4 HONEYWELL INTEROFFICE CORRESPONDENCE

i |

L 2ATE. _ APRIL 11, 1973 CC: JF Couleur
g ' JN Dahl
TO: J. M. RISAN ' RF Montee -_
' S - " RL Ruth
N
fRoM: _ c¢. 1. cuineey (_ \(C__ |

DIVISION: CISL/PCO .

SUBJECT: CACHE MEMORY FOR 6180 MULTICS TR I

; Attached is Steve Webber's proposal for adding cache memory to the

: 6180 and Multics. In my opinion the strategy employed, which takes
; advantage of segmentation in the hardware and software, provides a
very clean solution to an intrinsically difficult problem. Seems
like it is worth patenting.

As you know, Jim Dahl and Steve Webber have been discussing many of
the issues described in the proposal; I assume this should continue
in order to achieve a final design. Let me know if I can be of any

help.

Attachment: Webber's Proposal (Original and copies)

S5.H. weooer
April 11, 1973

HARDWARE MODIFICATIONS TO ALLOW CACHE
STORAGE IN THE MULTICS HARDWARE

This document is being prepared because of an increasing
pressure to find out what types of problems arise when a cache memory
is added to the Multies hardware configuration. There aré many problems
created and these notes are meant to describe some of the more obvious
ones with possible solutions. The real purpose of this document, however,
is to describe the basic problems so that all problems can be recognized
and possibly solved.

' The basic cache that is being proposed exists within th; CPU's
of the system. Each CPU has its own cache which is organized a;\described
later. The.basic problem with a cache system organized in this manner
is that shared data must be very carefully handled in that it is possible
to have multiple copies of data in the multipie caches of a multiple
CPU configuration.

General Problems with Caches

A cache, as mentioned here, is a small, fast memory managed by the
CPU. It is meant to contain recently referenced words of main (core)
memory and be able to retrieve these words when needed without going to
core memory for the dat#. (The cache is of course much faster than~core
memory and tests made to date show references to the cache add no time
to the execution of instructions on the 6080.) The cache data consists of
blocks of L-36 bit words which are addressed (pseudo-associatively) by
24 bit absolute address.

The cache is small - 2048 36 bit words total - and therefore only
a very smell number of words can residg in the cache at one time. This

means that a removal algorithm is needed to purge words from the cache when

-2
more cache storage is needed for a recent memory reference. This
removal algorithm, although of general interest, is independent of any of
.the problems we are worrying about in this document.
GENERAL (excerpts from TDM-CPA-18)

The Cache Stq{e,is & "Look-Aside Memory" or high speed buffer
storage located in the Central Processor. This buffer provides a fast
access to blocks of data previously fetched from the Main Storage (memory) .
The effective access time is approximately 10ns as compared to 650ns for a
main memory fetch. This effective access time is obtained by operating
the Cache in parallel to existing Processor functions. N

Successful usage of a Cache Store requires that a high ratio of
storage fetches be made from the Cache. Cache usage must be high with a
small time spent in loading the Cache.

Extensive investigation and simulation of Cache storage problems
has been done by Systems Engineering. They show a probability of finding
the needed fetch in Cache on average programs is between 80% to 95% (hit

probability) for a GCOS environment.

BASIC STRUCTURE

The Cache System can be broken into three main areas, - the buffer
storage, the associative memory or Directory, and the control area. These
areas have been merged into the existing processor design without changing
basic pfocessor timing or philosophy. The Cache is not an external "Black-
Box".

The Cache is divided into 512 blocks of 4-36 bit words for a total
size of 2048. A block (4 words) will be loaded into Cache whenever the
program first requires any word of the block. Subsequent references from

this block will be made from the Cache until the block is replaced.

. CACHE STORE

The Cache storage is 2048 (36 bit words). A single parity bit is
carried with each word and is checked the same as on fetches from main
memory.

CACHE DIRECTORY

A Directory is used to identify all blocks in Cache storage.

512 "TAG" words are used in the directory to reflect the Absolute Address
of each data block. A 2k bit Absolute Address is used such that this Cache
will work on a processor with the Extended Memory Addressing éption.

Considerable work was spent during simulation on the problem of
Directory Organization.

Directory structure and its replacement algori#hm have considerable
effect on hit probability, number of chips required to implement, time re-
quired for search, and control sequence complexity. The hit probability vas
compromised some in favor of a simpler design using fewer chips to fit the
directory and controls on one béard.

The mapping strategy used is calied L level set associatiye. The
directory is divided into 128 columns of & levels each. The Main Memory
is then divided into "N" number of sections of 128-k word blocks (512
words). Each block maps directly into a corresponding column of the
directory. Each column then can contain addresses of L blocks, each from
different sections. The replacement algoriéhm for loading new blocks into
& column which is full is on a first in, first out basis and is called
Rounq Robin Organization (RRO). '

The directory is built as a small memory with 128 locations.
Address Biés 9-15 of the effective address are used to access one of the
128 locations. Each of these locations containAh #ddress tag words. Each

tag word is the rest of the absolute address, bits 0-8 and EO-E5. Since

b=

bits 9-15 of the effective address are the same in the Absolute

Address, but are available sooner (only for GCOS?) they are used for
directory access. During the same time that directory access is made, the
_base addition will be completed. The Absolute Address and tag words should
be available at the same time.for & comparison to be made.

The Cache storage address is developed in the following manner:
Effective address bits 16 and 17 will be used to tell vhich word of the
block is needed. Bité 9-15 will be used directly. Two additional bits
will be developed from the 1 of L compare made. An 11 bit address is
therefore available for access of the 2048 word Cache storage. .

The Cache directory has a Full/Empty status bit associated with
each tag word to indicate that the block is full and the data is valid,

The Cache storage can be cleared by resetting all F/E bits. The Cache
will be cleared whenever the CPU executes a gating instruction in Master
Mode. The Full/Empty bit will be set on when a block load is initiated.

Each 6f the 128 columns of the directory has a two-bit RRO counter
associated with it. Whenever the Cache is cleared, all counters will be
reset to 00. This counter will be used to indicate which level or tag
is to bé loaded next and generates two bits of the Cache storage address on
block loads. When a new block is loaded into storage, the absolute address
bits 0-8 and EO-E5 will be stored into the directory location accessed by
bits 9-15 and then the RRO counter will be advanced.

CACHE CONTROL

Four types of cycles can be per}ormed with the Cache. When a
compare is made on a data fetch, the function will be a Cache Read. Data
-fetcheé with no compare will cause a block load. Store-ops with s direcfory
compare will cause a Cache Write cycle along with the Port Store cycle.
Store-ops with no compare will use Cache for.ﬁiming purposes along with the

Port Store, but will not cause a Cache Write cycle. SCU Controller cycles

-5~

and Fault and Interrupt cycies will not affect the Cache and will operate
normally (as will PTW and SDW fetches and stores).
To increase efficiency of Store-ops, a type of "store-aside"
" policy was implemented. All Store-ops go to backing store. All Store-ops

will also cause a Cache cycle, but onl& those with & compare will cause a

Cache Store to update Cache Storage. End of DAL
PROBLEMS (excerpts from TDM-CPA-18)

The problem which must be solved with any such cache organization
is that shared code or data may reside in multiple caches of a multiple
CPU configuration. If this data is modified by one CPU the modification
does not get reflected to the other CPU's even though the core storage
(common to all CPU's) has been updated.
Several solutions to this problem have emerged from the industry.
However, all such solutions kunown to the author require extensive inter-
processor communication in th; form of explicit control lines and connections
between the actual CPU's. In addition to having the transfer of information
from 1 CPU directly to another CPU there_afe also timing and controls required
to synchronize acknowledgements of received signals. This type of system
organization does not easily fit into the current Honeywell 6000 line
architecture and therefore the technique deséribed below is proposed.
Before progressing tc the proposed solution, it would be better
to point out some assumptions and system constraints posed‘by the 6180
(Multics) hardware.
(1) The 6180 makes extensive use of the key-lock strategy
' within the system controllers. Currently the SCU is
locked by all read-alter-rewrite instructions in such
‘8 way that no other such instructions are allowed access

“to an SCU while one of them is in progress. This

-6~

feature must be préserved with a cache system and although
there seems to be no problem here it should be pointed out and
not forgotten. The necessary solution is to:
&, fetch from main core on the read cycle of a read-alter-
rewrite
b. set the lock (as usual)
c. store the possibly modified data baqk to main core,

In other words ignore the cache for such instructions,

-

(2) The 6180 paging mechanism will force the clearing of the cache when-
ever a new page of data is brought into core.

(3) It must be possible to look at wordsvin segments and be sure the
cache is not searched for the given data. This applies to PTW's,
bulk store status words, etc.

() It must be possible for one processor to signal the other processors
to clear their caches (and it must be possible for a CPU to clear
its own cache at will).

At present it is being proposed that all PTW's and SDW's as fetched and
stored by the appending unit ignore the cache (they are not brought up to the
cache), This is quite reasonable in that the associative memories are sufficient
to eliminate most core references for these. This also eliminates the obvious
problems that would result when one CPU wanted to turn on the referenced bit or
modified bit. Such an action would have to be recognized by the other CPU's.

However, there is a problem when the software wants to look at one of the
PTW's for example. The software, by its nature, must reference the PTW as a

normal data fetch through the appending unit -- i.e., as a word of a segment.

Iﬁ'general, the hardware cannot tell vhen such a data reference is for a

PTW (or any other critical data item which must be fetched from core - such

as a status vword from an I/0 device). One proposed solution is to provide

an instruction (or class of instructions) which ignores the cache when fetching
data. This solution is very hard to implement in general as it is almost im-
possible for a translator (compiler) to know when it must generate one of

these instructions. It is also asking for trouble when an entire class of
prograrming techniques must be discarded because they may not work with the
cache. This would be the case, here, for all users and system programmer's would
have to be warned against using arbitrary instructions which might not ignore
the cache. There is also the problem that if enough instructions were added to
this set the performance of the system would needlessly be degraded.

Another class of problems which must be solved is the shared data base
issue. If several users A are simultaneously referencing
the same data (under protection of some software locking strategy) problems may
result if the cache in one CPU contains older.cepies of data modified by another
CPU. For this case it is necessary that £he caches be cleared before any
reference is made to any such shared data item, Although clever software locking
techniques have been worked out these have in general been aided by haréware
support in the form of some kind of semaphore function. Even ﬁﬁtﬁ this additional

support, if multiple processors are 51multaneously sharlng the same data with

caches, the before mentioned problems arise.
For the above reasons (and several others .of a less eritlcal nature) the

following proposal is put forth:

-8-

(1) Provide a means invthe hardware for the software to specify an
entire data block (segment) should bypass the cache. The hard-
vare must be able to easily and efficiently recognize the intent
of the software and act accordingly.

(2) Provide software which can unerringly determine when a data block
may be used in such a way that the use of the cache for the data
block won't lead to trouble.

In fhe Multics system this is particularly easy in that (1) the software
has control over all SDW's in the system and (2) the hardware references the SDW
. a segment on each reference to that segment. In particular it is proposed that
a bit of the SDW be defined as the "no cache" bit and that if an SDW has this
bit on, the hardware is directed to bypass the cache with respect to all
references to that segment.

The software must be able to determine when a segment is shared And ifv
it is shared whether or not a problem may arise with the use of the cache. It.
is easy to see that a problem may arise if moreithan one procéssor can modify
the segment at the same time. This is true only if more than one SDW of the
segment has the write permit bit on. (Future development with tasking may bring
ebout the sharing of SDW's within an address space which means that more than one
processor can modify a segment even though there is only one SDW. This is easily
remedied.,) It is easy for the supervisof software to keép track of all
SDW's for a segment (the Multics supervisor does this anyway for a different
reason) and hence it is easy for the supervisor to set the "no cache" bit in all
SDW's. - , | |

The shared supervisor data bases in Multies (including the storage system
directories) have the same problems inherent in user data bases in a cache system
The above strategy would dictate that the "no cache".bit woul§ be on for these
segments. However, it is possible to remove the restriction, in these special

cases, because of our complete knowledge and control over these data bases. We

for

have a separate locking system which guerantees that only one processor will
be referencing such data bases at a time. It is merely necessary to clear all
cache at lock time. However, after locking, full advantage of caching the
dat; is possible,

It is proposed here that if cache hardvare is developed for the 6180
system the software be developed in two stages. First a system be generated
vwhich refuses to cache any data which is shared and modifiable (including most
of the supervisor data bases). When this is working it will then be possible
to selectively improve phe system by caching those data bases which are protected
~in some other way. |
Two further proposals to the hardware are:
(1) Provide meters (counters) to determine the effectiveness of the

| cache - for example, number of cache match successes in relation

to number of cache match failures.

(2) A mechanism be provided to selectively clear the cache, i.e.,
clear only selected entries in the cache. This would seem quite
useful (possibly necessary from ; cost viewpoint) in that nearly
all reasons for clearing the cache will be as a result of a page
of core being replaced by new data thereby invalidating any data
in the caches for those core address within the page. If only those
core addresses affected (which probably aren't in the cache anyway
or we wouldn't have taken that core block) are cleared the contents
of thé cache would remain valid for considerably longer, Pre-
liminary estimates show that without selective clearing the cache
will rarely become more than one-half to two-thirds full.

(3) I£ has been proposed that the cache lookup scheme might use segment
number and offset rather than ab;olute core address in order to

overlap cache lookup logic with other functions of the appending

.

«10~
unit. A consequence of this is that the cache would have to
be cleared with each 1ldbr. This might be more frequent than

is necessary.

Please make any comments about the above proposals to me.

Written by:j/’%w,{. ZZ /Z/Q/L/ZCQ,- Date: 4/"7?/4’ / // / 973

Steven H. Webber

. ~ ,
™\ N
Witnessed by: VTCL‘C*(:\’ Date: YX\L’\»\,/LN RENES
C. T. Clingen, Manager - \ 7
Cambridge Information
Systems Laboratory

