Massachusctts Institute of Technology
Information Processing Center
Cambridge, Massachusctts 02139

To: Jerry Grochow @il’ P
4 eC- - - b b 2l
F'rom: Joh”/M'Manus, Bob Daley, Dick Suldiiolryg

Subject: Multics Software Reliability Committee Report
Date: July 20, 1970

CC: Multiecs Administrative Distribution
(Appendix B)

INTRODUCTION

This report of the Multics Software Reliability Committee outlines
how we will measure software reliability, suggests that this same
mechanism can be used to measure overall system reliability and dis-
cusses improvement of software in general. The ideas presented here
and the &ctions which must accompaniy them are not intended for only
the nextjeight weeks but rather arc a gulde for the continuing de-
velopment of the Multics service.

lultics Software Reliagbility Index

Although the goals agreed upon in the July 2 meeting are
realistic, with the p0551b1e evception of 15 minutes mean time to
recover, the committee feels that a more comprehensive measure cf
scftwvare reliability is desired. (Perhaps guallty would be a
better description than reliability; reliable bugs are not desirable.)
Also reguired is a measure whilch can be expressced as one number and
therelore can be plotted versus time to ea51ly show our progress
or lack of 1it. Our measure will be the Multics Software Reliabllity
Index (MSRI). It i1s computed from five types of errors:

I. Errvors which crash the systen.
II. Outage of any of the following modules (or the wachinery
which enable these to operate): pll, fortran, edm, rename,

delete, list, archive, probe, login/logout.

IXT. Errors® in standard service system commands when no satis-
factory alternative exists.

[ab)

20

—t
’

IV. Errors® in standard service zy sbem co ﬂrauds'when a or
factery alternative does exist

V. AlY errors in ncen-supp
tained CCum”ﬂno, the s
tools, etc

ort d commands including ”uinn main-
clen ific subroutine packang machine

i

Page iveeeeess 2

VI. Sugegestions, compiaints, etc.

“Errors are defined as deviations from the Multics Programming
lanual.

Type I. Eight points per hour of downtime the first time a soft-
ware problem crashes the system, sixteen points per hour
the second time & crash occurs because of the same bug
and thirty-two points per hour thereafter for that bug.

Type II. Thirty-two points per day for each outage.

Type III. Four points per day for each bug.

Type IV. Two points " " " " "

Type V. One point " " " " "

Type VI. No points

Multics System Reliability Index

If there are no objections we would like to expand the scope of
this measure of reliability to include the entire system. MSRI is
redefined for the "system" and it consists of three components: hard-
ware, software and other. It is a measure of both unscheduled down-
time and useability wnhen the system is up. There are several reasons:

1. It is easy to do. The majority of the other (hardware, en-
vironment, -operator, FE, etc.) problems, as seen by the user,
are type 1. That is, they cause the system to be totally
unavalillable.

2. The hardware working committece is measuring compnent
reliability which is to a large degree an internal indica-
tor. Ours is external; both are important.

3. It will insure that hardware/software and undefined fail-
ures are accounted for. It will also be easy to change the
MSRI component from the hardware to the software colwmns
and vice versa when additional analysis indicates.

4., The comparison of hardware, software and "other" components,
as percent of fotagl MSRI will be useful.

Type 1 hardware "bugs" are uniquely identified by device type and
failure type. For example: "OP NOT COMPLETE" on memory G is one bug
and parity on memory G another. This definition will be used to es~-
calate the points per hour from 8 to 32.

Page oo 3

There are many deficiencies in this scheme. To remove these,
however, would require an unjustified amount of bookkeeping. What
we hope MSRKRI will show us is our progress toward making a reliable,
and therefore a viable, computing service.

Software Improvement

When considering overall system reliability, the fundamental
dif'ferences between hardware and software fallures and their causes
must be considered. Hardware failures are dve to either (1) design
errors, (2) manufacturing errors or (3) wear. The most common of
these, wear, does not exist in software. In an existing system which
docs not have wear, the maximum reliability 1is achived when no design
or manufacturing modifications are allowed except those which correct
known design and manufacturing errors. Translated, this means we
will have the highest reliability if we make no modifications to
Multies software other than to fix bugs. Clearly this i1s not what
we want. The success of Multics software depends on providing
additional functions and improving performance (and therefore capa-
city) as well as reliability. The working committee will try to
optimize these conflicting goals instead of worrying only about
reliability. For example, it is probably better to push for some
major improvements (see appendix A) this summer than to delay these
for more jorderly installation during the fall semester. The problem,
of coursel, is reaching the proper balance. It 1s worthwhlle repeat-
ing a portion of Multics Checkout Bulletin RNumber 366 by J. M.
Grochow and F. J. Corbato': ".... the following recommendations are
made: That all Multics project personnel rank "bug fixing" as
their highest priority work™.

Even within the framework described above there are several
things, both short and long range, which can be done to improve
software reliability. (Theve are also additional software features
which could improve overall reliability such as better handling of
hardware errors, but these will not be considered here.)

A. System Testing. Continued effort is required, as always, 1in
the arca of system testing. This 1s true both at the compo--
nent level (responsibility belonging primarily to Project MAC)
and the systems level (responsibility belonging primarily to
IPC). Multics has two classes of systems which require different
testing techniques:

B. 1. Hardcore/Softcore. These parts of Multics are characterized
by the fact that most major bugs are (or should be) detected
during testing, most bugs have scrious effects on all users
and subtle bugs are very likely. Meaningful system tests
which detect the subtle errors are very difficult and can-
not be performed on the service machine simultaneously
with production. The short range solution is to try hard-
er and learn from out mistakes. All programners should be
encourage (forced) to spend as much effort as possible in
pre-instllation testing. For the leong-term solution, a
system to automatically execlise new Multics systems under

PAEe veveaeese. M

.

leoad is desirable - if not requied. This test system
would be similar to the script - driven PDP-8 measure-

ment tool and IBM'S TEST-360, but it would be capable

of driving Multics with 30 or more simultancous and
different scripts. IPC has hopes of developing such a
test tool in the future. A medium range solution which we
can implement by September 15 if we decide to, is to re-
write the certifier. We also need to further evaluate and
possible implemcnt more of the ideas presented by Dave
Vinograd in MCB 453,

2. Commands. The commands should be testable during produc-
tion but before installation. An automated system to
check all commands and/or proposed new commands would also
be desirable. It may be possible to use the test system
described above to test commands. In this mode of opera-
tion, the test system would login to the production sys-
tem as one user uho had access to a "command test library"
and weuld test all or any specified commands in his direc-
tory. For the short range IPC plans to work on semi-
automatic test procedures for those commands which have the
largest usage and in which bugs have the largest inpact
on users. This will be done as follows:

a. TFORTRAN - Because of the new compiler being written,
most bugs will be published and not fixed. Exceptilons
to this rule will be by a rcqueut from IPC Manager of
User Services to GE Manager of Language Development.

b. PL)] - GE ig developing comprehensive compller tests
for DO loops. IPC is developing tests for mathema-
tical types of statements and hopes to work on Cesting
I/0 statements next. By September 15th IPC should
assume responsibility for PL1 installations.

¢. EDM - This is the second highest priority command for
which formal test procedures will be developed. = Other
commands specified in type 1 bugs will follow.

Communications. This problem is magnified by the geograpblc
distance between IPC and MAC and between Multics users and both
IPC and MAC. Again there are several areas in which we should
devote more attention.

1. System/User Communication. We need to continue to keep
users informed of non-transparent changes. This should be
done before installation, along with the installation date,
and at approximately the time of installation an MPIM up-
date should be published. Although we are supposedly doing
this now, our procedures nced to be improved for more ripld
enforcement. We also need to investifate and evaluate Tom
Van Vleck's suggestion for a semi-automatic method of re-
cording a description of each command change and time of
installation.

Page vevveeesee 5

-

2. User-problem/System Propramner/Resolution Communications -
This loop neceds to be shortened considerably. Suggestions
are welcomed.

3. TIPC/MAC Communication. Some permanent "working committees"
should be formed which will meet on a scheduled basis to
force us Lo communicate. For instance, the Daley-Steinberg-
M"Manus-~Others committee should meet weekly to discuss
programning priorities (Why are you going to do that? What
should we be doing? Which is most important? How can we
help?) and pending changes (Which way should we screw the
users this week?)

Our motto during this period of intensive concentration on re-
liability: "The bitterness of poor quality lingers much longer than
the sweetness of met schedules."

c Suggestions and critcisms are welcomed. Please direct them at
M¥Manus. We will very shortly start computing and publishing the
weekly MSRI. (The list of bugs on which this is based is inzudd>sli>
jws»softbug.info) The other suggestions will be implemented as our
combined wisdom and resources permit.

JJM:ilc

Appendix A - Major Multics Development

Activities for Summer 1970

I. Performance improvements

Tune pre-paging

1.
2. Re-implement fault handling
3. New file directory control®
Iy, Error recovery®
IT. Functional and capacity improvements
1. TTY/ARDS dim¥
2. DSU170 (IBM 2314) dim
3. User search rules
i, Dartmouth system
5. LISP
6. Save/resume or

Absentee runs or

New IPC
7. Non-standard tape dim
8 Accounting limit stops

¥These should also improve long-range reliablility

_Appendix B o~ Multics Administrative Distribution

Information Processing Scrvices

R. H. Scott

J. M. Grochow

Information Processing Center

Burner
McManus

Ryan

oo oy &y

. Steinberg
H. Van Vleck

=T B

Project MAC Multics Group
F. J. Corbato'
R. C. Daley

J. H. Saltzer

General Electric Multics Group

C. T. Clingen
J. W. Gintell

