TO: F.J. Corbato

NJ.,

Saltzer

A.C. Franklin

R.
C.

J.

N.
R.
M.
V.
B.

 FROM: J.
R.

(Cambridge Project)

Freiburghouse
Garman
Gintell
Morris

Roach

Smith

Voydock
Wolman

Klensin
Sorrentino

DATE : Oct. 18, 1971

SUBJECT: New allocation and free procedures

Attached is draft documentation of area initialization,
and free procedures written for our use.
with several of you, we believe that these procedures, or others
much like them, should be incorporated into the system, and we
are offering these for that purpose.

The following materials are included:
draft MPM documentation:
draft SWS decumentation: - .
explanatory material on the purpose of these changes
logic descriptions of the routines

If desired, we will synthesize MSPM documentation from the

logic material.

alloc , freen

allocation
As we have discussed

Proposed Modifications to MPM and SWS Documentation

Note that these changes, while adding clarity, do not affect
the interface to these procedures in any way other than the
addition of the new entry area_S$no_alloc.

page 2

™\
)

Note

-

| o | l
MULTICS PRUGRAM "S7 MANUAL gy area_ }

, ~ Miscellaneous Call
Standard Service System
‘ 10/15/71

Entrv: area_

The area_ procedure is called to initialize an area.
This is a PL/T run-time library procedure which may be
called by user programs. :

Usage .
declare area_ entry (fixed bin, pointer);
call area_ (size, area_ptr);

1) size o . is the number of words in

the area. (Input)

2) aiea_ptr ’ ' ‘ is an ITS nointer to the
- origin of the area, (Input)

‘area_ sets up the area_ index atter rounding the pointer
to be equal to 0(mod 5). No check is made to assure that

the size of the area is large enough to even hold the
index, o , .

Entry: area_$redef

This alternate entry is used to redefine the length
of an area. . '

Usage o
declare area_Sredef entry (fixed bin, pointer);
call area_S$redef (size, area_ptr);

1) size _ 4 : is the number of words that the
- area is to have. This size may
be smaller than the originail
one. 1f so, the area which is
to be' releasad should not still
"be allocated, or an error of

unknown flavor will resclt, (Input)

~

" 2) area ptr) points to the origin of the

area. (Input)

. page 3

+?

area_

- page 2

Entry: area_$no_alloc

'~ This entry point returns the number of allocations that
have been made in the PL/I area pointed to by area_ptr. If the
value returnéd is zero, then the area is empty, as defined by

the PL/I language rules.

Usage:
dcl area_$no_alloc external entry (pointer) returns (fixed bin);

num = area_$no_alloc (area_ptr)
1) afea_ptr is a pointer to the base of the area. (Input)

2) num is the number of allocations that currently exist
in the area. (Output)

page 4

page 5
1

MPM SUBSYSTEM WRITERS' SUPPLEMENT) | alloc_

o o Subroutine Call
) o . o S Development System
10/15/71

Hame: alLoé_

: The alloc_ procedure is called by user programs to make an

allocation in a PL/I area. It finds a contlguous block of words of a
given size in a given area. This is a PL/I run-time library routine
which may also be generally used.

declare alloc_ entry (fixed bin, ptr, ptr);

call alloc_ (size, areaptr, returnptr);
1) size ' is the amount of storage to be allocated, in
: words. ~ (lnput)

2) areaptr is a pointer to the base of the area iIn which the
: words are to be allocated. (Input)

3) returnptr is a polnter to ﬁhe first data word iﬁ the
— allocated block. This flrst data word will be on

O, . an even word boundary. (Output)

Nctes: 1) The PL/I area condition will be signalled 1f there is
Insufficient space in the area in which to allocate the desired
arount of storage. Upon return, the allocation will be retried.

2) The PL/I error condition w111 be 51gnalled if the
arguments to alloc are invalid, i.e. if size < 0. Again, the
allocation will be reattempted 1f returned to.

_ 3) Only one process may modify an area an any given time.
The condition area_lock _wait will be signalled if the area in which

~the allocation is to be made is and remains locked to the current
process by another valid process. Upon return from an on-unit
1ntercept1ng the 51gnal, acces51na of the area will be retrled.

(END)

,TTpx

- MPM SYSTEM.PROGRAMMERS' SUPPLEMENT

. used.

page 6

19

freen_

" Internal Interface

-Hardcore/User Ring
‘:m10/15/?l)

Name: freen_

The freen_ proceduréAis'used to free a block of storage

" previously aliqgéféd'ih a PL/I area.

Usage
‘declare freen_ entry (ptr);

call freen_ (block_pointer);

_i{s a polinter to the base of the block to be

1) block_pointer
- returned to free storage. (lnput)

HQ&Q"
This 1Is a PL/1 run-time routine which may also be generally

Only one process may modify an area at any given time. The
ccndition area_lock wait will be .signalled if the area in which
the allocation is to be made is and remains locked to the current
process by another valid process. Upon return from an on-unit
intercepting the signal, accessing of the area will be retried.

If block pointer is invalid, or does not point to an allocated
block in a PL/I area, the results of a call to freen_ are unpredictable.

(END)

pay e

Routines area_,alloc_;freen_
area_ Sredef
area_sno_alloc

Purpose To provide the dynamic storage management facility for
the implementation of the based and controlled storage classes
of the PL/I language, and also to protect the user's allocations
from interrupts, and across processes and crashes.

Background After a study of the dynamic storage fac111ty that

was in use as of August 1971, it was decided that certain char-
acteristics of those routines were, to varying extents, undesir-
abie, and that other capabilities which were extremely de51rable,
were lacking.

These routines constitute part of the runtime library associated
with the PL/I compiler, and as such, they must obey the language-
specified rules for the handllng of various errors which may be
eacountered. 1In particular, there are deviations from these rules
winich force the user to check for the occurrence of these errors
in a non-standard fashion.

(L) 1I1f the allocation routine is called, and there is insufficent
space available for the desired aldocation, the areq condition is
not signalled as required by the PL/I language rules, but a null
pointer is returned instead. ~Since this subroutine call to the
dynamic storage manager is made implicitly by the PL/I- aZZocate_
statement, it is a language violation to force the user to check
the p01nter which is returned.

(2) If arguments were passed to the routine packages which would
cause undetermined action, but which were detectable, no attempt
was made to notlfy the user via the PL/I error condition.

(3). The language provides that a return from an on-unit handlij
the area condition must be followed by an automatic re- try of
operation. The organization of the old programs does not r
this.. '

page

(4) The implementation of the empty built-in function, which
is used, in PL/I, to set an area so as to contain no allocations,
is diffic;}t enough that this function has not been supported

on Multicg.

(5) In additidpn to the language problems, the routines them-
selves were coded in assembly language (ALM), and while this
cdloes not reduce their ﬁtility, it does complicate the main-
tainence of such programs over a protracted period of time. This
is true in an environment where most of the interaction is done
with programs coded in a highexr level language (for the most
part PL/I), particularly where much of the operating system is

coded in such a manner.

(6) There exists no protection whatsoever against interrupts,
. nor operations attempted on the same area by two or more proces-
ses simultaneously. This also leaves no guarantee as to the
state of the area should a crash occur while it is being modified.
In a system, such as Multics, which deliberately interrupts a
user after a pre-defined length of time in order to allow another
user to resume execution, such protection borders on absolute
necessity. It was suggested that some manner of stacking interrupts
be employed so that whenever the area data base is examined (pre-
sumably to make a modification of some sort), it will always appear
in a consistent, but possibly unpredictable state. This guarantees
the usability of the database, after, perhaps, some small amount of
cleaning up. T |

In addition, it is desirable to have some sort of locking
mechanism which will cause one process to wait until another has
completed any modifications it intends to make to the area.
Finally, there should be preserved, in the area itself, sufficient
information to allow its consistency to be restored automatically

upon the next attempt modification of the area if a crash, or . . --
process termination, nas left the area in an unusable state.

page?9

(7) The aigorithm used -to make allocations, and the corresponding
data structure was also questioned. The one in use was the

"buddy ‘system", which subdivides the available storage into blocks
which are powers of 2 in size. These blocks are paired, and as
storage is freed, only if two "buddies" are free are tliey coalesced
into a singlé block. If two adjacent, but "non-buddy" blocks are
free, they are not merged. '

Some research was done, and it was suggested that an algorithm
related to that described by Knﬁthl, a "first-fit method", employing
a variation on the "boundary-tag system", would béﬂﬁégd in place of the
previous algorithm. This would allow for more efficient space man-
agement, and perhaps a reduction in the amount of time required

for allocation,

All of the design goéls described above wefe met. Some additional
expense was incurred due to the increased complexity of the tasks
to be performed. The size of the area header was increased from 22
words to about 80, to permit storage of the information required to
maintain consistency'across processes and system crashes, Further,
although the time dinvolved to make the allocation itself has decreased
somewhat, an increase of 50-100 microseconds was imposed by the addi-
tional safety features, over the previous facility's total require-
ments, From préliminary timings, only 600-700 microseconds
(no page faults, but including the 200 micro second PL/1l calling

-

sequence) are required to perform the allocation. Freeing is somewhat
less expensive, requiring 300-400 microseconds. All of these

figures assume no page faults, no errors which will cause a PL/1
_signal to be issued, nor any cleaning up to restore consistency

before an allocation free operation is attempted.

S ~

1 The AY¥t of Computér,Programming,_Knuth, Donald E., Volume 1,
section 2.5. Addision-Wesley Publishing Company, copyright
1968 " '

The procedures necessary to support PL/I allocation are as
follows (names chosen from the current Multics implementation):

area_: Initializes area for allocations by other procedures.
Used for implicit initialization and by the empty
/ built-in function.

area_é redef: Used to change the length of an area
(amount of space available for allocations).
This entry has no direct use in PL/I.

area $no alloc: Used to determine the number of existing
~ allocations in and area. In particular, this
. entry may be used to determine whether an area
contains any allocations. This function has no
direct PL/I equivalent. ‘

alloc_: Used to make an allocation of a specified length
in a specified area. Corresponds to, and used by,
the PL/I statement "allocate".

freen_: Used to free a specified allocation in a specified
area. Corresponds to, and used by, the PL/I
atatement "free".

The remainder of this document details the algorithms for area
initialization, allocating and freeing of storage, and for the
interrupt protection strategy.

The data bases to which these descriptions make references are
pictured on the next two pages. The algorithms (expecially the
interrupt strategy) will be much easier to follow if one refers
tco these diagrams while reading.

A "stratum" is defined as a chain of free blocks larger than a
particular power of two. For example, a reference to "stratum(3)"
implies that chain of blocks (chaining begins at the area header)
larger than 2**3 words in size, but smaller than 2**4 words,

In order for the interrupt protection mechanism to work in com-
plete safety, a hardcore entry will be necessary to set or clear’
a lock. This entry will be utilized only when an apparent
cecnflicit occursion a particular area. A description of the
requirements for such an entry appears on the last page. This
is not an attempt to exactly specify either the format oxr the
name of this call. ‘) :

page 10

Header Structure

0 fgptr

2 length n_alloe’

4 dummy _header

|

6 rel_offset(3:17) |
i

B N T B T g T i e W

(15 offsets

tO 8 tra t a)) T '_A</‘Wmﬂ("r’-’kr""*‘q.‘_—f“’ - kﬂr"‘v"""“\»ﬂ”v Bt Ry A e S
22 lock : 1 flag_ptid
flag altered
2 | .
ac? .8- o
process 26 num unused
rotection

data
null

R S I T e NEPL L TR iy VIt e W R, WC

22 words for}
header

. . P .
ey - i Wt 1,,,._,;«““'"&&““‘ T R e T e
M’"’\,f"‘w‘wr" L gt ! . .

. % /\r"’”’(L...-"'""&-:J Y Mé’\mﬁ_W%.ﬁd
11 pointer - :
double word -

airs : >
P B P g Mo ST ETTTEY, | o m I TG ST Wy e R R
44 words) \4 - ERCE b,
: i
94 user_storage : ’
B e e e e r i i bt o e e+ vt

page 11

n+l

22 words
for header

save area

. (A,mwbvww
44 words {

Block Structure

[~ ’ . e d

I e N il B IO T it PEPI gy

B I I e e e PO o 45 SO a0 7“]

Communications Structure

-~

flag . : altered
num " unused
fgptr
wﬂWMu‘NW\,WW S SN R S p—

S

T/\/-/\/\-m-*'\w-w‘ st WVl W MR N

T T T e L WINEIRLCE SR .

i e "V?/VL e e e e e s

-~

pége 12

next_free, size

last_free, prev_block

user space

Routine name: area_

(1)
(2}

(3)

(4)

(5)

(6)

(7)

page l3

-

AREA INITIALIZATION

Round area-ptr to 0 mod 8, get desired area size

Allot 92 words for the header, including save-area structure |
for across-process protection. Initidlize the header.

Compute the storage remaining for user allocations, and
store it in length. Zero the stratum offsets

Create a block header for the user space, and chain it into
the appropriate stratum. If there is not enough space (< 2
words) after step 2, signal- condition error. If returned to,.
go to step 2. B

Initialize next_free to "0"b, last_free to index of stratum
in which it is chained, size to the number of words in this

"block (including the block header), and prev bloeck to zero,

since there is no previous adjacent block which is free.

Set up a dummy header for a non-existent block at the end of
the area. This is used to keep track of the-allocation status
of the last real block in the area. Initialize prev_block

to the offset (from area header) of the real user block.

Return

T TR

A he YR i e

e g S ST T 0, "B e T AR

page 14

BASIC ALLOCATION ALGORITHM

Routine name: alloc_

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

()

Rouﬁd area_ptr to 0 mod 8, obtain desired block size.

Perform those checks necessary for protection against inter-
rupts (described elsewhere). Assuming the area is in a con-
sistent and usable state, these steps follow:

Verify that the size desired is not negative. If it is signal
error. On return, restart operation.

Pad the request to an even number of words, and add 2 to the
request to allow for the block header. Note that no less than
8 words is ever allocated.

Determine the greatest power of 2 less than the desired size.
Investigate this and all higher strata for the presence of a
free block. 1In partlcular, since only the first member of a
chain is examined, the size of the free block (in the enterlng
stratum only) is compared with the desired size, that is, if it is
too small, the search proceeds to the next higher stratum,

not to the next block, if any, in the chain. If no block of
sufficient size is found the area condltlon is signalled.

Upon return, the allocatlon is retried.

If the found block is larger than the desired size by more
than 8 words, it is split (Go to 7). Otherwise, go to 8.

Determine the exact amount of extra space that is available.

The new free block header will be located at addr (found block)ln,
where n is the desired size. Determine the stratum to

which the unused portion of the split block belongs. If it

is in the same one as the found block, reset the chains to be
directed to it. Otherwise, reset the chains to exclude the

found block, and chain the unused portion into the appropriate
stratum. Fill in the headers of the allocated and unused .
portions, as appropriate. Go to 9.

Reset the chains to exclude the ‘allocated block.

Set next free to the offset from the area header. Indicate

the state of the allocated block by setting the header of the
block following it to zero in the prev_block field. If the
block was split, update the prev_block field of the header of
of the block following the unused portion to point to that
portion, thus indicating that it is free for allocation.
Increment the ntmber of allocations, n_alloe, to account for
this one, Zero the user portion of the block. Set result_ptr
to addr (found_block)|2. Return to caller.

~—

1

BASIC FREEING ALGORITHM

loutine name: freen

(L)

(2)

(3)

(4)

(5)

page 15

Obtain block pointer, and back up 2 words to the header.
From the next free field in the header, obtain a pointer to

the atrea header. Obtain the size of the block.

Examine the prev_block field to determine if the previous
block is free. If it is, obtain a pointer, and add the size
to that we already have. Flag that merging of that block

is to.be performed.

Repeat the procedure for the following block, by checking the
prev_block field of the block following that one (the second
block). 1In this way, we merge all adjacent free blocks into

a single block.

Determine the target stratum of the final block (after merg-
ing is done, if any). 1If that is identical to the stratum
of the merged component (already free) in lowest position in
the area, update the size field to indicate the new boundary
of the merged block. If the block following that which we
are now freeing was merged, unchain it from its stratum.

Go to 4.

Set the prev block field of the header in the block following

the merged block to point back to that portion.
field of the merged block as appropriate.
Decrement the number of allocations.

Return to callef.

Set the size

page 16

AREA PROTECTION

The following algorithm is observed during any freeing, or allocation
operation,/ on an area. All changes which must be made to an area

are first made in a double word (one for each block header in the area
which is to be modified) in a save space, and a pointer to the actual
l1mcation to be modified is saved as well. The area is actually
updated as noted in the algorithm below.

(1) Check, and set to the user's process identifier, if zero the lock
the area. If it was zero, go to 2, or if equal to the identifier
of the current process, go to 3. Otherwise, call hcs_Sclear lock* -
to determine if the lock is set to the ID for a defunat process
and set it to zero, if that was the case. If we have cycled through
here more than 3 times, signal the condition "area lock wait".
Upon return, zero the counter. In any case, proceed to 1l.

(2) Check the flag in the save space in’ the area header. If it is
' equal to 2. ., the space contains valid data, and we must update
the area. The double words are stored at the locations specified
by the offsets in the pointers. 1In addition, the area header
is updated. Verify that the contents of the save space
were not altered. If they were, do to 2. Otherwise, go to 3.

(3) Check the flag pointer (area header.fgptr) for a null value.

-+ If it is, go to 4. Otherwise, compare the process id associated
‘with that pointer with the id of the current process. If it is
not equal, set the pointer null, and flag_pid to the current
process id. In any evént, go to 4,

(4) Save the current flag pointer in the local automatic storage save
space. If that pointer was null, go to 5. Otherwise, check
the flag for a value of 2. If it is, perform the following:
{Ootherwise, set that flag equal to 1.}
(A) Copy the updated version of the area header to the
real location. If our data was altered ("altered
bit" on) while we were storing, go to A.
(B) Similarly, store the double words at the locations
specified by the associated pointers. If the data
was altered, go to B. :

Note that step C. is performed only if the good save

_ space belongs to this level. Otherwise, go to 5.

(C) Chain backwards through all flag pointers until a
null pointer is found. A%t each level, mark the data
altered, and wherever a target location i€ found to
be the same as one at the topmost level, change the
value of the corresponding double work at that level
to that at the topmost level. This insures that all

* See Attached

page 17

levels will update again with the correct information.
If we were interrupted, and our data altered, go to
C. Back up the area header flag pointer to the pre-
vious level, if any. Go back to point of invocation.

(5) Set the flag in the local automatic save space to zero, and point
the area flag pointer to the save space. The zero value indi-
cates to higher levels that we are merely gathering data for
our operation. When we have finished such accumulation, we
will check the flag, and if it is zero, we set it to 2.

If it is equal to 1, we were interrupted, and must assume

that the gathered data is invalid, and we must begin the pro-
cedure again. The check of the flag is performed via the stae
(STORE ACCUMULATOR CONDITIONAL) instruction, which is non-inter-
ruptable. This is implemented in Multics PL/1 as the stac
built-in function. :

(6) Perform all data operations upon the save space, as appropriate
" to allocation or freeing. (Described in those sections).

(7) stac the flag in our save space, as described above.

(7A) If the stac operation was successful, mark the static

(in area) s%ave space as "no good" (raise a flag), and

update it from our automatic save space.. Verify that

. our save space did not change, if it did, go to 7A.

Otherwise, mark the static space as "good".

(8) Perform the bperations described in sections 4A-E.
. Complete allocation or freeing operation, and return.

page 18

Mininmum Algorithm Required for Supervisor tlear_lock entry

declare hcs_$clear_lock entry (pointer);
call hcs_$clear_lock (area_lock_ptr);

This procedure ruust validate the 36 bit rrocess id pointed to
by area_lock_ptr. If it does not belong to an existing process,
the lock is to be set to zero.

pick up process id
from user's lock

)

Yes .
return

‘lock the "clear_lock"
lock. 1 :

still equal to
Qriginal (input) value

yes

zero it

> unlock "clear_lock" lock returr

e e " —— —— T ——" T —— S — " Yo _—_— " " —ia S o P T i e M e G e G A e S S G W Gt WS G S S S R T G GFE e G G G B T M S MRS S Swe Gt w—

1 This lock is used to prevent more than oﬁe‘process from executing
this code at once., It is a per-system lock cleared by the
Multics salvager.

