TO:

FROM:

DATE:

SUBJECT:

. T. Clingen
. J. Corbatd
W. Gintell
Kobziar
Meer
Morris
Roach

H. Saltzer
Schroeder
Stone
Vinograd
Weaver
Webber

TZ2 "o

va.

o

UJEZUL'-‘:I:Z

R. Feiertag, V. Voydock
October 29, 1971

New Directory Format






-1-

This document presents ideas concerning & new directory format
It is somewhat disorganized due to a severe time constraint for its pre-
paration, The first few paragraphs emphasize and motivate the important
conceptual changes in the directory format change and the rest of the
document describes the change in detail,

The most important significant conceptual change is in the elimin-
ation of user codes, The current implementation of ACLs imposes an arbitrary
upper limit on the number of users that may be registered (by registered
is meant that a user is granted a unique access identification) on the system
and also permits any other user to discover if that user is registered,

The first problem can be alleviated by increasing the size of the user

code table but this does not solve the problem, It is proposed that ACLs
contain the character string identifier of a user rather than the user code,
This technique solves both problems related to user codes. It also simplifies
much of the implementation of the system having to do with maintaining the
user code table,

The use of character strings rather than user codes in ACLs
adds some cost to the maintenance and use of ACLs, The extra space required
can be minimized by keeping the character strings associated with ACLs of
a particular directory in a common pool in the directory and have the ACL
entries contain only relative pointer to the character strings, Since
most ACLs in any given directory have most of the access names in common
this should considerably reduce the storage needed. Some amount of addi-
tional time will be necessary to perform character string comparisons rather
than numerical comparisons. However, with clever coding, this difference can
be made negligible.

The second conceptual change is switching to variable length file
maps which will serve to save space in directories since most file maps are
small. This is especially important if we are to implement 256K segments,

The third significant change is in allowing variable length hash
tables. This will permit most directories to consume less storage and will
allow a directory to contain a greater number of names. Note .that although
the directory format is being changed, some of the features that make use of
the new format will not be implemented at the time of the change. It is
intended that only those parts of the system that must be modified to perform
the reformatting be changed initially and that other features which the re-
formatting allows be done as time permits. An example of a feature not to

be done initially is variable size hash tables.



-2-

This section describes the differences between the current directory
format and the proposed new directory format., The description is divided into
three parts: deletions, changes, and additions. No attempt is made to dis-
cuss how the necessary changes are to be accomplished, that will be the subject
of another document,

As of this writing some issues have not been resolved and therefore
will not be discussed, These issues have to do with the allocation of hash
tables and the inclusion of metering statistics for directories and segments,

A supplemental document will be issued when these issues have been resolved,

Deletions
1, All deletions from directory format have to do with items that will be
obsoleted by the arrival of page multilevel, The deletions are:
a) per process master device limit -- the number of records of segments
in the process directory that go on the drum,
b) master limit switch -- indicates if this segment goes on the drum,

¢) move device id -- indicates to which device the segment is to be moved,

Changes
1, The most significant change to directory reformat will be in access control

lists. We plan to eliminate the user code table and in its place store the
actual character strings representing access capabilities, in the directory.
In order to save space the names will not be stored in the ACL entries, but
in a common pool for the directory, and each ACL entry will contain rela-
tive pointers to the names. The common pool will consist of two threaded
lists (threaded forward and backwards) of names, One list will be for
person names and one for project names, With each name will be & count of
the number of ACL entries that refer to this name. When this count becomes
zero the name is deleted from the pool, Since it is important that names
in the pool not be prematurely deleted (i.e,, not deleted while some ACLs
/\ still refer to it)"ig‘ig‘EEEE—EEfEEEEEEEZ: Relative pointers to the

beginning and end of the two lists will be kept in the header,



-3-

ACL entries will change considerably, ACL entries will be forward
and backward threaded and will contain a relative pointer to the person name
(in the person name pool), a relative pointer to the project name (in the
Project name pool), a tag, the standard access bits, and the extended accoss
bits,

Each branch will contain a relative pointer to the beginning and end
of the ACL and a count of the number of entries in the ACL, The purpose
of the count and the end pointer is to aid salvaging, Branches will also

contain the standard and extended ring brackets for the segment,

2, Due to elimination of user codes, the representation of the author of a
branch will have to be changed., The author will consist relative pointers

to the person name and project name, and the tag,

3, File maps for segments will be of varying sizes instead of one fixed size,
The sizes to be used are 4, 16, 64, and 256 device addresses. The branch
will contain, in place of the file map itself, a relative pointer to the
file map and its size, The file map itself will be allocated within the

directory,

4, Path names will also be allocated instead of being included in the branch,
The branch will therefore contain a relative pointer to the path name,
the length of the path name, and the size of the allocated area containing

the path name,

5. The current branch count in the directory header will be divided into a

non-directory branch count and a directory branch count,

Additions
l, Initial ACLs will consist of threaded lists of ACL entries. The directory
header will contain 16 relative pointers to the beginning and end of such

ACLs to be associated with directories for the 8 rings and the other 8 will



o

A

-4

be for non-directory branches, There will also be a date time used, date
time modified, and date time dumped for all the initial ACLs in a directory
and a relative pointer to backup information. The backup info pointer is

for later use when additional information is kept by backup,

A relative pointer to backup information for the CACL will be added, It
is hoped that the CACL will be eliminated before backup is upgraded to make
use of the backup info pointer and therefore it will never be used, It is

included just in case,

In order to help the pre-page, post-perge mechanisms it is useful to identify
those segments which are per-process, e.g., stacks and combined linkage
section, For this purpose a switch will be provided in the directory

header indicating that this directory contains per process segments, A
switch will also be provided in each branch indicating that it is a per

process segment,

For the convenience of the salvager each branch will contain a relative

pointer to the end of the names list,

Each branch will contain a backup info pointer that will eventually point
to additional backup information,

Each branch will contain a safety switch (helps prevent accidental deletion
of the segment), a maximum length, an off line segment indicator (indicates
segment is off liné), an entry point count (call limiter), and an entry
point count enable switch (indicates entry point count is enabled),

The attached declarations define the exact structure of the proposed

directory format at its current state of development,



Supplement:

In order to allow a directory to contain a greater number of
names and in order to allow the majority of directories to consume less
storage, hash tables will be of varying size. When a directory is created
its hash table will be created large enough to efficiently contain a few
entries., When the hash table Becomes significantly full the directory will
be restructured to contain a larger hash table. To accomplish this nothing
has to be added to the directory header. In fact the current relative
pointer to the beginning of the hash table is to be deleted because the
hash table always immediately follows the header.

In order that the system can easily restrict the depth of the
hierarchy, the depth in the hierarchy of a directory will be kept in
the header. It is necessary to limit the hierarchy depth because parts

of the file system cannot support an arbitrary depth.






