctions such as
setting date-time dumped os listing the contents of a directory, These
primitives will check to make sure that the specific daemon process has
the necessary special access property, For. operations on. non-directory
segments a special initiate primitive will be provided that permits
processes with the appropriate access property to initiate segments
which particular access rights independent of what appears on the access
control list of that segment. In this mamner, daemon processes will
have access to only a few segments at a time rather than all segments,

These two new features: the special access properties and the special
primitives, assures that daemons always have the necessary access to
perform their functions, but only that access which is necessary and
that the potential damage in case of error is minimized because the
daemon processes have to make specific special calls to gain these
access rights,

