MULTICS SYSTEM PROGRAMMERS® MANUAL SECTION BJ.O PAGE 1
Published: 02/23/67

Jdentification

Overview of Traffic Control
J.H. Saltzer

Purpose

This section presents a general summary of the procedures

of the central supervisor that perform processor multiplexing,
interrupt management, and inter-process signaling. The
procedures are known collectively as the traffic controller,

References

Basic concepts of the traffic controller are set forth

in the Project MAC Technical Report "Traffic Control in

a Multiplexed Computer System", by J.H. Saltzer, MAC-TR-30,
published July, 1966. This thesis presents the design

approach to the traffic controller and is useful for background
information.

Disclaimer ’ -

The present section BJ.O is merely an edited version of
earlier design documents on the Traffic Controller., It
is issued at this time to provide some accurate overview
information since the earlier documents are no lorger
completely correct or easily accessible.

Terminoloagyv

A process is basically a program in execution. The tangible
evidence of a process is a processor stateword (a set .

of machine conditions) and an associated two dimensional
address space (a core image.) The address space of a
process, defined by a Descriptor Segment, determines the
region of accessibility of the processor, both in execution
of instructions and in obtaining data. A dynamic linking
mechanism allows the process to change the contents and
extent of its own address space, but this does not alter
the fundamental view of a process as the execution of

a program contained in the address space.

Within the system every process known to the system is
identified by a unique number, its process 1.D. This
number is a key to a table of all known processes, which
contains further information about each process,

MULTICS SYSTEM PROGRAMMERS © MANUAL SECTION BJ.O PAGE 2

Every process is in one of three execution states: running,
ready, or blocked. A running process is at this instant
executing in some processor. A readv process is one which
‘would be running if a processor were available. A blocked
process is one which has no use for a processor; it is
waiting for some event to happen. The event might be
arrival of a signal from elsewhere in the system, or perhaps
completion of a computation by another process.

OA\I\ .
Every process ther is or is not Jloaded into core memory.
The definition/ of loaded is entirely an operational one.
The "core imzge" part of a process may be stored in core
memory, or secondary storage, or split between the
two. A process is defined as loaded only if enough of
it is present in core memory that it may operateX within
critical supervisor modules. A precise definition of
"loaded" is given in sections BJ.1.00 and BJ.5.02.

An active process is one for which there is sufficient
information in core storage to allow it to enter the ready

or running states. The necessary information for an inactive ¢
process is stored on secondary storage, and must be retré?VE%//
before the process is allowed to run. Operationally,

an active process is one which appears in the Active Process

Tab1%ey

. A number of things can happen to divert a process from

its programmed course. These diversions have been variously
termed traps, interrupts, and faults. V\e use the term

interrupt when referring to hardware signals coming from

outside the processor which cause a processor to depart

from the procedure it was executing. Interrupts are distinguished
from faults, which are triggered by hardware signals generated
within the processor.

Processor multiplexing includes both the sharing of processors
among many users to provide interactive response (sometimes
called time-sharing) and switching among several procedures

in respcnse to interrupts so as to keep both processors

and 1/0 devices as efficiently used as possible (sometimes
calied multiprogramming). .

The Traffic Controller

The Traffic Controller is a set of procedures appearing
within the address space of a process. Although every
process in the system must have a working, compatible,

MULTICS SYSTEM PROGRAMMERS © MANUAL SECTION BJ.0O PAGE 3

Traffic Controller, it is not necessary that all processes
have an identical Traffic Controller. Those processes
which have identical Traffic Controllers use a common

copy of the procedures involved as shared segments,

The functions provided by the Traffic Controller are
intentionally primitive; it is viewed as the innermost

layer of a multilayered supervisor existing within a process.
In fact, it is unlikely that any user”s program would '
ever be permitted to call the Traffic Controller entries
directly. Instead, the user’s program would call some

outer supervisor layer which, for example, checks the
authority of a call to signal another process,

The rest of this document will describe the Traffic Controller
as though it is used directly by some '"customer.," It

is understood, however, that its only "customers' are
actually other superviscr procedures,

The Tqéffic Controller can be conveniently broken into
two distinct parts which perform its major functions:

1. The system interrupt interception routines.
2. The Process Exchange.

The three major functions of the Traffic Controller are
the following:

1. Perform multiplexing of processors among processes.

2. Provide an interface with the system interrupt
hardware,

3. Allow one process to signal another.

An important function of the Traffic Controller is processor
multiplexing. To visualize this multiplexing, consider

the progress of a process, as seen by the system. As

time passes, the process goes back and forth among the
gunning, ready, and blocked states as in the time diagram
elow, ’

run i ready | run | ready | run | blocked | ready | run | ready | run

time———

The Traffic Controller has inserted the ready states in
order to multiplex, or share, the processor among all

MULTICS SYSTEM PROGRAMMERS © MANUAL SECTION BJ.O PAGE b

the processes presently demanding service, The process,
however, does not normally observe the times spent in
"ready" status. From the point of view of this particular
‘process, the above diagram looks like this:
i] i

run !run {run blocked | run {run

with dotted lines indicating points at which the calendar
clock takes a quantum jump. Multiplexing is arranged

so that, except for the real time clock jumps, it 1s basically
"ijnvisible" to the affected process. This means that

a process can completely ignore the multiplexing being
performed by the supervisor., It also means that a process
must be substantially independent of timing., A further
implication is that service to critically timing dependent
hardware functions must be provided by the Traffic Controller
itself. ‘

The Interfaces of the Traffic Controller.

The Traffic Controller has two interfaces: on the one

side with the system interrupt hardware, and on the other
with the rest of the supervisor and the user”s program.

The hardware interface is described in detail in the section
on interrupt handling, BK.Z2.

" The interface with the rest of the process consists primarily
of three calls into the Traffic Controller. (There are
also several less important entry points concerned with
process creation, etc.; these entries do not affect the
significance of this discussion and can be ignored for
the moment.) The three calls in are to entries named
Block, Vlakeup, and Quit, Figure one is a block diagram
of the Traffic Controller, It shows there three external
entries going to a module named the Process Exchange,
the interrupt hardware interface, and also calls between
those two major sections.

The entry named Wakeup is used whenever a process wishes
to wake up a blocked process. The wakeup by definition
is directed to some named process. A typical call from
within process "A" to wake up process "B'" would be

Call Wakeup (B)
Process "B" may be running, ready, or blocked at this time..

The call has an effect only if B is blocked, in which
case B will be unblocked, or awakened.

MULTICS SYSTEM PROGRAMMERS © MANUAL SECTION BJ.O PAGE 5

s

Interrupt

-3
-t

Interceptor |- Interrupts
<3

and Handlers

Restart = | Block |Wakeup

v

Block —_—

Process

Wakeyp ——B
; Exchange

Quit E—

Figure 1 -- Block diagram of Traffic Controller.

The entry point Block of the Traffic Controller is called

by a process when that process cannot proceed until a

signal in the form of a wake up from another process arrives,
It is the responsibility of the process calling Block

to insure that some process will indeed wake it up. Block

is then called with no arguments:

Call Block

The Traffic Controller will place this process in Blocked
status, where it will remain until some wakeup signal
arrives for it.

When the process eventually receives a return from its
call to Block it can bes assured that some process has
called entry point Wakeup for this process.

The Quit entry of the Traffic Controller is the inverse

of the Wakeup entry; it is used to place another process
in Blocked status. If process "A" wishes to block process
llBll, IIAH can

call Quit (B)

Process "B", if ready or running, will immediately revert

to Blocked state. A later call by "A", or any other running
process, to entry point Wakeup for process "BY will permit
"B to continue from the point at which it was interrupted.

MULTICS SYSTEM PROGRAMMERS' MANUAL SECTION BJ.O PAGE 6

Interrunt Handling

The underlying philosophy of interrupt handling is that
interrupts are signals similar in nature to Wakeup calls,
but originating in external hardware equipment. Thus

the sole function of the interrupt handling routines is

to transform an interrupt into appropriate calls to the
Process Exchange. As an example, for an interrupt representing
the completion of a write operation on a typewriter, the
interrupt handler would call Wakeup for the process which
originated output to the typewriter. No other computation
is done at the instant of the interrupt. The process
"responsible'" for the interrupt (in the above example,

the process initiating I/0 on the typewriter) is scheduled
by the Wakeup call; computation in response to the signal
(data transformation, redundancy checking, etc.) is not
accomplished until the responsible process begins execution..

A comprehensive overview of interrupt handling is provided
in section BK.,2,01.

Interaction with core control

The operations of processor multiplexing interact with

those of core memory multiplexing. A special interface
between the basic file system and the traffic controller
helps guarantee that the traffic controller will not attempt
to multiplex processor capacity among so many processes

that memory becomes too crowded. '

To this end, a little-used orocess may be unloaded by

core control if space becomzs too tight; when an unloaded
process comes to the top of the ready list it will not

be reloaded until adequate core space is available for

it to run efficiently. Unloading is accomplished by paging
out its descriptor segment and other segments needed to
enter the running state; the process is remembered only

by its entry in the Active Process Table,

As a further measure, a process which has not been used

for some time may be deactivated, which means that its ,
Active Process Table entry is copied into pageable storage,.
Since reactivating an inactive process requires a directory
search it can only be done at a time when page faults

are permitted; this has the result that only blocked processes
may be deactivated. Activation of a process is done by

a special (and never deactivated) system process which
receives all wakeups intended for inactive processes.

If the system is overloaded, the activator process can
choose to delay activation of some processes.

MULTICS SYSTEM PROGRAMMERS © MANUAL SECTION BJ.O PAGE 7

Details of the interface between the traffic controller
and the basic file system are contained in sections BJ.1
and BJ.5.

v

Process Control

‘In addition to the Process Exchange and the interrupt
handling procedures, the Traffic Controller contains a
"housekeeping" modu]e known as Process Control., This
module provides entries to

1. Initialize the rest of the Traffic Controller
and the processor hardware,

2. Create new processes,

3, Delete old processes.

L, Interface with the basic file system to perform

core memory multiplexing.

5. Simulate an execution meter (processor usage meter)
for each process.

An overview of the Process Control module may be found
in section BJ.1.00, '

