TO:

Q
.

T. Clingen

J. Corbatd
Freiburghouse
W. Gintell

I, Morris
Padlipsky
Roach

H. Saltzer V//
H, Van Vleck
Webber

ALrFRELAA

m»—].L.FU

FROM: V, Voydock
DATE : October 27, 1971

: PN et
SUBJECT: Coding Standards
)

Enclosed is a revision of the three part standards docéument which was
published as MCB-576, I would appreciate hearing any comments and
suggestions you might have, in particular suggestions for new standards,
In addition, please notify me if I have failed to mention something which
1s currently being enforced as a standard, There will be a meet ing

to discuss coding standards on Thursday, November 4 at 10:30 a,m. in

the Honeywell Conference Room. Another issue which should be discussed
at this meeting is whether we should have more strict rules about pro-
gramming style, For example, should we require that every program con-
tain a paragraph describing its calling sequence,

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION PAGE 1

Identification Z

=2

Design and Coding Standards for System Programs

V. L. Voydock

In order to insure that system programs are of a uniformly high quality
in design, coding and user lntemface; the feilow1ng standards have been
established, These standards apply to all- progrm in the Limited Ser-
vice, Standard Service, Maintenance Tools and Deve10pment Systems. -
It is impossible, of course, to exhaustively list everything one must

do to produce well-designed Programs, Designing a good program is still
more an art than a science, Therefore, the project management reserves
the right, in certain cases, to require further modification to a program
even though it meets the standards below. Similarly, exceptioms will,

of course, exist only with the explicit approval of the project manage-

ment,

Coding Standards

U U SR O S e

&r 1. All system subroutines mglt bc pura, 8o that a single copy

i
\

"_*’£;§_BZ“§5;£;E'by all us users. " The Multics PL/I and FORTRAN compllers

prodnc. only pure subroutines

2. 111 system subroutines -;stubc written in the PL{I language, Explicit

permission of the prOJect management is requlred to use any other

language., To aid others in understanding a program, the program listing
should be well commented, This includes explaining the mesning of impor-

tant variables,

MSPM SECTION PAGE 2

3. Only Standard Service System and Development System subroutines may

be called,

4, The names of all system programs that are not comm#nds or active

functions must end with an underscore (“ ”) The names of all temporary
segments and all non-standard I/0 streams and condition names used by

system modules must also end in an underscore, This is to avoid naming

conilicts with the user,

5. All variables used, anludingvcalled subroutines, must be declared,
This is done to increase program readability and reduce the confusion
introduced by default or implicit declarations, For called subroutines,
the parameter list must be fully declared, unless, of course, the sub-
routine accepts a variable number of arguments (e,g., a free format
output subroutine), For readability, declarations should be collected
together in a logical way (e,g., at the beginning of the subroutine or

N e e

\ block for which they apply, or at the end) rather than beiug scattered

e

threughout the program,

-

6, Special characters should be placed in the program directly. To lessen

dependencies on the character code being used, the built im function unspec show!

_not be used for this purpose. Fox emample,
del nl char(l) initial ("

");

declares "nl" to be a one character string whose value is the new line

character, The statement
unspec(nl) = "000001010'b

should not be used,

MSPM SECTION PAGE 3

7. Use of external static variables which do not contain a "$" (e.g.,

'0

"del x external static’) is prohibited since this data type

annot” be

efficiently implemented in the current Multics ‘environment, External

references of the form 'h$b"are allowed., If the programmer needs to
have an external data base which is shared among many~subroutinee, he may either

creete 8 eeguent by an eppropriete file system cell end reference it using

basedretructures orﬂuse mrhe aseeﬁbler to create a data eegment

by appropriate use of the '"segdef" pseudo operation, The programmer
wishing to do this should consult with a knowledgeable member of the
Multics Development Group,

8. All variables should be of the automatic storage class unless there
is a good reason for them to be internal static, i,e,, they are static
by nature, See also rule 9 below.

9. In PL/I programs to avoid having to initialize variables whose values

are constant every time the\eubroutine conteining them is entered and to

avoid having copies of these variables made for every user of the\eubrou-

till,;one should use internal static and initialize the variables using

—— S ——
L

the initial attribute, The PL/I compiler will allocate space for these

variables in the text section of the lubroutlne being co.pil.d end will

initialize them, Since the text section is pure, one copy of these

variables will be used by all users of the subroutinej//Uhfortunltely,‘if
a variable of this type is passed as a parameter to another subroutine, the

compiler has no way of knowing whether or not that variable is to be

e ————— e Am s

MSPM SECTION PAGE 4

changed by that subroutine and it, therefore, puts the variable into
théﬁllnkage sectlon.‘/// .1h;féfore, if one has a large
number of "constantﬁ vafiébles ghat é;e also passed as parameters, one
should put them in the text portion of an assembly language program and
initialize them using the appropriate data generating pseudo operations
and reference them using either based structures or the "a$b' notation,
This will assure that only one copy of these variables is used by all
users of the subroutine, The progiﬁhm@r wishing more clarification of
ngmméﬁié*point Shduld consult with a knowledgeable member of the Multics
Development Group, This rather messy problem will disappear if and when
<ithe PI/I language is changed to allow parameters to be declared "read_only",
10, Use of the PLJI allocate and free statement should be cleared in
advance with project management, since there often exists more efficient
ways to accomplish the same task, Subroutines that do perfurm alloc&tions

-

(or e‘ll lubroutinaa which do) must antabl;ah a clenuup handler to free

| -

the storage in the event processing is aborted,
11, The programmer should avoid writing PL/I functions with multiple
entry points which return different data types unless there is a good

reason to do so, since this generates extra code at each return statement.

Programming Style

1, The most common route through a program Bhould be tha most efficient.
More exotic facilities which are lnherently expensive should be separated
from the simple facilities so that a casual user need not pay for the

exotic every time he uses the simple,

e i

MSPM SECTION PAGE 5

2, System programs should in goncral uae one of the two standard IIO

streams, user_input and user_output, Only Special 1/0 service programs
should issue I/0 attach or detach calls for these streams, Commands
should not, in general, have an 'offline output' option, The file output
command is provided for this purpose.

3. A11 prograns that are not caumnnds or active functions should return

a status code 1nd1cating successful completlon or occurrence of an unexpected

event, unless they are progrnnl for which errors are unrecoverable or

extremely rare, e,g., console output subroutines. This type of program
should make use of the Multics sighailing facxllty to signal that one
in a million error. In general, because of the higher overhead involved,

programs shoold not make use of the Multics signalling facility for

"routine' errors and status conditions,

4, In most cases, programs that are not commands or active functions

‘should not print error messages, but should allow a hlgher 1eve1\aubroutine

LA

decfde on the seriousness of errors and what to do about them, In general,

it is wise to let the most qualified\aubroutine glve the mossage.i A

good rule of thumb to determine the 'bost quallfied"\subroutine is to ask

whether anything could be learned by reflectlng the error to a higher

lcvul lubroutine. If the answer is no, then we have found the most quali—

e mwaulguv-@ uan.&ur ik 43 !v

fiedi Q\ﬁﬁ@??ﬁ

P AN AU

. P e ot

R T R SR AT

5. All programs that are not commands or active functions should assume
they are called with the correct number and type or arguments and should
not make checks for this. This is to avoid continually paying the cost
of argument checking in programs which .call the subroutines correctly.

This does mean that the programmer must be careful to call subroutines

correctly.

MSPM SECTION PAGE 6

Nm.héiﬂ Systln programs should be prapa;ad to execute properly even if they
did not complete execution during a previous invocatign becausé of a
"quit" or a fault,

7. System programs should never call a command if there is & subroutine

which does almost the same thing, Commands are inherently more expensive

since they are designed to interact directly with a human user,

8. System programs should not use a subroutine to do something which can
be done reasonably easily in a few PL/I statements, The purpose of this
rule 18 to dvoid the proliferation of unnecessary system subroutines,

The exceptions.to this rule are input/output (see paragraph 1 under

"Error Handling and Iy0") and implicit‘coﬁversion from chéracter to
numerlc data types, The reason for the latter exception is that this

type of conversion is inherently more expensive than calling a specialized

| subreutine.
| ;

et it e MMt i :

9. Calls to subroutines which require descriptors should be minimized
when this does not conflict with program readability or degrade the user
interface, This 1s because of the higher overhead involved in setting

up argument lists with descriptors, For example, one should try to mini-
mize the number of ioa_ calls in a program, This should not be inter-
preted to mean that one should remove 21l error messages from his program

or make their output so terse as to be unreadable., It simply means that
if, subject to the constraints mentioned above, it is possible to use

one loa_ call rather than two then one should do so.

MSPM SECTION PAGE 7

Data Base Management

Designing a program for a virtual memory environment requires a new
outlook on program and data organization, Though the programmer is
freed from the onerous task of allocating physical storage for his pro-
grams and data (storing intermediate results on secondary storage, over-
laying parts of his programs with other parts to fit into core memory,
etc,) he cannot ignore the issues of data management and program organi-
zation if he wants his program to be reasonably efficient, This is
especially true for programs which manipulate large amounts of data,

The attitude, 'I have an infinite virtual memory, If I need more

room I'll create another segment', may be all right for the casual user
building a one-shot program but not for the Systems programmer, A major
aim of the programmer should be to minimize the working set of his pro-
grams, i,e., his programs should create as few segments as is practical,
reuse the ones they do create and should avoid unnecessary moving of
data, In Multics it generally pays to spend cpu time (within reason)

to save space, This principle should not, of course, be taken to

an extreme, It does not mean, for instance, that one should not use a
hash table, It is true that a hash table takes up more space than an
equivalent linear list but a program will take less page faults refer-
encing the former than searching the latter, 1In this case, the actual
working set of the former is smaller even though its potential working
set is larger, 1In all cases, the programmmer must exercise his judge-
ment as to the proper trade-off between working set size and cpu usage,
always avoiding the temptation to allow his working set to expand to

infinity,

MSPM SECTION PAGE 8

In addition to this basic principle, the following guidelines apply.

1, System programs must leave system data bases in a consistent state,
e.g8., & program which changes the contents of a segment should reset the
bit count of that segment when it is done with it, Programs should make
any period of inconsistency as short as possible, They must also clean
up after themselves, e.g., free storage should be released,

2., TIn order to assure consistent behavior, all conventional translators
must use the subroutine ti_to interface with the file system, It might
not make sense for non-standard translators such as BASIC to use ti_,
Exceptions of this sort should be cleared in advance with the project
management,

3, System programs should initiate the segments they access by a null
reference name and should subsequently access those segments via a pointer,
In general, segments initiated by a module should be terminated by that
module (see (4) below).

4, 1In general, the process directory should be used to hold temporary

segments, Programs should clean up after themselves by either truncating

”

MSPM SECTION PAGE 9

or deleting their temporary segments, If the temporary segment cen be
reused the next time the program is invoked it should be truncated
Otherwise, it should be deleted, As stated above, the names of temporary
segments must be lntelllglble and must end in an underscore (" ").

Se Any lyltn program which creates new segments should put them into

the user's current worklng dlrectory unless the‘progrlm explicitly makes
provision for the user to provide a target directory, (The moveb and
copy commands fall into this latter category,) The aim of this rule

is to avoid 'messing up' another directory, such as the directory from
which a source segment was obtained,

6, Syltcn programs which create new scgments must set access control

lists according to the conventions enumerated below. If a segment is
being replaced instead of being newly created, the command must leave

the access eontrol 1ist as it was before the command acted, For instance,

e L

a compller finds that an ‘object segment already exists with effective
access RE for this user, with other access for other users, The compiler
must obviously add W access to change the segment contents, but should
restore the entire access control list to its former value when the

compilation is completed., The file system interface| lubroutine ti does this

automatically for the translator writer, The access to be glven to the

user creating a segment is:

MSPM SECTION PAGE 10
Begment Type Access Ring Brackets
directory segment SUMA, vV, VvV, V

i
object segment RE Vy, Vy Vv
data segment RW x V, V, V

where V is the current validation level of the user,

Additional Standards for Commands and Subsystems

Through the mechanism of the command processor any progrém -- system
subroutine, system command, user lubroutiﬁes -~ can be invoknd fr;m the
o éShé&Ié;_FS§§2ém comméﬁds are a specilal class éf‘aubroutincs that are
éxplicitly programmed with the console user in miﬁd. They must check
carefully for argument validity; they must warn the user of possible
misunderstandings; they must be very reliable, They must to the greatest

possible extent be a self-consistent set, i.e,, the behavior of a command

should be predictable from that of other commands,

P . & .

For these reasons a number of additional standards are necéssary for system

commands and subsystems,

Naming Conventions

1., For ease of typing, all commands must have an abbreviated name con-

sisting of the first letter of the first two or three syllables or

first two or three words of its name (e.g., rename rn, ynlink

ul, print_attach_table pat),

MSPM SECTION PAGE 11

2, All command names and abbreviations must be cleared in advance with

the project management,

Programming Style and User Interface

1, If 2 command would also be useful as a subroutine, break it apart

into a command which interfaces with the user (processes multiple argu-

ments, handles the star and equals convention, interprets control arguments,

etc,) and a subroutine which does the work, This subroutine, like all
subroutines, should return a status code rather than printing an error
message, The outputing of error messages like all other user interface
problems should be handled by the command,

2, Any command for which the star convention makes sense should use the
star convention, Any command for which the equals convention makes

sense should use the equals convention, \

3. Characters which haveAspecial meanings to commands (e.g., '*", ’'w",
'S "<") should not be used in any context other than their standard one.
For example, the "glorph" command should not interpret an argument of

"#'' ag meaning that the user wants to be logged out,

4, Commands should not be ''too powerful', that is, typing errozs should
not cause disastrous results, For example, with the old remove command,
"remove a>b'" would delete the segment b in directory a, whereas ''remove
a> b" (i,e.,, one accidentally typed a space in front of the 'b'") would
remove the directory a, To remedy this, there are now two commands
"delete', which deletes only non-directory branches and 'deletedir'' which

deletes only directory branches,

MSPM SECTION PAGE 12

5. Unless the purpose of a command is to produce some sort of output,
it should produce no output during normal operation, i.e,, it does not
need to tell the user that it is doing its job, For example, if one
enters the command "delete x y' the delete command produces output only
if it has trouble deleting x or y, It does not type ''deleting segment x'",
"deleting segment y'. Commands which take a long time to execute (e,g.,
PL/1) should print a short message when they are entered to indicate
they are functioning, The general idea here is to reassure the user
that he has not done something wrong, After more than a couple of
seconds wait, the user, particularly a novice user, begins to worry that
perhaps the computer is waiting for him.

6, Commands which take the segment names as arguments should accept path-

nemes not rafcronce names, unless thny explicitly deal with reference

-

N

names (e.g., terminate refname) The user who has a reference name he
wishes to pass to a command may use the ''get _pathname" active function

to convert this reference name to a pathname (e.g., ’''status [get_pathname
x]" will cause the status command to be called with the pathname of the
segment whose reference name is 'x''),

7. Commands which are really subsystems should be prepared to handle the

"program interrupt’ condition which is signalled by the program interrupt

¥

the current edm request is aborted and edm is ready to accept a new

request from the console,
8, We come now to a standard that is difficult to express with any

degree of exactness, The phrase ''Gommands should be designed with the

&”M)'“"JM\

WM W

e

S [U

MSPM SECTION PAGE 13

user in mind'" expresses the spirit of the standard, What follows is a
series of examples designed to sensitize the reader to some of the issues
involved in designing a command, Calling sequences should be logical

(e.g., the user should not have to remember that a '$%'" as a third

argument to command "farfal'' causes all segments with second component namea
"fred" to be deleted, whereas a '"?" in the same position suppresses this
feature), Commands should allow user intervention when appropriate,

For example, the delete command should allow the user to decide whether

a protccted iegment should be deleted; rather than forcing.him to make the Eegm@nt

e — e . . v e e s m e e - -

deletqabla and re-submit the delete request (or worse, delete the segment

without warning) ” Jud1c10us use of red console outﬁut is encouraged
It should be used to call attention to important or unusual occurrences,
Remember, over-use destroys the whole purpose of red output ~-- a command
which outputs everything in red may as well output everything in black,
"Canned’' messages pfinted by commands should not contain characters which
come out as escape characters on IBM model 1050 and model 2741 consoles
and on model 37 teletypes (e.g., 'g<segment ¢> not found” is not an

acceptable message),

Argument Handling

1, Commands, whenever possible, must accept pathnames (not just entry
"names) as arguments, The subroutine expand path_ should be called to

convert & relative pathname into an absolute pathname,

MSPM SECTION PAGE 14

2, Commands which deal with segments whose names have a fixed suffix
should not force the user to type that suffix, Rather, they should append
that suffix to their arguments if it is not given, For example, '"p4l x' and
"pgl x,pgl" should be equivalent,

3. Any command for which multiple arguments make sense should accept
multiple arguments, This is especially true for commands that operate

on single arguments (rather than pairs, triples, etc,)

4, All commands which accept a variable number of arguments should
declare themselves as having no arguments (i,e,, 'command name: proc;'')
and should obtain their arguments using the procedure cu_$arg ptr,

5. Commands must obey Multics control argument conventions as described
in the MSPM Section ''Control Argument Conventions”,

6, 1In general, for the convenience of the user, command arguments should
be order independent unless the order dependency serves a useful purpose

(as in the various options to dprint),

Error Handling and I/0O

1. The input/output facilities of the PL/I language must not be used

in system programs since they are inherently more expensive than system-
provided subzoutines,

2, To read a line from the input stream 'user_input" use the subroutine
‘(ios_$read ptr’, To read a line with appropriate data type conversion
(i,e,, the user is typing in pointers, floating point numbers, etc,)

use the subroutine ''read_list_',

MSPM SECTION PAGE 15

3., Output lines fall into three distinct classes:

a, 'unusual status'' messages

b. questions

¢) everything else
Line of type a) should be outputted using the subroutines 'com err "
and active fnc_err_ (active functions should use active_fnq_erpj)all S
other modules should use com_err), lines of type b) using the subroutine
command_query , These two subroutines are provided in order to centralize
the processing of lines of type a) and b) so that changes in system con-
ventions in this area may easily be made., For lines of type c) the

"

subroutine '"ioa ' should be used when it is necessary to format an

output line; otherwise, use the subroutine ''ios_$write ptr’,
4, Commands should check for status codes which have special meaning to

them and either print appropriate error messages| or, if the error

1l ou.ily reeoverabl%' allow

e e e i o

for user intervention using command_query ., In all cases, messages must

Ve e s p———

contain the name of the command which generated them since if this were
not done, the user would have no way of knowing which command generated

a given message if he had issued several at once or was running an exec_com

segment. COmplex programs such as compilers may output diagnostics by standsrd

e © L e e g s i g pep—— - — e B e c ~ A

outpnt subroutines but should have at 1east one call to com err_ to notify

PN

- the system that an error has‘occured,

MSPM SECTION PAGE 16

Appendix to Coding Standards

This appendix contains some more explicit standards that are currently

in effect, The standards below are less general and (possibly) more

subject to change than those in the body of the document,

1.

2,

3.

b4,

If the allocate and free statements are used, the allocation should
be in 'system free n', i,e,, listen_$get area and a based area
should be used, Things allocated in system free n should be freed
as soon as they are no longer needed; cleanup handlers should be
established before allocation to guaréntee the freeing,

The second argument to com_err_must be the full name of the command
calling com err_,

Commands that expect ''yes'" or '"no' as answers to a question should
use command query with the 'yes or no' switch set,

Currently check star_ should be called if the star convention is used,

CUTTETRETLCTENY ¢dTY8 T6 An internal subroutine are generated if that

6.

subroutine is called only by its containing block and if it contains
no adjustable automatic storage. The programmer, therefore, should
use this construct for his internal subroutines whenever possible,
Implicit conversion from arithmetic to string types and vice versa

is not currently allowed since it is inefficiently implemented,

MSPM SECTION PAGE 17

10.

The subroutines change wdir_ and get_wdir should be used to change
and get the working directory., Currently they merely call the
appropriate file system subroutine, but if the modification to the
search rules proposed by C, Clingen is adopted, they will need to do

o 13
more, ‘A Vkﬁ- pqu (;tivkb,4,_
o

Automatic label arrays should be declaredﬁlabel(...) so as to avoid
[l

unnecessary transfers to the pLl unwinder, (see Multics PL/I/Imple—
mentation Notes) |

Nothing should be declared fixed dec or float dec by default unless
it is used only with the addr function,

The table option should not be used when compiling segments for

installation as it significantly increases the size of the object
segment,

Lr*‘-

