The Segment Symbol Table design specified by MSPM Section BD.1 has been
scrapped; the only remnant is the symbol header which remains as described
in MSPM Section B.D.1.00A. The new design uses a fixed format rather

than the variable format allowed by the old design. The new form of the
Segment Symbol Table is more general, however, in that it allows for the
encoding of information that is known only during the execution of the
program corresponding to the Segment Symbol Table (for e%ample, the size

of an adjustable character string.)



PURPOSE

The PL/1 compiler produces ah Segment Symbol Table in order to support

source language debugging and data directed inpui/output. Ab Segment

Symbol Table will be generated whenever:

1) the "table"™ option is used at the time the program is compiled.
This causes a "full" Segment Symbol Table to be generated. All
the variables, labels, and entries referenced by the program

will appear in the Segment Symbol Table.

An object map will be generated for each block in the source program.
This gives the starting location in the text segment of each source
statement in the block. .

2) the corpiled program uses data directed input or output. [f an
empty list is used with a "get data" statement, a full Segment
Symbol Table will be generated. Otherwise, a "partial" Segment
Symbol Table will be created containing only these variables used

in data directed input/output statements.

LOCATION

The Sggment Symbol Table for a segment <a> resides in sectjon <a.symbol>
along with the binding information. (See MPM Reference Data Section 3.2),
The sequences of instructions

eapbp <a>| [symbol_table]

eapbp  bp|O "Symbol relocation"
or

eapbp <*symbol>’0 .
are used to obtain a pointer to the symbol header from which all useful

information is avaijlable.

ORGAN| ZAT1ON

The Segment Symbol Table is a list structure consisting of interconnected
block and symbol nodes. Each procedure or begin block in the source prog-
ram has a corresponding block node in the Segment Symbol Table; these block
nodes are connected so as to reflect the block structure of the source

program. Each block node has a 1list of symbol nodes emanating from it.



These symbol nodes represent declarations defined immediately internal to

the blocks (i.e. internal to the block but not internal to any other block

internal to it) and'correspond to variables, labels, and entries in the

source program.

A1l of the "pointers" used to connect nodes in the Segment Symbol Table

are bit strings that give the distance from the start of the node in which

the offset occurs to the node pointed to. All accesses must be of the form:
P= addrel (g, g—> node.offset)

A zero value for an offest méﬁ@s that no offset is present. The use of

self relative offsets has two advantages:

1) absolute relocation 'may be used

>

2) the entire Segment Symbol Table may be reached given only a

pointer to a single node.

THE BLOCK NODE

The declaration for a block node is:

del 1 symbol_block
type

number

start

name

brother
father

son

DNV NN NN

map
3 first
3 last
bits
header
chain (4)

NN N

class_list (0:/5)

aligned based,
unaligned bit
unaligned bit
unaligned bit
unaligned bit

~unaligned bit

unaligned bit
unaligned bit

unaligned,

bit (18),

bit (18),

unaligned bit
unaligned bit
unaligned bit
unaligned bit

-ﬂ . V 3
"type is always 516 in a block node,

n T
"number is not defined at the present time,

(12),
(16),
(18),
(18),
(18),
(18),
(18),

(18),
(18),
(18),
(18)?

"start" is a self relative pointer (SRP) to the symbol node of the

first declaration in the block, this declaration list gives all level



0 {non-structure) and level 1 (top level structure) symbols defined
immediately internal to the block. This list is ordered according
to increasing size in characters of the ASCIl name of a symbol and

alphabetically within each size group.

"name" is an SRP to an ACC string giving the name of the block. This
field will be empty for a begln block. (See MPM Reference Data Sectxon

3. 4, Page 2)’ - }r;\,. a. ﬂ(@ C ) // 4 % f/z J JCG fk/ é/" /w// T AAT TN {,/w -

"brother" is a SRP to the next block node at the same nesting level.
It will be O if the block does not have a brother.

"father" is a SRP to the immediately containing block node of which

the current block is a son. N

"son" is a SRP to the first block contained within the current block.

‘1t will be O if the block does not have a son.

"first" is an SRP to the first word of the object map for this block.
Each word in the object map corresponds to a statement in the source
program. The left 18 bits of the word contain the starting locetion
in the source program of the statement whose line number is given
in-the right half.

"last" is an SRP to the last word of the object map for this block.
"bits" are control bits used by the PL/1 compiler.
"header" is an SRP to the symbol header

"chain" is an array of SRPs pointing into the declaration list. Chain(i)
points to the first declaration whose name has 2** or more characters
in it. Chaln( ) will be zero if the largest name in the declaration

list is smaller than 2%

"class_list" is an array of SRPs pointing into the declaration 1ist.
{Class list(j) points to the first declaration having storage class
code equal to j. \C}ass_llst(J) will be zero if no declaration exists

in the block having-the appropriate storage class.



THE SYMBOL NODE

The declaration for a symbol node is:

del 1 symbol_node aligned based,

2 type unaligned bit (12),
2 level unaligned bit (6),
2 ndims S unaligned bit (6),
2 bits unaligned,

3 aligned bit (1),

3 packed bit (l),

3 simple bit (1),

3 decimal - bit (1),
2 scale unaligned bit (8), ™
2 name unaligned bit (18),
2 brother unéligned bit (18),
2 father unaligned bit (18),
2 son unaligned bit (18),
2 address unaligned,

3 offset bit (18),

3 class bit (4),

3 next bit (14),
2 size fixed bin (35)
2 word_offset fixed bin (35)
2 bit_offset fixed bin (35)
2 virtual_org fixed bin (35)
2 bounds (ndims)

3 lower fixed bin (35)

3 upper fixed bin (35)

3 multiplier fixed bin (35)

"type" is the data type of the item being declared. This uses the same
encoding as PL/1 descriptors. The type codes are:

1 éingle precision real fixed point

2 double -preéision real fixed point

3 single precision real. floating point



4 doubleA precision real floating point

5 single precision complex fixed point

6 double precision complex fixed point

7 single precision complex floating point
8 double precision complex floating point
13 pointer data

14 offset data

15 label data

16 entry data

17-24 arrays of types 1-8
29-31 arrays of types 13-15

33 external procedure

35 internal procedure

36 entry

37 label constant
EIﬁE?EEfuc{ure/f e
518 arégﬁ-_~ﬁ\\sz§16 Eﬁfék
519 bit string

520 character string

521 varying bit string

522 varying character string

523-528 arraysof types 514-522

"level" is the structure level number of the declaration. O means the
declaration is not a structure, and 1 means the declaration is the top

level of a structure.

"ndims" is the number of array dimensions for the declaration, 0 meaning
the declaration is not an array.

s

/L/
"aligned" is "1"b is the variable occupies an entire word.

"packed" is "1"b is the units of the multiplier are bits iﬁstead of words.

"simple" is "1"b if the symbol is not an array and has both a zero word

offset and a zero bit offset.

"decimal" is "1"b if the arithmetic variable being defined has decimal

precision and scale rather than binary.

RS Al



"scale" is the arithmetic scale factor ranging from -127 to +127.

"name" is a SRP to an ACC string giving the name of the symbol being
defined. This string is used to order the declaration list of the block

node.

"brother" is an SRP to the next symbol in the declaration list at the
same structure level (O and 1 are considered to be the same level).

This field will be zero in the last symbol node on the declaration list.

"father" is a SRP to either a block or a symbol node. If level <=1 father
points to the block node in which the symbol is declared. If level >1
(ie. the symbol is a member of a structure), father points back to the-
immediately containing symbol node at a structure level “one less and

which contains the current symbol node as a son.

n fn

son" is a SR’ to the first son of a structure, ie. the symbol node

for the first variable with a structure level number one greater than

the current level.
"offset" is the offset of the datum within its storage class.

"class" is the storage class of the symbol. The following encoding

is used:

0 unknown

1 : automatic; "offset" is the offset in the stack frame

2 automatic adjustable; the address of the datum is not known

at the time the Segment Symbol Table is created. "offset"
is the location of the automatic pointer which is used to
address the adjustable datum after it is &llocated.
3 based; "offset" is an SRP to the symbol node for the pointer
mentioned in the based declaration. "offset" will be zero
if no pointer was specified. e
internal static; "offset" is the offset in,linkage section.
5 external static; a link to the exterﬁal variable is located
 at "offset" in the linkage section.
internal controlled (not available yet)

external controlled (not available yet)



| prn
8 parameter; "offset" is the location of the automatic(EiB which

is used to address the parameter

12 text reference; "offset" is the location of the item in the text
segment )

13 link reference; "offset” is the location of the datum in the linkage
section

"next" is a SR to the next top-level (level<=1) symbol-having the same

storage class.

"size" is an "encoded" representation of the string size or arithmetic
precision of the symbol. Since the values may not be known during
compilation, procedure "stu_$decode_value" must be called to decide the
value. (see below) ’

If the bit "simple" is on,.all of the fields described below are not
present. In this case, the word and bit offset of the symbol are both

zero.

"word_offset" is the encoded value of the offset of the first word of

the symbol from the level 1 containing structure Procedure stu_$decode_"

value must be called to determine its value.

"bit_offset" is the encoded value of the offset of the datum in bits
from the beginning of the word containing the datum. Procedure stu_

$decode_value must be called to determine its value.

The complete sequence for calculating the word and bit offsets of a
variable is:

wo= stu_$decode_value (...... ‘ )

boz= stu,$decode_value (...... )

wo= wo + divide (bo,36,17,0):

bo= mod (bo,36);

"virtual_org" is the encoded value of the virtual origin of an array
datum - its value should be subtracted from the base address obtained
from "class" and "offset". Procedure stu_%decode_value must be called

to determine the value of the virtual origin.

et



"bounds (i)" gives the lower and upper array bounds as well as the
multiplier for the ith dimension of an array. stu_$decode_value should

be called to obtain the value of any of the bounds information.

The formula for calculating the address of a datum is

| : | pdims
address=base_address—virtual_origln’+ gh%ltlpller (q)* subscript(i)
oo l=

If the "packed" bit is on, the result of the calculation given above is
in bits and should be converted to bits and words; this address should

then be combined with the word and bit offsets evaluated earlier.

ENCODED VALUES

>

Since the size or array bounds of a variable in PL/1 may be adjustable,
the following algorithm has been used to encode the rule for obtaining
a value only determinable during execution of the program containing

the declaration.

The 36 bit word in the symbol node, which was declared as fixed bin (35)

actually has the Foilowing structure: .

del 1 encoded_value aligned based,
2 flag unaligned bit (2),
2 code unaligned bit (4),
2 (n1, n2) unaligned bit (6),
2 n3 unaligned bit (18);

If flag="00"b or flag="11"b, the value is the constant value given
in the entire word. If flag="10"b, the value is encoded according to
the following table. '

CODE VALUE
0000 automatic variable at offset n3 in stack frame of

the block-nl levels before the block in which the

declaration occurs.

0001 ) internal static variable located at n3 in the linkage

section of procedure owning declaration.

0010 external static variable with positive word offset nl

from link located at n3 in the linkage section.



0011 value is the bit offset field of the pointer used to
qualify a generation of based data plus the additional
offset n3.

0100 value is based with positive word offset n2 on an
automatic pointer located at n3 in the stack frame of
the block nl levels before block% of procedure owning

declaration.

0101 value is based with positive word offset n2 on the
internal static pointer located at n3 in the linkage

section.
»

0110 value is -based with positive word offset n2 on the
external static pointer with positive word offset nl

located at n3 in the linkage segment.

0111 value is based with positive word offset n2 on the

pointer used to qualify a generation of based data.

1000 value is given by -an internal procedure located at n3

in the text segment.

EXAMPLES

We diagram below the overall structure of the symbol table for the
procedure given below. Block nodes are shown as squares, and symbol

nodes as circles:
fact: proc(m);

del (i,m) fixed bin,
f int entry(fixed bin) returns(fixed bin), ioa-entry;

do i =1 to m;

call ioa_("™7d Ad", i,f(1)); end;



f proé(M) returns(fixed bin);

decl M fixed bin;
If M =1 then return(1);
else return(Mf (M-1)).
gnd;

end;



Header

AN

N

root block

17



The structure

del 1 a
2 b ~ fixed,
2 ¢ f
3 d cha (4)
3 e bit (2)
2 f float;

would bar the following form of table entry
hoat

18



