B82.10.06 Paasz i

MSPM SECTION BZ.10.,06

Jdentification
APL Editor

The APL editor is the component which mechanizés function definition mode.

Introduction

The editor is a line-by-line editor. To the user it can be & context editor
(having the same requests as the Multics EDM editor, in fact), or & line-number
editor (having the seme operation as the APL/360 editor). Internally, the source
text to be edited is maintained as a doubly-threaded list of source lines (each
terminated with the NL character). Various requests require old lines to be
deleted or create new lines to be inserted or to replace 0ld ones. These

operations are managed by re-threading the line list.

This-document does not treat the mechanization of the editing requests, inasmuch
as those are almost identical to EIM (however, the LOCATE and FIND requests
must be done line-by-line, since the source lines are not contiguous as in EDM).
However, some importaht points regarding the interface of this editor to the

rest of APL are covered.

Initiation of Edit Mode

Initiation of edit mode in APL must be for & specific function name. The name

is inspected to see if it refers to a global variable, & group, or a function.

If it refers to a global variable or a group, the request to initiate edit mode
fails. If it refers to & function, the state indicator stack is searched to
verify that the function is not pendent (otherwise, edit mode will not be entered),
and then the existing source lines of the function are located to be edited. If
the name is none of the above, no initial lines will be present, and a new function
bead will be created for the new function (see description of function segment
data formats in MSPM BZ.10.05).

Insertion and Deletion of Lines

Insertion and deletion of lines is done directly on the function stored in the

current workspace, no on a copy as with EDM (the current workspace itself is,

~



BZ.10.06 Page 2

in general, a copy of some stored workspace to begin with). The source lines
are kept as a doubly-threaded list (sgain see MSPM BZ.10.05).

An existing function has stored with it in the workspace both the source lines
end also the lexical analysis of the source lines. This is necessary to avoid
the overhead of lexing a line each time it is interpreted. Vhen a function is
edited, some lines will be altered, which will invelidate their corresponding

lex . At the close of the function definition; the editor must scan the function
and present to the lexical analyzer those lines which must be lexed again.
Occasionally, & line must be lexed again even if it was not changed during the
edit (example: a términating quote is removed from a preceding line, causing

the current line to become part of an alphabetic constant).

To determine which lines must be lexed again, the editor uses the line class
fleg, slb.class, vhich takes on the values EOF, CON, END, and NEW, for each
source line. The class EOF is reserved for the list header beed and never oceurs

on a source line itself. The class NEW is used by the editor as a mark to indi-
cate lines which need to be lexed. Stored functions contain only class CON and
END, vhere CON is used for all source lines contributing to one lex line except
the last, which is given class END.

¥hen a line is deleted from a function, the line classes are treated as follows:
if the line is class NEW, it is simply deleted. If the line is class END, all
lines above it which are class CON are changed to class NEW, then it is deleted.
If it is class CON, all lines above it which are class CON are changed to class
NEW, as well as all lines below it to and including the first one of class END,
then the line is deleted.

When a line is inserted into a function following another, the line classes are
treated as follows: wunless the line in the function is of class CON, the new
line is simply inserted and given class NEW. If, however, the existing line is
of class CON, then it and all lines above it of class CON are changed to class
NEW. Then all lines below it to and including the first one of class END are
changed to class NEW. Finally, the new line is inserted and given class NEW, _.:

In each case above when a group of lines of class CON followed by one of class
END were changed to class NEW, the editor frees the storage occupied by the
Llex of the sltered line.

When edit mode is left, the editor will present each line marked NEW to the
lexical analyzer to be lexed fresh. The lines will be marked CON and END,



B2.10.06 Page 3

as appropriate. In addition, if the lexical analyzer continues to request
input to complete e lex line when a group of NEW lines is exhausted, another
group down to the next END will be marked NEW and presented to the lex. If
the end of the function is reached by this procedure, the quotes do not match
in the source, a diagnostic is issued, and edit mode remains in effect. (Until
the user re-matches the quotes, he will be unsable to leave definition mode. )

Termination of Edit Mode

When the user requests termination of function definition mode, the first

operation performed is the lex of NEW lines, as discussed sbove,

Next, the syntax of the header line is checked (this is the only syntactic
checking performed at edit time). The name of the function is inspected to see
if it has changed. If so, it must not conflict with eny global varisble, group,
or other function. If the header line does not exist, or if no line except
the header line exists, the function is considered to be erased.

Next, the result, the arguments, the local variables, and the labels are all
cross~-checked against one another (by’hashing them into & small table) to verify
that there are no duplications in naming.

If all these checks succeed, the interpreter allows the return to execution mode.
The usage bead corresponding to the old function is deallocated, and the new one
~is installed.

Reading and Writing Multics Files
The insert-file and write-file requests take as arguments Multics path names,

The characters in the lines in question are transferred verbatim between the
APL workspace and the Multics files. In particular, the character codes of
such files must correspond to the APL internal codes (see MSPM BZ.10.04), or
else such files will not constitute proper APL function definitions. In
yarticular, the ANSCIT escapes sequences listed in MSPM BZ.10.0L are not per-

Tormed by editor requests; they are presumed to have been done already.





