BZ.10.03 [

MSPM SECTION BZ.10.03

Identification
APL lexical Analyzer

Purpose

The lexical analyzer accepts as input the canonicalized source line typed to
the APL intrepreter, breaks it up into the syntactically meaningful tokens
(identifiers, constents, etc.), and classifies the tokens. Constants are

converted to internal format.

Entry DPoints
The lexical analyzer has two different entry points: one for use in immediate

execution mode to lex user input to S- and E-frames, and the other to lex
function lines as they are stored away at the close of & function definition.
Statement labels are recognized and tabulated by definition mode lex; they

are not recognized by execution mode lex.

Qperation

In operation, the lexical analyzer is called by either the parser or the
editor when a new line is needed, after any needed go-ghead characters have
been output. The caller supplies a pointer to the top of the state indicator
stack, upon which the lex will build the resultant token list. If the current
call is to lex an S- or E-input line, the tokens will remain there until the
frame is discarded. If the current call is from a function definition, the
token list will be moved to the function storage segment when the line has

been completely processed.

The format of each token on +the token list is:

1 t based token
2 p offset next token pointer
2 m bit(36) token type mask
2 s fixed source char index
2 t fixed constant type
2 n fixed constant number
2 rr fixed constant rhorho

BZ.10.03 Page 2

2 r(l:t.rr) fixed constant rho

2 v cell constant wvalue
3 b bit(t.n) bit constant
3 ¢ char(t.n) char constent

3 1(1:t.n) fixed int constent
“3. £(1:t.n) float bin(63) float constent

Here, .t.m is the token type code as specified in Type Codes, MSPM BZ.10.02;
t.s 1s the index within the source 1line of the first character which comprised
this token (for error reporting); t.t through t.v.f are the value of the con-

stant if t.m is constant; t.v.c is the actual source characters if t.m is

neme, stgp/frace control, or any of the various operators.

The detailed action sequence is:

. A beginning-of-line token is placed on the stack.

. If this is a function mode call, the input line will be provided by the
caller. If this is an execution mode call, the lex will read a source
line from the current input stream. The line will be placed in t.v.c
of the begimming-of-line token.

. IT the source line begins with nabla or right parenthesis, immediate
exit is made to the editor or the request processor.

. If the source line contains an unmatched quote not preceded by an
unquoted lamp-symbol (comment indicator) further source lines will be
read and sppended to the string in t.v.c until the quotes pair.,

. The character index is initialized to zero. It indexes characters of

the source line.

= . BLOOP (BUMP, then LOOP): BUMP is performed. BUMP consists of adding
one to +the character index, extracting the charscter st that position
of the source line, and classifying the character.

. LOOP: The location of the current token is saved, and the token pointer

is advanced over the current token to where the next can begin.

. Control is dispatched to the handler of the classification of the

current source charscter.

Dhiad V)

i

Name end Operator Handling
The following is the handling of alphabetic and underscore characters:

R The CLEAN operation is performed. CLEAN is used to clean-up the format
of a preceding constant token; see the discussion of CLEAN and constant

handling later on.

o -The present source character index is remembered; the delta-switch is
reset.
. A loop is entered which consists of:
. BUMP,
. For elphabetics, numerics, and underscores, continue loop.
. For delta, verify that the delta is the second character of the

token and that the first was "S" or "T". If so, set the delta-
switch and continue. If not, consider the name ended and exit
from the loop.

. For &11 other characters, exit from the loop.
. Create a new token, of type name unless the delta-switch is set, in

vhich case of type ste (stop/trace control).

. Place in t.v.c of the token the source characters between the saved

source character index and the current source character index.

. Go to LOOP, which, by not BUMPing, will reprocess the character which
terminated the name.

The following is the handling of blanks and tabulates:
. Go immediately to BLOOP, to fetch end process the next character.

{
The following is the handling of new-line and lamp charscters:
. The CLEAN operation is performed.

. An end-of-line token is produced.
. Return is made to the caller of the lex.

Handling of scalar operators, mixed operators, logical operators, grade
operators, and dyadic operators is essentially alike: 4
, The CLEAN operation is performed.

, A token is created, of type sop, mop, lop, 8op, or dop.

N Go to BLOOP.

rage 5

i) o LV eV)

Handling of break characters which sre types by themselves consists of:
. CLEAN.

i

. A token of appropriate type is created.

. Go to BLOOP.

Constant Handling

Now we come to the handling of constants. APL allows a vector of constants

to be input, simply by concatenating successive values with blanks. Such a
vector must appear as one constant token in the token list. There are two
problems associated with this. First of all, it is unknown what the data-
type of the final vector will be (it may stert with zeros and ones,
suggesting type bit; but be followed by small integers, necessitating
promotion to type int; and then finally a non-integral value can force
promotion to type float). Second, since isolated values are to be considered
scalars and not vectors of length one, the rhorho of the constant is also
unknown in advance. Character constants share the second problem with
aumeric constants, though not the first.

These two problems are overcome as follows: the token which represents
constant is not finalized until the lex detects that the corstant has
finally ended. In the wmeantime, the constent is stored as if it were to
be a vector, and, if numeric, it is stored as type float. Additional
element values keep appending to the same token. Finally, when some
token other than & constant is to be placed in the token list, subroutine
CLEAN will be called to properly format the constant token.

CLEAN performs as follows:

o Exit if the previous token is not a constant.

. Exit if the previous token is a character constant having other
than one element.

. If the previous token is a character constant of exactly one element,
it is made & scalar (rhorho = O imstead of 1), and then exit.

. Now the token is known to be & numeric constant. If the finsl type
can be bit or int, loop through the element values converting them
from float. This can be done in place because those types are

smaller in size than float. The actual conversion is a simple substr

operation.

Lagc v

BZ.10.03

Finally, if the constant consists of exactly one element, rhorho is

set to zero.

Now the handling of constant-class characters can be discussed in detail.

The handling for quote is:

If the preceding token is not of type constant, febricate a constant

token, of data-type char, having no characters in it.

If the preceding token is & constant, but not character, then CLEAN

first, and then fabricate & character token as sbove.

Otherwise, the preceding token is also a character constant, so append
to it.

L:Remember the present character index plus one.
Advance the character index to the next quote.

If the character following the current character is not also a quote,
eppend the characters from the saved character index up to but not
including the present character to the character token and exit to
BLOOFP.

If the next character is also a quote, then append the characters
including the current character (one quote), advance the character

index by one to skip the next quote, and go back to L.

The handling of the upper-minus sign is as follows:

The present source character index is remembered; S, the numeric sign
switch, is set to'minus; V, the 20-digit numeric value accumulator, is
cleered; P, the digits-after-point counter, is cleared; E, the exponent
accumulator, is cleared; isw, the ignoring-digits switch,is turned

off; end psw, the point-seen switch, is turned off.
DLOOP: The main digit-loop is entered.
BUMP.

Dispatch on the new character.
. If the new character is a period, test the point-switch. If on,
go to ENDNUM. If off, turn it on and return to DLOOP.

. If the new character is "E", go to the exponent processor.

. If the new character is anything but a digit, to to ENDNUM.

Page 5

DBL10.05

Now the new character is known to be a’digit. Test the ignore-switeh

to see if it should be ignored (digits are ignored after 20 significant
digits have been accumulated). If so, subtract one from P. Then test

the point-switch; if on, add one to P. Then return to DLOOP.

If the ignore-switch is off, then verify that V, the 20-digit accumulator,

'1s less then 10%¥*¥20., If so, V=10%V+digit; test the point-switch and add

one to P if on.

If the accumulstor is not less than 10%¥20, then set the ignore-switch.
If the current digit is 5 or more, add one to V. Subtract one from P
to record the ignored digit; and, if the point-switch is set, add one
to P,

Return to DLOOP.

If a digit is encountered, the handling is:

The present source character index is remembered; S is set to plus;
V, P, and E are set to zero; and the point-switch and ignore-switch

are turned off.

The digit-loop is entered at the V=V¥10+digit operation.

If a period is encountered, the handling is:

The next character of the source line is inspected to see if it is a
digit.

If not, this period is not part of a number. A token is created for
it by itself.

If so, the present source character index 1s remembered; S is set to
p;us; V, P and E are cleared; the ignore-switch is turned off and the

point-switch is turned on.

Digit loop is entered at DLOOP.

The exponent processor works as follows:

ES, the exponent sign, is set to plus.
BUMP,

Anything other than a digit or a sign is a SYNTAX ERROR at the current
character.

A minus sign sets ES to minus.

rage ©

DaelVeV) i8H

ELOOP: Either sign comes here. A BUMP is performed. Anything but
a digit causes E=ES¥E and exit to ENDNUM.

A digit, either from the previous step or from the first BUMP, causes .
E = 10*E+digit.

'E is tested sgainst 1000; if greater, DOMAIN ERROR.

Return is made to ELOOP.

At ENDNUM, the number is converted to normalized double floating-point:

E = E-P. The effective exponent is the expressed exponent plus the
number of ignored digits minus the number of digits folléwing the point.

The value accumulator is decimal-normalized so that 10%¥20< V< 10%¥21,
E is sdjusted accordingly.

Unless E <19 at this point, DOMAIN ERROR.
Unless -61< E at this point, the number is taken as zero.

The 20-digit asccumulator is fractionally multiplied by s fixed-point

Eth power of ten, Tl-bits precision, normaelized to have a one in bit 1
(exemple: when converting the digit one, the value accumulator will
contain 10%%21, E will be -21, the table entry -21 will contain (10%¥-21)*
(2%x69)).

E is converted to the binary exponent: E = Tl-normalization of above
table entry (in the case of the digit one, E = 71-69 = 2).

The value accumulator is binary normalized. If V<2 ¥¥70, then V = 2%V
and E = E-l.

The value accumulator is rounded.to+precision 63: if the 2¥*¥7 bit is -
set in V then if V£ 2¥¥71.2%%8 then V = V+2%¥%8, otherwise V = 2¥%70

The sign of the number is applied: if S is minus, then if V& 2¥%¥704+2%%8
then V = -V+(2%¥%8-1), otherwise V = -2¥%71 and E = E-1.

Unless ~-129< E at this point, the number is taken as zero.
Unless E< 128 at this point, DOMAIN ERROR.
The result is 8-bits of E concatenated with the 2¥¥70...2%*%8 bits of V.

If the result is O or 1, note that the value can be of type bit.

c

B4,10.03

. If ~-1{EL36 and all bits (B+9)...71 are zero, note that the value can
be of type int.

. Otherwise, note that the value must be of type float.

. Unless the previous token is a constant token, create & constant token,
of deta-~type as noted sbove, store the value (as float regardless of
the type determined). Go to LOOP.

. If the previous token is a character constant, then CLEAN it up and

create a new constant token as in the previous step.

. Otherwise, the previous token must be a numeric constant. Append the

current value to the values in it.

. Promote the type of the constant if the present type is longer than the
type stored with the constant token.

. Go to LOOP.

All Other Characters
A1l other characters found in the source line becomes tokens of type other.
Ultimately, they will be rejected by the parser.

Page O

