. B B ‘ | &Q\A‘* }‘(u Q’“\N//.(?" e "’”i;d
: " m—.« 0 cepy Loty

’ L x5
mO)%'WY IR LI, X \TT TROFFICE CORRESPOR fj,“_,,‘f*‘*ﬂ"
~FRJE(C::E3?VED L
(e} :)
bA ; 1072 | | BATS Dor tmato
TE: -
P Jwme T, 9T - Jul 151972 |
TO: - R. A. Freiburghouse
FROM: M. G. Smith, D. Bricklin L M ‘
—_ _ : .
DIVISION: * CISL/PCO : RECEIVED
A . co _ JUN 2 218
SUBJECT _ Proposed Enhancements to Multies APL ’ ,“., S B A N SALTZER
Summagx.

The present Multics APL (apl 052572) is, on a 11th1y—1oad°d Multies
system, slower than APL/360 under CP- 67 by a factor of 20:1 (indicated
virtual times; ours includes system overhead; theirs does not) when
running & typical test script. We estimate that the improvements
summarized below will change the factor to 3:1, at a cost of one man-
year of effort spend enhancing APL. Actual test results on a subset
APL have already demonstrated a 5:1 ratio. Ve recommend that this
modest price be paid to sccure such an improved product.

Proposed Improvements.,

‘Two major changes to Multies APL are proposed vhich will each result
in a great performance improvement. These are a nev temporary
meaasgement scheme and a new fast call mechanism.

The new temporary management scheme involves using a stack discipline to
keep track of temporary results during expression evaluation, instead
of individual allocations and deallocations’'in a free-storage pgol.

~ Savings result not only from the elimination of &llocations and

~ 8eallocations, dbut also from eliminsting the bookkeeping necessary to -
properly deallocate storage upon errors. '

| I

VIR, YN

™ H .'. . R N .
FEICE CORRESPONDIEIL

- The new fast call mechanism involves binding all names used in a

-2 L S
‘\,

¢

function at function call time, rather than each time the names are
-encountéred during function execution. Hence, much more than the call

/alone is speeded up. In combination with the new temporary management
- scheme, funttion returns will be simply a release of the stack,

II.Fast Call Mechanism. '

. eliminating some Vcostly deallocations which ere now necessary.

Fach of the sbove changes 51gn1f1cantly alters the data formats
processed by the APL interpretcr, and hence impacts upon most

modules of the interpreter to a greater or lesser extent. All things
considered, if those changes are to be implemented, it will probably

be easier to recode most modules than to edit end patch the o0ld ones.
This will result in & beneficial general clean-up and permit us to throw
in a couple of new features and other performance. 1mprovements au almost
no additional cost

To be nmore specifie, an outline of the proposed changes is given below:
I New Temporary Management Scheme.

A. New parser, handles all on—condltlons ‘for operator-
control. .

B. New operator-controls (soplop, dopmop, sopmop).

C. New operators, including improved algorithms and

" general clean-up.

D. New error recovery. -

E. Save/load new workspace format, including real
pointers throuzhout.

N

A. New function caller, vhich binds all names at call
time in a local symbol table placed in stack.
‘B. New function return, which merely releases the stack.
C. New procedure-bead builder.
D. New lex which builds local symbol table skeleton,
. shorter tokens, special tokens for APL system commands.
E. Parser to implement fast step from line-to-line,
F. Save/load nevw workspace format.

k.

HON] 1'\/‘(?{.73'3}*' L I‘L"f‘”ﬁ‘}'j:?,@ (CIn C@TUR LSPON 3':2""‘?‘?5@”

-3~
. III. While Ve're At It (A grab-bag of inexpensive items).

A. Function editing will be sble to use any
Multics editor. o

B. Provision of & real I/0 dim in place of internal
routines, support 33 & 35 ttys & ARPA network,

- redo internal read/write routines conformably.

C. Execute operator.

D, Stop/irace control.

E. Profile option.

F, Limited-service or subsystem version.

Three-Month Plan,

- Assuming that one man-year of effort cannot be invested in APL, what can
be done in three months? Unfortunately, the major speed-ups proposed gbove
are the new temporary menagement scheme end the fast call mechanism, each
of which spreads across nearly all of APL because the underlying data structures
ere considerably altered. To do either one would cost almost one man-
. year by itself, as so many modules would have to be changed. Therefore,
it seems that the only worthwhile expenditure of three montls in terms of
“performance could be had be redoing the individual operator routines,
improving their algorithms where possible, and a genersl cleaning-up
‘eand belt-tightening of all the modules. This might result in a performance
improvement of 50 per-cent, giving us a 10:1 ratio to APL/360. :

K

WY WELL INTIEROFFICE CORRIESPONDEE

-

Conclusion . ‘and Recommendation.

'The present Multics APL is not in any sense combetitive with or even a

reasonable alternative to APL/360. The modest investment of one man-
Year would completely change this; Multies APL would then be within
approximately the machine differences of APL/360 (on a lightly-loaded
systen). The follow-on processor would meke us actually faster in some
cases. In view of the low cost of ach1ev1ng this, the avallablllty of
villing and able personnel, and the rising importance of APL in the
marketplace, we definitely recommend that Multies APL be so enhanced.
Also, since a three-month plan would not permit any fundamentel changes
in vorkspace organization so &s to allow either the new temporary nanagement
scheme or the fast call mechanism to be implemented, the three—month plbn
is hardly vorth considering as an alternative.

