Using Type-Extension to Organize Virtual-Memory Mechanisms

P.A. Janson

IBM Zurich Research Laboratory, 8803 Riischlikon, Switzerland

Much effort is currently being devoted to producing computer systems
that are easy to understand, to verify and to develop. The general meth-
odology for designing such a system consists of decomposing it into a
structured set of modules so that the modules can be understood, verified

and developed individually, and so that the understanding/verification of

This research was performed in the Computer Systems Research Division
of the M.I.T. Laboratory for Computer Science. It was sponsored in part by
Honeywell Information Systems Inc., and in part by the Air Force Informa-
tion Systems Technology Applications Office (ISTAO), and by the Advanced
Research Projects Agency (ARPA) of the Department of Defence under ARPA
Order No. 2641, which was monitored by ISTAO under contract
No. F19628-74-C-0193.

Support from the IBM Zurich Research Laboratory during the preparation
of this paper is gratefully acknowledged.

June 25, 1981

the system can be derived from the understanding/verification of its mod-
ules. While many of the mechanisms in a computer system have been decom-
posed successfully into a structured set of modules, no technique has

been proposed to organize the virtual memory mechanism of a system in such
a way.

The present paper proposes using type extension for that purpose. The
virtaul memory mechanism consists of a set of type manager modules imple-
menting abstract information containers. The structure of the mechanism
reflects the structure of the containers that are implemented. While using
type extension to organize a virtual memory mechanism is conceptually
simple, it is hard to achieve in practice. All existing or proposed uses
of type extension assume the existence of information containers that are
uniformly accessible, can always be grown and are protected. Using type ex-
tension inside a virtual memory mechanism raises implementation problems
since such containers are not implemented. Their implementation is precisely
the objective of the virtual memory mechanism. In addition to explaining
how type extension can be supported inside a virtual memory mechanism, the
paper briefly discusses some aspects of its application to the reorganiza-

tion of the kernal of a commercial, general-purpose, time-sharing system.

It concludes by presenting some results of that case study concerning the

organization of operating systems.

1 Introduction

This paper is concerned with a technique for organizing the virtual
memory mechanism of a computer system. The technique is not aimed at im-
proving the functionality of virtual memory mechanisms but rather concen-
trates on simplifying the procedures and the data structures necessary to
support such mechanisms. Although the technique was elaborated
in the context of and applied to the design of the virtual memory mechanism
of a real, general-purpose, time-sharing system, we believe it is appli-
cable to any kind of computer facility, real-time system, distributed fil-
ing system or conventional time-sharing system.

Our interest in techniques for organizing virtual memory mechanisms is
motivated by the size and the complexity of existing operating systems for
large computing facilities. Operating systems and the various subsystems
that compose them are extremely hard to understand. They are still harder
to maintain through several development stages. Their correctness cannot
be verified. There is a definite need to simplify such systems: understand-
ing their operation should be easy to derive from reading their code;
minor system changes should be easy to implement locally without requiring
a global understanding and without altering the overall integrity of the
system; correctness should be easy to verify by a methodical inspection of
the system programs.

Many researchers have attacked the problem of organizing operating sys-—

tems. The general approach for doing so consists of decomposing the system

concerned into a set of subsystems so that it becomes possible to analyze
the properties of each subsystem independently and to relate them in some
way to derive the properties of thg whole system. In short, the approach
consists of breaking-up a large problem into related smaller ones. This ap-
proach has proved very successful in general. It has been used to decompose
the THE system [1] into levels of abstraction. It has been used to de-
compose the Venus system [2] into abstract machines. More recently, it was
used by the Mitre Corporation to organize security kernels for a PDP-11/45
system [3] and for a Multics system [4]. It was also used in four sys—
tems that will be mentioned again later: a virtual memory system designed
at Carnegie-Mellon University [5], a hierarchical systém designed at
Stanford University [6], the CAL/TSS system [7] and the SRI system L8]
Unfortunately, and in spite of what the reader might expect from the
abundant literature cited above, no satisfactory solution has ever been
proposed to organize a virtual memory mechanism. In all the systems men-
tioned, the virtual memory mechanism has been isolated from the rest of the
system. In some cases, it has even been itself decomposed into several
modules. However, the decomposition process has never gone far enough and
has not been performed .according to any specific method. Consequently, the
resulting virtual memory meehanisms remain hard to understand, to maintain
and to verify. In the CMU system [5] and in the Stanford system (61,
the virtual memory mechanism is implemented by two modules, called levels

of abstraction. The existence of two modules clarifies the overall organi-

zation of the system but it does not simplify the internal organization of
the virtual memory mechanism: instead of each module being half the size
of what a single module would be, the modules duplicate one another almost
entirely. In the CMU system, they implement fixed size and variable size
virtual memory segments. In the Stanford system, they implement virtual
memory for a fixed number of system processes and for a variable number of
user processes. In the Cal and SRI systems, which also implement their
virtual memory mechanism with two modules, called abstract machines, the
two modules do not duplicate each other. Even so, however, the mechanism
implemented by any individual module is too large and too complex to be
easily understood, implemented or verified.

The objective of the research reported here was precisely to remedy this
situation by proposing a technique capable of helping the system designer
in decomposing his virtual memory mechanism into modules that are suffi-
ciently small and properly chosen to yield a simple system organization.
The technique to be described is based on the concept of type extension.
This concept was first introduced in programming languages (e.g., SIMULA)
where it has become very popular [9]. It was then envisioned in the oper-
ating system area by the designers of Cal [10] and Hydra {11]. It was
actually used, more or less formally, in Cal [7], in Hydra [12] and in
the SRI system [8]. However, in the operating system area, it was used
formally and successfully only for high-level primitives, not inside

primitives as low as virtual memory mechanisms. The reasons for the ini-

tial failure of the concept at the lowest level of an operating system will
become clear in Section 3 of this paper.

In the following section, the paper will review some background concepts
about the organization of software systems in general and about the con-
cepts of type extension in particular. In the third section, the paper will
show how type extension can be used to organize a system. it will also ex-—
plain the difficulties of using the concept at the lower levels of an oper-
ating system. It will finally describe a solution to overcome these diffi-
culties, and apply the concept to organize a virtual memory mechanism. In
the fourth section, the paper will briefly discuss how the concept was
used to develop a prototype system by reorganizing the kernel of a real
time-sharing operating system, namely Multics, which is commercially avail-
able from Honeywell Information Systems Inc. The benefits of type extension
will be assessed. In the last section, the paper will conclude by a tenta-
tive evaluation of the applicability of the concept to other operating

system mechanisms.

2. Background

2.1 The Organization of Operating Systems

As briefly stated in the Introduction, the basic means for organizing a

software system consists of decomposing it into subsystems, which we

shall further call modules, in such a way that it is possible to analyze

modules independently of one another while also allowing the derivation

of properties of the whole system from the properties of its modules. Thus,
it is desirable that a module be clearly distinguished from others, and be
sufficiently small to allow one person to understand, develop or verify it
separately. It is also desirable that modules be connected to one another
by some well-defined structuring relation that allows inferring the proper-
ties of the system from those of its modules. We now consider somewhat in
detail what is meant by a mddule. We shall then consider what is meant by

a structuring relation.

Two concepts of a module can be found in the literature. The first one,
which we call a strict module, is discussed in Parnas [13] and Liskov £143.
A strict module is a collection of procedures and data structures that is
totally isolated from other modules, i.e., every procedure or data struc-
ture belongs statically in one and only one module. Notice that strict
modularity does not preclude the temporary sharing of arguments to inter-
module calls. The second type of module, which we call a weak module, is
discussed and used in Parnas [15] and Habermann [16]. A weak module is é
collection of procedures and data structures of which the data structures
may be statically part of (shared by) several modules at a time. In our
research, we have used the concept of a strict module as it is much clean-
er and simpler to deal with. Indeed, since data structures are never shared
by two or more modules, they are never part of any module interface. Thus,

module interfaces never contain any information about the implementation

of data structures. The designers of two different modules never have to
agree on the format or the management of a data structure (argument list
excepted), in particular, the synchronization of concurrent activity in-
volving a common data structure. The information hiding principle [17]
is respected, with all the resulting benefits.

Note that a module is always defined by the procedures it contains and
not by the process(es) executing it. One or more concurrent processes might
be executing the code of a given module at a given time.

Two structuring relations have been proposed to characterize the organi-
zation of modules in a system: the usage relation and the dependency rela-
tion. The usage relation was proposed by Parnas [15]. In fact, weak mod-
ules have been proposed in conjunction with the usage relation. A module A
is said to use a module B if B performs a service for A, i.e., if
the execution of B can be triggered by actions (calls or messages) of A
and A expects results from the computation performed by B.

It is claimed that the usage relation suffices to infer the properties
of a system from those of its modules if that system can be represented as
a set of modules hierarchically structured by the usage relation. To derive
the properties of the system, it is sufficient to infer the properties of
the top-level modules of the usage hierarchy from the properties of the
modules they use. While this would be true for strict modules, it is not
so for weak ones. For instance, if A and B do not '"use" each other but

share a data structure, one cannot verify the correctness/understanding the

behavior of A unless the management of the shared data structure is fully
understood, which requires verifying the correctness / understanding the
behavior of B.

The dependency relation, suggested by Feiertag in unpublished work he
did at the M.I.T., is more complete. It states that a module A depends
on a module B if the correctness of A cannot be verified without veri-
fying the correctness of B, i.e., if A makes any assumption about the
operation of B. Module A can be said to make assumptions about module
B in three cases: if it transfers control to B and expects B to re-
turn control and potential results after it has completed its computation;
if it sends a message to (a process executing) B and expects to receive
a reply message with potential results; if it shares a data structure with
B and expects B not to affect the integrity of that data structure.+
The dependency relation is more complete in that it takes into account in-
teractions between weak modules over shared data bases. While we prefer
the dependency to the usage relation in general, we can consider them in-
terchangeably in this paper since we have chosen to work with strict
modules, which rules out dependencies owing to shared data bases in the

first place.

+Note that if A transfers control or sends a message to B and
neither expects to regain control, nor counts on observing. consequences
or results from its interation with B, then A does not depend on B.
It is said simply to notify B of an event (without caring about what
B does once it is notified).

In summary, our goal is to propose a technique for decomposing any vir-
tual memory mechanism into a set of strict modules that is hierarchically
structured by the dependency relation. This should enable the designers of
a system to study modules independently of one another while allowing
them to derive the properties of the system by using its hierarchical de-

pendency-based structure.

2.2 _The Concept of Type Extension

In the foregoing, we have summarized background concepts concerning the
organization of systems. In the following, we shall review the concept of
type extension, which will enable us, in the next section, to see how it
can be used to organize a system as proposed above.

Type extension is a concept borrowed from the programming language
field. It is based on the idea of abstract data types, e.g., integers,
reals, arrays, stacks, etc. An abstract data type is defihed by a set of
operations that can be applied to any object of that type by a program
called a type manager for that type. The first property of abstract data
types is that their users need not know about their implementation. In
other words, if a user wants to manipulate an array, he does not need to
know how arrays are stored and managed. He needs only to call the array
manager and request it to manipulate the array in the desired fashion.
The second property of abstract data types is that their users cannot

access their implementation. Even if a user knows how arrays are imple-

mented, he cannot access them: only the array manager is allowed to access
them. Arrays are stored in internal data structures of their manager and
are hidden and protected from outside programs.

The concept of type extension, then, comes from the idea of building ab-
stract data types on top of one another by defining the operations on a
higher-level type in terms of operations on lower-level types. For in-
stance, a complex number can be defined as a pair of reals and all opera-
tions on a complex number are defined in terms of operations on the two
reals (REAL and IMAG or MAGNITUDE and PHASE) that implement it.

This is formalized in Figure 1. The abstract type objects, in terms of

which a high-level type object O 1is defined, are called the components

| OBJECT 0
TYPE T : \

r MAP

L REP

OBJECT 0 0BJECT 0 0BJECT 0
1 2 3
TYPE T; TYPE T, TYPE T5"| [COMPONENTS

< J

Fig. 1. Definition of an abstract type.

o

10

of 0. The relation that binds the identity of 0 to the identities of
its components is called the ingp of 0. The map of 0 together with its
components is called the representation (rep.) of O.

In the programming language area and later in the operating system
field, type extension has been used to relieve the users of an abstract
type object (e.g., an array of integers in a programming language, or an
abstract data structure like a file directory in an operating system) from
coping with the intricacies of the implementation of that object, while,
at the same time, protecting the representation of the object from acci-
dental damage by careless or curious users. In a virtual memory mechanism,
type extension will be used not so much to provide simple interfaces to
deal with complex abstractions, but rather to force the designers to
write simple and well-organized software to support the complex mechanisms

embedded in the virtual memory mechanism.

3 Type Extension as an Organizational Technique

The previous section has summarized what it means to organize a system
and what it means to use type extension, at least in the programming lan-
guage field. The purpose of this section is to explain what it means to use
type extension to organize a virtual memory mechanism.

The key idea consists of applying the concept of type extension not to

abstract data types (integers, reals, etc.) but rather to abstract informa-

11

tion containers such as one might encounter in a virtual memory mechanism:
disk records, core blocks, pages, segments, files, catalogs, volumes, etc.
One must conceive and design the virtual memory mechanism as a set of type
managers implementing abstract information containers in terms of more
primitive information containers.

If a virtual memory mechanism can be thought of as suggested above, it
is guaranteed to be strictly modular. Indeed, every type manager with its
procedures and data structures constitutes a module. And, since its data
structures are pertinent to the representation of objects it hides and
protects internally, a type manager is a strict module.

Furthermore, type managers are related by dependencies. Indeed, if seg-
ments, for instance, are implemented as collections of pages, operations on
segments are implemented in terms of operations on pages. Thus, if the
segment manager is invoked to operate on a segment, it will turn around

and invoke the page manager to operate on the page components of the seg-

(O0BJECT OF) TYPE A TYPE MANAGER A

COMPONENT | COMPONENT
RELATION — DEPENDENCY

(0BJECT OF) TYPE B TYPE MANAGER B

Fig. 2. Derivation of component dependencies.

12

ment. This means that the segment manager depends on the services provided
by the page manager. If the structure of every abstract information con-
tainer is drawn as in Figure 1, and the resulting figures are all connected
together, one obtains the structure graph of the virtual memory mechanism.
For every arc in that graph, there is a corresponding dependency between
the type manager implementing the origin type of the arc andbthe type man-
ager implementing the target type of the arc. This dependency is called a
component dependency (Fig. 2).

The graph of all component dependencies is hierarchically structured by
the dependency relation. This fact is the basic argument for trying to use
type extension as an organizational technique in the operating system
field. It was exploited by the designers of the Cal, Hydra and SRI systems
to cast some structure into their respective systems. However, in all cases
the technique was not used below the level of the interface of the virtual
memory mechanism. The concept of a directory, a catalog or a name space is
implemented as a true abstract type in all three systems. However, lower
level concepts (segments, files, pages, records, blocks, etc.) are not.

The question is: th not? The answer is: because using type extension
at and below the virtual memory level is not trivial, as explained below.

All component dependencies are said to be explicit dependencies in that

they can be explicitly derived from the structure graph of the system.

13

However, component dependencies are not the only ones in a system. They
result from the implementation of the objects supported by the virtual mem-
ory mechanism, namely, the abstract information containers. They do not
take into account the implementation of the objects supporting the virtual
memory mechanism itself, namely, the type managers. The implementation of
type managers gives rise to dependencies that are said to be Zmplicit. Ex-
plicit and implicit dependencies constitute the dependency graph of the
system. Implicit dependencies exist above and below the virtual memory lev-
el of a system. However, it will become clear, after we discuss their na-
ture, that they do not pose any structural problem above the virtual memory
level. They can eventually be ignored above that level. The designer of the
Cal, Hydra and SRI systems did not even know about their existence. Yet,
they are the major source of trouble in implementing type extension below
the virtual memory level.

Implicit dependencies fall into four categories: program storage depen-
dencies, data dependencies, memory dependencies and processor dependencies.
At least one dependency of each kind is necessary to implement any type
manager. The procedures of a type manager must be stored in some type of

information container. By extracting executable code from such a container,

a type manager makes itself dependent on the supplier of the container:

Indeed, executing code and writing/reading information in a container
are implicit (hardware) forms of calling the type manager for that container:
if a segment manager does not properly allocate space for its segments,
attempts to access segments that are improperly supported will result in
errors.

14

this is a program storage dependency. The data structures of a type manager,
in particular the maps of the objects it implements, must also be stored in
some type of information container. By writing into/reading from such a con-
tainer, a type manager makes its correct operation dependent on that of the
supplier of the container: this is a dataq dependency. A type manager must

be able to name its procedures and data structures to reference them. In
other words, the addresses of its procedures and data structures must be
described in some memory space seen by the manager. This memory space, i.e.,
the list of addresses, capabilities or descriptors for the type manager must
also be stored in some container. Thus, the type manager is also dependent
on the supplier of that container: this is a memory dependency. Finally,

the code of a type manager must be interpreted by some kind of processor.

If that processor does not properly carry on execution, alters sequencing
of instructions, mishandles branching, stops running or somehow misinter-
prets the control structure of a program, the type manager will not operate
correctly. Thus, the type manager depends on the processor. In general, a
type manager cannot have a physical processor all to itself. What it sees

is some sort of a virtual processor or process resulting from the multi-
plexing of a physical processor among several type managers. The physical
processor together with the mechanism that multiplexes it implements a col-
lection of abstract processors. An abstract processor is an abstract object
composed of at least a processor state and sometimes a processor that

causes the state to evolve. Thus, every type manager depends on a module

15

supplying abstract processors: this is a processor dependency.

In a user environment, implicit dependencies pose no problem. A catalog,
directory or name space manager is implicitly dependent on several type
managers supplying information containers (e.g., segments, files, pages,
capability lists) and abstract processors. However, these type managers
are at a level below the catalog, directory or name space managers, inside
the virtual memory mechanism. Thus, the resulting implicit dependencies
are certainly "downward" in that they do not violate the partial order of
type managers defined by the explicit dependencies.

Inside the virtual memory mechanism (and the virtual processor mecha-
nism, for that matter), the situation is not so clear cut because the pur-
pose of these mechanisms is precisely to implement abstract information
containers and code interpreters. In order to implement the procedures,
data structures, memory and processor required to support his type manager,
the designer must be careful to utilize only abstractions defined at lower
levels as dictated by the graph of explicit dependencies. If no lower-—
level abstraction is suitable, a special-purpose abstraction must be de-
signed. If a designer were careless, he could accidentally implement the
programs of a type manager with containers defined in terms of objects
supported by a higher-level type manager. This would result in an "upward"
dependency, which would violate the partial order of the desired hierar-
chically structured dependency graph. Back to the earlier example of seg-
ments composed of pages, the procedures and data structures of the page

manager may not be implemented by segments. (If they were, it would be

16

necessary to verify that the segment manager never damages those segments
implementing the page manager and that the page manager never damages
segment pages, in particular, pages of its own segments: a tricky fixed-
point problem.).

In summary, exploitation of type extension at or below the virtual
memory mechanism of a system demands a lot of care. Special attention must
be given to identifying every single implicit dependency and verifying

that it does not cause any structural problem.

4 Demonstration of the Technique

The previous section has explained how type extension could be used as
an organizational technique. The question that must be answered next is
obviously: can type extension be used as suggested, in practice? In other
words, is it possible to envision a realistic virtual memory system as im-—
plementing a hierarchy of abstract information containers and code inter-
preters? It is of course impossible to answer this question positively
for any system because it is not feasible to prove in any formal way that
every system could be envisioned from the type extension viewpoint de-
scribed.

Rather than proposing vague and hazardous statements about the type-
extension technique, the research project reported here concentrated on

actually applying the technique to the organization — rather the reor-

17

ganization — of a real, commercial , genmeral-purpose, time-sharing system.
The Multics system [18, 19] was chosen for this experiment for several
reasons.

First, redesigning an existing and viable system was deemed more inter-
esting than designing some imaginary system to avoid the pitfalls of gener-
ating an unrealistic toy system and diverting the center of the research
from type extension to operating system concepts.

Second, Multics is a large, powerful and sophisticated system of which
the virtual memory mechanism is indeed a complex maze of code and data.
Hence, Multics is as good a candidate as any other system, for,if testing
type extension succeeds on Multics, it is likely to succeed anywhere else.

Finally, the present research fitted perfectly within a large project
[20] aimed at producing a more understandable version of the whole Multics
system.

The redesign of the Multics virtual memory system involved two major
steps. In the first, the existing system was studied. Its modules were
listed and its structure was analyzed by identifying every inter-module de-
pendency as defined in Section 2. This permitted identification of all the
sources of complexity in the system, namely, the weak modules and the vio-
lations of the hierarchical structure.

In a second step, a new design was proposed, which was based on type ex-—
tension, eliminated the modularity and structure problems discovered ear-

lier and provided exactly the same functionality as the original system, at

the user interface. The design proposed has not been implemented although
an implementation would have been interesting. However, it would have re-
quired many more man-years of work than were available. Short of an imple-
mentation, the feasibility and practicality of the proposed design were
judged by comparing it to the original one. This comparison was made
possible by the way in which the new design was produced. Neither the orig-
inal design, nor the new one can be described here for lack of space. Very
detailed information on both designs can be found in [217]. However, this
paper will try to show why the two designs could be compared easily and
what some of their differences are. This will provide some insight into the
use of the type extension technique in a real system.

Type extension is not a mechanical tool for producing a modular and
structured system design in a systematic way. Instead, it is an evaluation
and guidance tool as well as a design discipline that allows a designer to
iteratively ?ate and tune his design towards a modular and structured one.
Applying type extension to the design of a system is a matter of experience,
"good taste', aﬁd feeling for the concept. There is nothing methodical about
type extension.

In the case study involving Multics, the new design was evolved from the
original one in several design iteration steps, just as a well-organized
design should be derived from a first draft in the general case. After each
design iteration, the system was inspected from the perspective of type ex-

tension. Every inter-module dependency that appeared to violate the hier-

19

archical structure of the system was jdentified to a specific (explicit

or implicit) dependency in the type extension sense. This always permitted
the expression, in terms of data abstractions, of the exact nature of the
problem behind what looked like a "nasty" upward dependency in terms of
system design. Then, it has always proved possible to add, delete, combine
or separate abstractions so as to remove undesired dependencies. However
feasible, this task was never trivial by any measure, as suggested by the
following examples.

Perhaps the most remarkable example of organizational problems involves
both the virtual memory and the virtual processor mechanisms. In the ori-
ginal design, the virtual memory mechanism depends on the virtual processor
mechanism to switch a physical processor from a process P to a process
P' when P must wait for a virtual I/0 operation and P' is ready to
run. On the other hand, the virtual processor mechanism multiplexes physical
processors among a very 1arge'number of processes. There are too many pro-
cesses to keep an image of the state of each of them in primary‘memory at
all times. Thus, the virtual processor mechanism depends on the virtual
memory mechanism to move processor state images in and out of primary memory.

This situation yields a dependency loop:

To eliminate the loop, the process abstraction was split into two: virtual

20

processor and user processor. A virtual processor is a processor state
image that resides in primary memory. A user processor is a processor state
image that may reside outside primary memory. A virtual processor is a
primary memory resident image (component) of a user processor. The reader

may verify for himself that the following dependency graph results:

up

Similar designs were arrived at without type extemsion [22, 6].

However, type extension made clear what the problem was. The virtual memory
mechanism is a primary memory resident (set of) type manager(s). ILts code
must therefore be interpreted (processor dependency) by a type of abstract
processor of which the state is always in primary memory. This type cannot
be a user processor; it must be something different. The virtual processor
concept is created for that purpose.

Another example of structural problems involves the mechanism for con-
trol, allocation and accounting of storage resource usage (disk space). In
the original design, this mechanism was implemented by a collection of
unrelated procedufes scattered across three modules of the original system.

The three modules depended on one another to implement resource management.

21

The type extension view suggested that a common abstraction, called a quota
cell, was implicitly assumed by the scattered resource management proce-
dures.This abstraction was isolated in a stand-alone, dedicated type man-—
ager, whence all structural problems disappeared.

Several problems involving the handling of page faults, segment faults,
the distribution of segments on disk packs, and the implementation of ad-
dress spaces for low-level type managers required modifications to existing
abstractions or to the hardware.

A huge set of problems dealing with minor modularity and structure vio-
lations was easily corrected by a few changes in certain algorithms.

Over all, organization of the new design is very different from that of
the original one. However, tracing the similarities between the designs
through the various stages of the evolution of the new one was sufficiently
easy to conclude that a straightforward implementation of the new design
should be feasible and yield a system as practical and efficient as the

original one.

5 Conclusions

Type extension appears to be a very powerful technique that can be used
to organize virtual memory mechanisms. In addition, we have reasons to
believe that it could be applied to other problems, as suggested below.

An interesting research topic could be to analyze the applicability of

the technique to future systems: distributed data-base systems, networks

22

file systems, large transaction systems, etc.

Another possible application area for the technique might be hardware
design. In the case study involving Multics, no regard has been given to
whether a type manager was implemented in hardware, software or both. Some
of the modifications recommended for certain abstractions resulted in hard-
ware modifications. This suggests that the technique may well be applicable
in this area.

There is also reason to believe that the technique is applicable to 1I/0
management mechanisms. In applying it to the virtual memory mechanism of
Multics, we applied it to the virtual I/0 mechanism of Multics, by re-
garding external devices as information containers. There is no reason why
the same approach would not work for user I/0 devices.

Finally, while the technique was conceived in the framework of virtual
memory mechanisms; we have clearly demonstrated its applicability to vir-
tual processor mechanisms. The very same concept of type extension was
used and was in fact necessary to organize both mechanisms.

Actually, the use of type extension in the virtual memory mechanism re-
vealed the existence of a structural pattern that appears to be crucial

wherever resources are multiplexed. This same pattern also appears in the
virtual processor mechanism of Multics. It is called the software cache

pattern.

23

The pattern involves triple abstractions related as pictured below:

A top abstraction is implemented in terms (composed) of a slow and a cache
abstraction designed to contain the same information. However, accessing
the information in a container of the slow type is slow while accessing
the same information in a container of the cache type is fast. This models
the situation represented by a slow core memory and a fast cache memory,
and jusfifies the name of the structural pattern. The top abstraction is
designed to hide the exact location of a piece of information from the
users. If a user requests that an operation be performed on an object of
the top abstract type, the top abstraction manager will see whether the
object desired has a cache component, i.e., whether it has an image im-—
plemented by an object of the cache type. If not, the slow-type component
is copied into a cache-type component upon which the operation requested
is performed. When this cache component is no longer used, it is first
copied back to the slow component to update the (slow) image of the object
and then deleted. Thus, the top abstraction manager in effect multiplexes
fast and presumably scarce and expensive resources (cache type) among slow
and presumably cheaper and more abundant resources.

This pattern is found on several occasions in the redesigned Multics

24

system. The concept of a page (top) is implemented in terms of the concepts
of a disk record (slow) and a core block (cache). A page is permanently
composed of a disk record. On occasions, when it is used, it is moved into
core, meaning that the disk record is copied in one core block of a pool.
The page manager, or paging system, multiplexes core blocks among disk re-
cords. The pattern is found again for segments, which are implemented by
passive and active segments. The latter are more readily accessible as they
have their page maps in core. The seéﬁent manager multiplexes page map
slots in core among page map slots residing on disk.

The pattern is found in several more places in a degenerate form. When
the management of the slow abstraction is trivial, the slow abstraction is

sometimes merged with the top one, yielding a two-level pattern:

This pattern is found in various places of the virtual mémory mechanism and
is also found in the virtual processor mechanism. In fact, the concept of
a virtual processor is designed to multiplex one or more physical proces-
sors among several computations represented by processor states residing

in core. Similarly, the concept of a user processor is designed to multi-

25

plex virtual processors, i.e., in core slots for processor states, among
computations represented by processor states residing out of core. The

structural pattern of the virtual processor mechanism is pictured below:

| processor

\

lVirtual
\processor

Physical
processor

A final question that could be raised concerns the efficiency of a system
based on type extension. The hierarchical structure of the set of modules
suggests that the invocation of an operation of a high-level type manager
will result in a cascade of invocations of low-level primitives. Such a
cascade would indeed be time consuming considering the cost of inter-proce-
dure calls or inter-process messages in high-level languages. However, while
type extension suggests the existence of a cascade of invocations in the
high-level language description of the system, it implies nothing at the
level of the machine language. The modularity and structure of the system
as expressed in the high-level language description may bear little or no
relation to modules and calls found in the machine language implementation
of the system. Indeed, the compiler used to translate the high-level lan-
guage should include macro-expansion and global optimization features. This

makes it possible to translate high-level calls by doing in-line substitu-

26

tion of machine code, thus avoiding cascades of calls: hence the claim
that using type extension to design a system should not affect the effi-

ciency of its implementation.

27

References

Dijkstra, E.W. (May 1968), The Structure of the THE Multiprogramming
System. Comm. of the ACM, vol. 11, no. 12, pp. 341-346.

Liskov, B.H. (March 1972), The Design of the Venus Operating System.
Comm. of the ACM, vol. 15, no. 3, pp. 144-149,

Schiller, W.L. (republished May 1975), The Design and Specification of a
Security Kernel for the PDP-11/45. ESD-TR-75-69 and MTR-2934, Mitre
Corporation.

Ames, S.R. (April 1975), The Design of a Security Kernel. M75-212
Mitre Corporation.

Price, W.R. (June 1973), Implications of a Virtual Memory Mechanism for
Implementing Protection in a Family of Operating Systems. Ph.D.Th.,
Dept. of Computer Science, CMU.

Saxena, A.R. (Jan. 1976), A Verified Specification of a Hierarchical
Operating System. TR-107, Stanford Electronics Labs.

Lampson, B.W. and Sturgis, H.E. (May 1976), Reflections on an Operating
System Design. Comm. of the ACM, vol.19, no. 5. pp. 251-265.

Neumann, P.G. et al. (June 1975, partly modified Dec. 1975), A Provably
Secure Operating System, SRI Final Rep.

Liskov, B.H. (Feb. 1976), A Note on CLU. CSG Memo 136, Laboratory for

Computer Science, M.I.T.

10.

11.

12.

13.

14.

15.

16.

17.

18.

28

Redell, D.D. (Nov. 1974), Naming and Protection in Extensible Operating
Systems. Ph.D.Th., U.C. Berkeley & MAC-TR-140, Laboratory for Computer
Science, M.I.T.

Jones, A.K. (June 1973), Protection in Programmed Systems. Ph.D.Th.,
Dept. of Computer Science, CMU.

Wulf, W. et al. (June 1974), Hydra, the Kernel of a Multiprocessor Oper-
ating System. Comm. of the ACM, vol. 17, no. 6, pp. 337-334. .

Parnas, D.L.. (Dec. 1972), On the Criteria to be Used in Decomposing
Systems into Modules. Comm. of the ACM, vol. 15, no. 12, pp. 1053-1058.

Liskov, B.H. (1972), A Design Methodology for Reliable Software Systems.
Proc. AFIPS FJCC, vol. 41, pp. 191-199.

Parnas, D.L. (March 1976), Some Hypotheses about the "Uses" Hierarchy
for Operating Systems. Res. BS I 76/1, Tech. Hochschule Darmstadt,
Fachbereich Informatik.

Habermann, A.N., Flon, L., and Cooprider, L. (May 1976), Modularization
and Hierarchy in a Family of Operating Systems. Comm. of the ACM,
vol. 19, no. 5. pp. 266-272.

Parnas, D.L. (Aug. 1971), Information Distribution Aspects of Design
Methodology. Proc. IFIP Congress, pp. 340-344.

Organick, E.I. (1972), The Multics System: An Examination of its

Structure. M.I.T. Press.

29

19. Introduction to Multics. (Feb. 1974), MAC-TR-123, Laboratory for
Computer Science, M.I.T.

20. Schroeder, M.D. et al. (Nov. 1977), The Multics Kernel Design Project.
Proc. Sixth ACM Symposium on Operating Systems Principles.

21. Janson, P.A. (Sept. 1976), Using Type Extension to Organize Virtual
Memory Mechanisms. MIT-LCS-TR-167, Laboratory for Compﬁter Science,
M.I.T.

22. Reed, D.P. (1976), Processor Multiplexing in a Layered Operating System.

MIT-LCS-TR-164, Laboratory for Computer Science, M.I.T.

