B2.10.05 Pa.ae 1

MSPM SECTION BZ.10.05

Identification .
APL Data Formats

Purpose
This section describes the internal layout of data used by the Multics APL

interpreter.

Introduction

The data base of the APL interpreter is the currently active workspace. The
date of the current workspace is distributed among four segments in the user's
process directory. The segments are named "apl.stack.?", "apl.symbol.?",
"apl.value.?", and "apl.function.?", where "?" represents an identifier unique

to each invocation of APL,

The Stack Segment
'The stack segment contains the APL state indicator. Its format has already

been discussed in the parser and lexical analyzer descriptions. It consists
of & succession of S5-, E-, or F-frames., S- and E-fresmes contain also a token

list; ell contain & parse stack.

‘fhe Value Segment

‘The value segment is menaged as a PL/l area with value nodes explicitly
allocated and freed by ALLOCATE and FREE statements. The value area contains
values and lists of values. The format of & value bead is:
1 wvalue based
2 count fixed
“type fixed
number fixed
rhorho fixed
rho(1:value.rhorho) fixed
2 data(l:number) ? unaligned _
vhere "?" is "bit(1)" if value.type is 1=bit, "fixed" if value.type is 2=integer,
"float bin(63)" if value.type is 3=float, and "char(1l)" if value.type is b=
character. Value.number is the actual number of elements of this data value

A0 B o I VI M]

BZ.10.05 Page 2

(multiplication-reduction of rho of the value, in APL terms). Value.rhorho
is the rank of the value. Value.rho is the rho of the value, always stored

in l-origin indexing.

Value.count deserves more extehded explanation. It is a count of the number

of pointers in the entire workspace which point to this value., A multiplicity
of such pointers mey exist, becsuse, for reasons of efficiency, the interpreter
often supplies duplicete pointers to one value rather than copying values over.
The problem then arises as to when to free the storége occupied by the value
itself. This problem is solved by value.count. Each time a new copy of a
pointer to a viklue is created, the count in that value is increased by one.

As each user of & value is finished with it, he subtracts one from its count.
The last user will notice that the count has gone to zero and will deallocate

the value.

In general, wherever the phrase "deallocate the value" occurs in the docu~
mentation of the APL interpreter, it must be understood to mean: subtract
one from the usage count, and actually free the storsge only if the count

has reached zero.

A 1ist is represented by & thread of structures of the form:
1 1list based
2 next offset
2 valuve offset
vhere list.next is the offset (relative to the value area) of the next element
of the list, end list.value is the offset of the value constituting this element
of the list. Lists have no usage counts,because they can have only one pointer

to them active. Lists occur only as subscripts and mixed-mode putput statements.

The Symbol Segment

The symbol segment mechanizes the symbol teble. Symbols are hashed into 87

~ buckets, which are maintained as linearly threaded lists from an arrsy of 87
starting pointers. Beyond the starting array, the symbol segment consists of
an area in which are allocated spelling beads, usage beads, and group beads.
Spelling beads are strung from the buckets; each identifier of a given spelling
has exactly one spelling bead. Usage beads are striung from each spelling bead
to reflect the fact that a spelling can have more than one usage.

BZ.10.05 Page 3

The formet of & spelling bead is:
1 spell based

2 next offset

2 usagep offset

2 spelling char(256) varying
vhere spell.next continues the hash bucket thread; spell.usagep is the offset
of the head of the thread of usage beads hanging from this spelling bead; and
spell.spelling is the actual spelling itself.

The format of a usage bead is:
1 wusage based

-2 count fixed

2 type fixed

2 valuep offset

2 spellp offset
where usage.count is the number of pointers that refer to this bead (like
value.count, discussed above); usage.type is O=junk, l=variable, 2=function,
or 3=group; usage.valuep is the offset of a value in the value area for a
variable, a function bead in the function area if a function, or a group
bead in the symbol area if a groupl and usage.spellp is the offset of the
spelling bead owning this usage bead.

The format of a group besd is:
1 group based
2 names char(infinity) verying
vhere the names of the members of the group are found in group.names separated
by single blanks. ‘ A

The meaning of usage.type=junk deserves comment. During the parsing of lines
to be interpreted, names must be bound to the referents to which they refer!
In particular, the referent of & name is some usage bead--the one which cor-
responds to the proper generation of the identifier in question. However,
efter a name is initially bound to & referent but before that reference is
evaluated, the original referent can be changed or deleted by the APL user
in. definition mode (example: the identifier "A" is encountered in parsing

en input line; the parser establishes its referent as a function and hooks it
to the proper usage bead; the right argument of the function reference is yet

to be evaluated; the right argument is a call on function "B", which suspends;

~

BZ.10.05 Pege 4

the user then erases "A" end resumes execution; the right argument now being

availeble, the interpreter returns to execute "A"; whoops, no "A" anymore!).

Whenever an editing operation alters the meaning of a usage bead with a non~ -
zero usage count, the bead is set to type=junk. A new usage bead of the proper
nev type is created, if necessary. When the holders of the pointers to the old
bead come back to it and discover it has been Junked, they will re-search the
symbol table in an effort to establish another referent for the identifier in
question. If the new referent is of compatible type with the 0ld, the replace-
ment succeeds and execution continues. If not (examples: a function changes

into a group, or simply disappears), a syntax error is signalled.

The Function Segment

The function segment is an area in which are allocated function beads, line

beads, and token beads.

There is one function bead for each defined function. The value pointer in
the usage bead of the function's name (in the symbol area) points to the function
bead. The format of the function bead is:
1 fb based
2 nargs fixed
2 nresults fixed
2 nlines fixed
2 slb source line bead
3 next offset
3 prev offset
3 class fixed
2 lines(l:fb.nlines)
3 source offset
3 lex offset
where fb.nargs is the number of arguments this function has (O,l, or 2);
fb.nresults is the number of results (0 or 1); fb.nlines is the number of lines
(NLs occuring within quotes are not counted in this number); fb.slb is the
header of a doubly-threaded list of source line beads (see below); fb.lines
ls the line array, one entry per line, with fb.lines(i).source being the pointer
to the first source line bead for line i, and fb.lines(i).lex being a pointer

o the beginning-of-line token for line i.

~

BZ,10.05 Pege 5

The tokens for each line are singly-threaded off fb.lines(i).lex, and have
the formet described in the lexical analyzer deseription (MSPM BZ.10.03).

Source line beads are doubly-threaded from the fb.slb header. There is one
source line béad for each NL in the source text of the function. The format of
each source line bead is:
' 1 slb based

2 next offset

2 prev offset

2 class fixed

2 lineno fixed

2 1line char(infinity) varying
 vhere slb.next is a pointer to the next source line bead (slb.next in the last
source line points back to fb.slb); slb.prev is a pointer to the previous source
lire bead (slb.prev in the first source line points back to fb.slb); slb.class
is an integer signifying 0=EOF, 1=CON, 2-=END, 3=NEW, to be explained below;
slb.lineno is the APL line number assigned to this line during editing scaled

four decimal places; slb.line is the actual source line itself, ending in NL.

This slb.class varieble is used to keep track of which lines need to Be lexically
eanalyzed again when a function has been edited. Class EOF occurs only in the
fb.slb header bead to indicate the end of the source lines. Class NEW occurs
only temporarily during editing. All the lines of a stored function are classed
as either CON (continued) or END (not continued). The last source line corres-
vonding to each lex line is classed END; all previous source lines belonging to
that same lex line ere clessed CON (CON lines appear due to NLs which occur in
character constants).

Usage of the class NEW is described in the documentation of the editor. See
MSPM BZ.10.0Q6.

