—Salteer,
[P 1};

To: ' R, C. Daley wuaw
From: i P. R, Bos : QF“P“Am
Date: February 29, 12872

Subject: Justification for the ncw online updater

Online installations involve changes to the system libraries
while they are in use. This bas the following implications:

(1) Segments which are to be removed from service may
appear in the address space.of existing processes, and
hence may not be deleted, but must be preserved with
all attributes except names intact until all such
processes have terminated.

(2) The "window" during which a libhrary is in an
inconsistent state must be minimized. This means that
if several segments are to be updated together, the
name changes which effect the installation must be the
last operations performed, the segments having all been
previously copied, had acl's established, etc., rather
than installing them one at a time.

(3) In the event of a system crash or other disaster during
installation, enough information must be preserved in
the directory to be able to repair the damage by hand.
l.e. old names are to be transformed by some invertible
operation such that the previous state of the library
may be deduced by inspection.

(4) In the event an installation cannot be completed. the
library must be restored to a consistent state as
quickly as possible, l.e. error recovery must be
complete and autometic,.

(5) A detailed record of the installation should be kept,
so that if for any reason error recovery fails, that
record may be used as an aid in repairing the dmage
(related to (3) above),.

In the event that installed segments are unuseble, it must
be pcssible to undeo the installation, subject to the same
restrictions. :

The current set of updating programs are deficient in the
following respects:

(1) No provision exists for installing several segments as
a single operation, so that there is a large window in



(2)

(3)

()

such an installization during which the library is
inconsistent. This is evident even when replacing a
single segment (an operation which involves two
segments, the old and the new), because the previous
segment is "deleted" before the new one is even copied;
this can be fixed by rewriting the program, but the
more general case cannot be.

There is no provision for error recovery. This,
together with (1) means that almost any error which

‘causes an installation to be aborted results in the

library being inconsistent. (Note that inconsistency
appears not only between two object segments, but also
between source and object for the same module.) This
means that installations cannot be performed by
absentee processes or by inexperienced personnel, due
to the need for immediate manual error recovery.

The current procedures for manual error recovery
involve taking advantage of a bug in the way CACL ring
brackets are handled (just as, previously, the
installation process itself took advantage of the same
bug). The alternative is to login ring_l_repair each
time this happens, causing extra delays, or to.do all
installations in 2 ring 1 process,

The current br?anization of source segments in >1dd
makes large installations very time-consuming, and this
must be prime shift time due to (2).

The only way at the moment of obtaining a cross-referenced
(by bound segment name and component name) listing of the
system libraries is via the MSL database and its assocliated
software. This mechanism is deficient for the following
reasons:

(1)

(2)

(3)

The MSL- has no provision for several entries having the
same primary name component (e.g. an object segment and
an include file). Thre primitive tools (Ism_, etc.)
which manipulate the MSL segment are probably flexible
enough to do this, but the msl_util interface is not,.

The MSL is rapidly approaching the 64K size limit; a
number of include file cross-reference entries have
already been deleted. fnstallation of pll version 2
will overflow the MSL,

Due to system crashes and possibly bugs in msl_util or
1sm_, an MSL is frequently made unusable, so that a
previous copy rmust be retrieved., This results in'loss
of data, and by now there seems no hope of ever getting
the MSL up-to-date.



The MSL ¢éan he eliminated by preserving more information (in
particular, bound segment/component cCross reference) in the
directgries themselves. Programs to replace "ms1_info"
(which 'interrogates a single MSL entry) and
"msi_global_format" (which produces the printed MSL) using
this information instead are currently being designed by
Gary Dixon.

Large installations can be made less time consuming by
reorganizing the source libraries such that source segments
for a bound segment are archived together rather than
alphabetically, so that the installation of a large bound
segment requires only a single source archive update.

The remaining requirements have yielded the following
design:

(1) An installation request may be broken down into a list
of sub-tasks, i.e. installations of single bound
components or unbhcund segments.

(2) The installation of a bound component may be broken
down into a list of sub-tasks, i.c. compile the
component, perform submission test on source and
object, update (copies of) source and object archives,
bind, perform submission test on bound segment, and
install the source archive, object archive, bound
segment, and bindmap.

(3) The installation of a single segment may be broken down
into a list of sub-tasks, i.e. copy the segment (using
a temporary name), set up the acl, remove names from
the old segment (by renaming), add the new names to the
new segment, and delete the temporary name from the new
segment.

In each of steps (1), (2), and (3), it is desired to merge
the lists of sub-tasks obtained at each level before
processing any of them; this is done to satisfy implication
(2) stated earlier. l.e. if we are to install several bound
components, we will not install each one in turn, but will
first do all the compilations, then all the submission
tests, then update all the archives, then bind them all, and
then install all the generated segments in one batch,
Similarly, if we are to install several of these segments,
they are not to be done one at a time, but first we will
copy them all, then set up all the acl's, and only then will
we touch any segments names in the library.

It becomes apparent, once the problem is stated in this way,
that what is needed is a set of general-purpose programs
which are capable of breaking down tasks into lists of
sub-tasks, manipulating these lists, and processing them at
some later time. Once having these, provided they are



well-designed and eacsy to use, the updater requires only the
following:

(1) A program to translate an installation request into a
series of bound component updates |

(2) A program to translate a bound component update request
into a series of preparatory stéps and a series of
single segment updates

(3) A program to translate a single scgment update request
into a series of primitive tasks involving segment
attributes, etc.

(4) Task primitives for the following functions:

(a) 1list acl

(b) add acl

(c) delete acl

(d) replace acl

(e) 1list names

(f) add names

(g) delete names
(h) transform names (name -> name.l => name.2-...)
(i) copy segment
(j) wupdate archive
(k) bind

(1) compile

(m) submission test

In addition, (1), (2), and (3) are themselves task
primitives at a higher level. As seen by the task list
processor, all task primitives have the same interface, and
so are interchangeable, and the task list processor can
manipulate the interfaces without having tco know anything
about what is really going on.

Error recovery can be implemented trivially. For each task
t, there exists another task t' which performs the inverse
function (if only because that's the way we made them).
Instead of generating a simple list of tasks, we can form a
network, as follows: '

listb ->a->b =>c¢c =->d
4 \ 1
a'<- b'<- c'¢<- 4!
If task a succeeds, we go on to task b.. {f not, we go to

task a', and undoc everything done by task a, 1f task b
succeeds, we go on to task c; if not, we go to task b''and
then to task a', again putting everything back the way it
was. Since each task processed prior to the current task
was successful, it is reasonable to expect that the inverse



tasks will work also; hence this mechanism implements error
recovery for an arbitrary lists of (invertible) tasks which
should work in all hbut the most peculiar cases, and errors
during installation are no longer a problem. Furthermore,
it is possible to design the task processaor and all
individual task primitives such that processing may be
continued (or error recovery invoked) after a system crash
or process termination as long as the task list database is
preserved (i.e. ESD works). |In addition, de-installation
can be implemented via the same mechanism used by error
recovery.

For the initial implementation of the new oniine updater, it
is planned to provide capabilities for installing groups of
whole segments only, i.e. the topmost two layers of the
tree will not be available at first. However, extending the
initial implementation to the full mechanism described above
involves writing only a new command interface and a few task
primitives to update and bind archives and perform
submission tests, and a task primitive to translate higher
level installation requests into sequences of lower level
tasks; the design is already complete in the structure
provided by the task processor.

It is expected that the task processor (or another
generation of it) may find wide application in other areas
wherein tasks are broken down into subtasks which are not to
be processed until later, or are to be processed in a
different order than they are accumulated. Furthermore,
arbitrary networks of tasks may be constructed, which can be
thought of as '"programs'", whose instruction set consists of
primitive tasks, in a higher-level language somewhat akin
perhaps to an assembly-language version of lisp.

The schedule for completion of this project, to be perfectly
honest, is very uncertain, since all components of the
updater are dependent on the same task list processor. Once
that is completed, things should progress well, but because
the task processor must be the common denominator between
all other modules of the updater, without itself becoming
hopelessly fragmented, obtaining a workable design has been
a major problem. At the present time, | believe that the
last major design bug has been resolved, so that final code
for the task processor (totaling perhaps as much as 150 or
200 executable pll statements) may be completed. The name
and acl task primitives were coded and partially debugged
for a previous incarnation of the task processor, and should
require only minor changes to interface to the new version,
Also, the algorithm for breaking down a segment installation
request into these primitive tasks is known, although it is
not at present coded in any usable form. Finally, the:
argument processor of the command interface has been almost
completely coded, but the design of the rest of the command
must wait for all lower-level task modules to be completed.



If all goes well, it is possible to compiete the updater on
schedule. However, the schedule is optimistic; unforseeable
problems may yet crop up, as happened just a few days ago.
On the whole, this project has become about five time larger
than first anticipated; online installations are not as
trivial as some management personnel seem to feel.
Nevertheless, the current installation programs are totally
unsuited to the task, requiring a very high degree of
proficiency on the part of the installer to cope with all
the things that can go wrong (what will we do if Arlene has
to leave?). For this reason, | feel that though this is not
by any means a highest-priority task, it cannot be put off
for very long, and work should continue even though it is
taking a long time. !

wn



